

SYSTEMS ANALYSIS
AND DESIGN

I N A C H A N G I N G W O R L D

John W. Satzinger
Missouri State University

Robert B. Jackson
RBJ and Associates

Stephen D. Burd
University of New Mexico

FIFTH EDITION

A u s t r a l i a • B r a z i l • J a p a n • K o r e a • M e x i c o • S i n g a p o r e • S p a i n • U n i t e d K i n g d o m • U n i t e d S t a t e s

C6696_FM_CTP.4c 2/8/08 4:14 PM Page i

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

52609_00_fm_pi-pxxvi.indd ii52609_00_fm_pi-pxxvi.indd ii 2/1/10 11:37:43 PM2/1/10 11:37:43 PM

This ia an electronic version of the print textbook. Due to electronic rights

restrictions, some third party may be suppressed. Edition
review has deemed that any suppres ed content does not materially

 affect the over all learning experience. The publisher reserves the
right to remove the contents from this title at any time if subsequent
rights restrictions require it. For valuable information on pricing, previous
editions, changes to current editions, and alternate format, please visit
www.cengage.com/highered to search by ISBN#, author, title, or keyword
 for materials in your areas of interest.

s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

http://www.cengage.com/highered

Systems Analysis and Design in a Changing World,
Fifth Edition
John W. Satzinger, Robert B. Jackson,
Stephen D. Burd

Editor-in-Chief: Alex von Rosenberg

Acquisitions Editor: Charles McCormick

Product Manager: Kate Hennessy

Development Editor: Dan Seiter

Editorial Assistant: Bryn Lathrop

Marketing Director: Brian Joyner

Marketing Manager: Bryant Chrzan

Content Project Manager: Matt Hutchinson,
GEX Publishing Services

Art Director: Marissa Falco

Manufacturing Coordinator: Justin Palmeiro

Cover Photo: © Radius Images/RF/PhotoLibrary

© 2009 Course Technology, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be
reproduced, transmitted, stored or used in any form or by any means—graphic, elec-
tronic, or mechanical, including but not limited to photocopying, recording, scanning,
digitizing, taping, Web distribution, information networks, or information storage and
retrieval systems, except as permitted under Section 107 or 108 of the 1976 United
States Copyright Act—without the prior written permission of the publisher.

ISBN-13: 9781423902287

ISBN-10: 1-4239-0228-9

Course Technology
25 Thomson Place
Boston, MA 02210

USA

Cengage Learning is a leading provider of customized learning solutions with office loca-
tions around the globe, including Singapore, the United Kingdom, Australia, Mexico,
Brazil, and Japan. Locate your local office at: international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

For your lifelong learning solutions, visit course.cengage.com

Visit our corporate website at cengage.com

Printed in Canada
1 2 3 4 5 6 7 12 11 10 09 08

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all requests online at
cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

C6696_FM_CTP 2/20/08 3:31 PM Page ii

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

mailto:permissionrequest@cengage.com

To JoAnn, Brian, Kevin, LaVone, and Arnie—JWS

To my immediate and extended family—RBJ

To Dee, Amelia, and Alex—SDB

DEDICATION

C6696_FM_CTP.4c 2/8/08 4:14 PM Page iii

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

PART 1: The Systems Analyst
Chapter 1 The World of the Information Systems Analyst 2

Chapter 2 Approaches to System Development 36

Chapter 3 The Analyst as a Project Manager 72

PART 2: Systems Analysis Activities
Chapter 4 Investigating System Requirements 116

Chapter 5 Modeling System Requirements 158

Chapter 6 The Traditional Approach to Requirements 202

Chapter 7 The Object-Oriented Approach to Requirements 238

Chapter 8 Evaluating Alternatives for Requirements, 280
Environment, and Implementation

PART 3: Systems Design Tasks
Chapter 9 Elements of Systems Design 314

Chapter 10 The Traditional Approach to Design 352

Chapter 11 Object-Oriented Design: Principles 386

Chapter 12 Object-Oriented Design: Use Case Realizations 428

Chapter 13 Designing Databases 486

Chapter 14 Designing the User Interface 528

Chapter 15 Designing System Interfaces, Controls, and Security 568

PART 4: Implementation and Support
Chapter 16 Making the System Operational 616

Chapter 17 Current Trends in System Development 660

Index 701

Online Supplemental Web Resources
Online Supplemental Chapter 1 Packages and Enterprise Resource Planning

Online Appendices A, B, C, D, and E

Glossary

BRIEF CONTENTS

iv

C6696_FM_CTP.4c 2/8/08 4:14 PM Page iv

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Note that more material is available at the book’s Web site, including an online chapter and appendices.
For information, see the “Student Companion Web Site” section in this preface.

PART 1 The Systems Analyst

Chapter 1 The World of the Information Systems Analyst 2

A Systems Analyst at Consolidated Refineries 3

Overview 4

The Analyst as a Business Problem Solver 4

Systems That Solve Business Problems 6

Required Skills of the Systems Analyst 10

Analysis-Related Careers 14

The Analyst’s Role in Strategic Planning 16

Rocky Mountain Outfitters and Its Strategic Information Systems Plan 18

The Analyst as a System Developer (the Heart of the Course) 27

Summary 31

Key Terms 31

Review Questions 32

Thinking Critically 32

Experiential Exercises 32

Case Studies 33

Further Resources 35

Chapter 2 Approaches to System Development 36

Development Approaches at Ajax Corporation, Consolidated Concepts, 37
and Pinnacle Manufacturing

Overview 37

The Systems Development Life Cycle 38

Activities of Each SDLC “Phase” 45

Methodologies, Models, Tools, and Techniques 49

Two Approaches to System Development 53

Current Trends in Development 61

Tools to Support System Development 63

Summary 67

Key Terms 67

Review Questions 68

Thinking Critically 68

TABLE OF CONTENTS

v

C6696_FM_CTP.4c 2/8/08 4:14 PM Page v

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Experiential Exercises 69

Case Studies 69

Further Resources 71

Chapter 3 The Analyst as a Project Manager 72

Bestway Fuel Systems: Moving to an Adaptive SDLC 73

Overview 73

Project Management 74

Project Initiation and Project Planning 83

Defining the Problem 87

Producing the Project Schedule 90

Identifying Project Risks and Confirming Project Feasibility 99

Staffing and Launching the Project 107

Recap of Project Planning for RMO 109

Summary 111

Key Terms 111

Review Questions 112

Thinking Critically 112

Experiential Exercises 113

Case Studies 113

Further Resources 114

PART 2 Systems Analysis Activities

Chapter 4 Investigating System Requirements 116

Mountain States Motor Sports 117

Overview 118

Analysis Activities in More Detail 119

System Requirements 122

Models and Modeling 124

Stakeholders—The Source of System Requirements 128

Techniques for Information Gathering 133

Validating the Requirements 150

Summary 153

Key Terms 154

Review Questions 154

TABLE OF CONTENTS

vi

C6696_FM_CTP.4c 2/8/08 4:14 PM Page vi

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Thinking Critically 154

Experiential Exercises 155

Case Studies 156

Further Resources 157

Chapter 5 Modeling System Requirements 158

Waiters on Call Meal-Delivery System 159

Overview 160

User Goals, Events, and Use Cases 160

Use Case Descriptions 171

“Things” in the Problem Domain 176

The Entity-Relationship Diagram 182

The Domain Model Class Diagram 187

Where You Are Headed 194

Summary 195

Key Terms 195

Review Questions 196

Thinking Critically 196

Experiential Exercises 197

Case Studies 198

Further Resources 201

Chapter 6 The Traditional Approach to Requirements 202

San Diego Periodicals: Following the Data Flow 203

Overview 204

Traditional and Object-Oriented Views of Activities/Use Cases 205

Data Flow Diagrams 205

Documentation of DFD Components 221

Locations and Communication through Networks 230

Summary 234

Key Terms 234

Review Questions 234

Thinking Critically 235

Experiential Exercises 235

Case Studies 235

Further Resources 237

TABLE OF CONTENTS

vii

C6696_FM_CTP.4c 2/8/08 4:14 PM Page vii

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Chapter 7 The Object-Oriented Approach to Requirements 238

Electronics Unlimited, Inc.: Integrating the Supply Chain 239

Overview 239

Object-Oriented Requirements 240

The System Activities—A Use Case/Scenario View 242

Identifying Inputs and Outputs—The System Sequence Diagram 252

Identifying Object Behavior—The State Machine Diagram 260

Integrating Object-Oriented Models 269

Summary 271

Key Terms 271

Review Questions 271

Thinking Critically 272

Experiential Exercises 275

Case Studies 276

Further Resources 279

Chapter 8 Evaluating Alternatives for Requirements,
Environment, and Implementation 280

Tropic Fish Tales: Netting the Right System 281

Overview 281

Project Management Perspective 283

Deciding on Scope and Level of Automation 284

Defining the Application Deployment Environment 291

Choosing Implementation Alternatives 297

Contracting with Vendors 305

Presenting the Results and Making the Decisions 307

Summary 309

Key Terms 309

Review Questions 309

Thinking Critically 310

Experiential Exercises 310

Case Studies 311

Further Resources 312

TABLE OF CONTENTS

viii

C6696_FM_CTP.4c 2/8/08 4:14 PM Page viii

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

PART 3 Systems Design Tasks

Chapter 9 Elements of Systems Design 314

Fairchild Pharmaceuticals: Finalizing Architectural Design for a Production System 315

Overview 316

Project Management Revisited: Execution and Control of Projects 317

Understanding the Elements of Design 324

Design Activities 330

Network Design 334

The Deployment Environment and Application Architecture 339

Summary 349

Key Terms 349

Review Questions 350

Thinking Critically 350

Experiential Exercises 350

Case Studies 351

Further Resources 351

Chapter 10 The Traditional Approach to Design 352

Theatre Systems, Inc.: Something Old, Something New 353

Overview 354

The Structured Approach to Designing the Application Architecture 354

The Automation System Boundary 355

The System Flowchart 357

The Structure Chart 360

Module Algorithm Design: Pseudocode 371

Integrating Structured Application Design with Other Design Tasks 373

Three-Layer Design 374

Summary 379

Key Terms 379

Review Questions 379

Thinking Critically 380

Experiential Exercises 384

Case Studies 384

Further Resources 385

TABLE OF CONTENTS

ix

C6696_FM_CTP.4c 2/8/08 4:14 PM Page ix

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Chapter 11 Object-Oriented Design: Principles 386

New Capital Bank: Part 1 387

Overview 388

Object-Oriented Design: Bridging from Analysis to Implementation 388

Object-Oriented Architectural Design 392

Fundamental Principles of Object-Oriented Detailed Design 404

Design Classes and the Design Class Diagram 409

Detailed Design with CRC Cards 416

Fundamental Detailed Design Principles 419

Summary 423

Key Terms 423

Review Questions 424

Thinking Critically 424

Experiential Exercises 425

Case Studies 425

Further Resources 427

Chapter 12 Object-Oriented Design: Use Case Realizations 428

New Capital Bank: Part 2 429

Overview 429

Detailed Design of Multilayer Systems 430

Use Case Realization with Sequence Diagrams 433

Designing with Communication Diagrams 454

Updating and Packaging the Design Classes 457

Design Patterns 463

Summary 473

Key Terms 473

Review Questions 474

Thinking Critically 475

Experiential Exercises 483

Case Studies 484

Further Resources 485

TABLE OF CONTENTS

x

C6696_FM_CTP.4c 2/8/08 4:14 PM Page x

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Chapter 13 Designing Databases 486

Nationwide Books: Designing a New Database 487

Overview 488

Databases and Database Management Systems 488

Relational Databases 490

Object-Oriented Databases 503

Hybrid Object-Relational Database Design 510

Data Types 514

Distributed Databases 516

Summary 524

Key Terms 524

Review Questions 524

Thinking Critically 525

Experiential Exercises 526

Case Studies 526

Further Resources 527

Chapter 14 Designing the User Interface 528

Interface Design at Aviation Electronics 529

Overview 529

Identifying and Classifying Inputs and Outputs 530

Understanding the User Interface 532

Guidelines for Designing User Interfaces 540

Documenting Dialog Designs 544

Guidelines for Designing Windows and Browser Forms 549

Guidelines for Designing Web Sites 552

Designing Dialogs for Rocky Mountain Outfitters 554

Summary 562

Key Terms 562

Review Questions 563

Thinking Critically 563

Experiential Exercises 564

Case Studies 564

Further Resources 567

TABLE OF CONTENTS

xi

C6696_FM_CTP.4c 2/8/08 4:14 PM Page xi

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Chapter 15 Designing System Interfaces, Controls, and Security 568

Downslope Ski Company: Designing a Secure Supplier System Interface 569

Overview 570

Identifying System Interfaces 570

Designing System Inputs 574

Designing System Outputs 582

Designing Integrity Controls 592

Designing Security Controls 599

Summary 607

Key Terms 607

Review Questions 608

Thinking Critically 609

Experiential Exercises 611

Case Studies 611

Further Resources 613

PART 4 Implementation and Support

Chapter 16 Making the System Operational 616

Tri-State Heating Oil: Juggling Priorities to Begin Operation 617

Overview 618

Program Development 619

Quality Assurance 631

Data Conversion 639

Installation 641

Documentation 646

Training and User Support 650

Maintenance and System Enhancement 652

Summary 656

Key Terms 656

Review Questions 656

Thinking Critically 657

Experiential Exercises 658

Case Studies 658

Further Resources 659

TABLE OF CONTENTS

xii

C6696_FM_CTP.4c 2/8/08 4:14 PM Page xii

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Chapter 17 Current Trends in System Development 660

Valley Regional Hospital: Measuring a Project’s Progress 661

Overview 661

Software Principles and Practices 662

Adaptive Methodologies to Development 666

Model-Driven Architecture—Generalizing Solutions 684

Frameworks, Components, and Services 687

Summary 695

Key Terms 695

Review Questions 696

Thinking Critically 696

Experiential Exercises 697

Case Studies 698

Further Resources 699

Index 701

Supplemental Web Resources

Online Supplemental Chapter 1 Packages and Enterprise Resource Planning

Premier Candy Corp.: The Possible Pitfalls of ERP

Overview

Packaged Software

Enterprise Resource Planning

A Closer Look at One ERP Package: SAP R/3

Summary

Key Terms

Review Questions

Thinking Critically

Experiential Exercises

Case Studies

Further Resources

Online Appendix A Principles of Project Management

Online Appendix B Project Schedules with PERT/CPM Charts

Online Appendix C Calculating Net Present Value, Payback Period, and Return
on Investment

Online Appendix D Presenting the Results to Management

Online Appendix E Guide to Using Microsoft Project

Glossary

TABLE OF CONTENTS

xiii

C6696_FM_CTP.4c 2/8/08 4:14 PM Page xiii

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

FEATURES

xiv ♦ FEATURES

Systems Analysis and Design in a Changing World, Fifth Edition, was written and developed with
both instructor and student needs in mind. Here is just a sample of the unique and exciting
features that help bring the field of systems analysis and design to life.

The text uses an integrated case study of
moderate complexity—Rocky Mountain
Outfitters (RMO)—to illustrate key
concepts and techniques.

20 ♦ PART 1 THE SYSTEMS ANALYST

John and Liz had considered making a major commitment to business-to-consumer
(B2C) e-commerce in the early 2000s. They worried about the risk of sudden and potentially
explosive growth, but felt that they had to develop an online ordering system to remain com-
petitive. At the time, in-house staff was not trained in Web technologies, so John and Liz
decided to outsource development and operation of the Web site.

By 2007, they realized that the Web-based ordering system was substantially underper-
forming against the competition for many reasons, including the following:

• Slow and cumbersome updates to online content
• Poor coordination with in-house customer service functions
• Poor coordination between Web-based ordering and supply chain management functions
• Poor technical support and other support by the site operator
• Deteriorating relations with RMO management

In late 2006, RMO performed a detailed market analysis that showed alarming trends,
including the following:

• RMO sales growth was slower than the industry average, resulting in decreasing market
share.

• The average age of customers ordering by phone and mail was increasing, and was much
higher than the industry average age of all customers.

• Compared to competitors, RMO’s Web-based sales were a much smaller percentage of
total sales, and the average order amount was lower than the industry average.

The analysis painted a disturbing picture of declining performance. Continued strong
sales to older customers via traditional channels were offset by weak sales to younger cus-
tomers via the Web. RMO was failing to attract and retain the customers who represented the
bulk of present and future business.

2010 CATALOG

2010 CATA
LO

G

Figure 1-9

Current RMO catalog

cover (Fall 2010)

THE CUSTOMER SUPPORT SYSTEM

The RMO system development project described in this text is the customer support system
(CSS). Rocky Mountain Outfitters has always prided itself on its customer orientation. One of
the core competencies of RMO has been its ability to develop and maintain customer loyalty.
John Blankens knew and understood customer relationship management principles long before
the phrase came into common use. His pride in that knowledge has been shaken by recent sales
performance and customer complaints. He’s determined to right the ship and reenergize RMO’s
customer-oriented focus with a significant infusion of effort, technology, and money.

The application architecture plan detailed some specific objectives for the customer sup-
port system. The system should include all functions associated with providing products for
the customer, from order entry to arrival of the shipment, such as:

• Customer inquiries/catalog requests
• Order entry
• Order tracking
• Shipping
• Back ordering
• Returns
• Sales analysis

26 ♦ PART 1 THE SYSTEMS ANALYST

Supply
Chain

Management
(SCM)

Customer
Support
System
(CSS)

Strategic
Information

Management
System
(SIMS)

Retail Store
System
(RSS)

Accounting/
Finance
System

2009–2010:
Project under way. Consultant-assisted new development to

integrate seamlessly product development, product
acquisition, manufacturing, and inventory management in

anticipation of rapid sales growth.

2010–2011:
Project beginning now. New development to implement an order-
processing and fulfillment system that seamlessly integrates

with the supply chain management system to support the three
order-processing requirements: mail order, phone order, and

direct customer access via the Web.

2011:
Package solution that can extract and analyze

supply chain and customer support information
for strategic and operational decision making and

control.

2011:
Package solution that can integrate with

customer support system.

2012:
Package intranet solution.

Human
Resource
System

2013:
Package intranet solution.

New distributed
database

integrating
corporate data

Figure 1-13

The timetable for

RMO’s application

architecture plan

An overview of the strategic
systems plan for RMO is
presented in Chapter 1 to place
the project in context. The
planned system architecture
provides for rich examples—a
client/server Windows-based
component, as well as a Web-
based, e-commerce component
with direct customer
interaction via the Internet.

The new customer support system (CSS) is the system
development project used throughout the text for examples
and explanations. It is strategically important to RMO, and
the company must integrate the new system with legacy
systems and other planned systems.

C6696_FM_CTP.4c 2/8/08 4:14 PM Page xiv

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

FEATURES

FEATURES ♦ xv

CHAPTER 3 The Analyst as a Project Manager ♦ 109

RECAP OF PROJECT PLANNING FOR RMO

Barbara and Steve spent the entire month of February putting together the schedule and plans
for the CSS. Even though Barbara was the project manager, she and Steve worked together as
peers. As a team, they could brainstorm and double-check each other’s work. They had
worked together before and had an excellent relationship—one based on mutual respect and
trust. They could be candid and knew how to work through disagreements as well as how to
come to consensus on important issues. Barbara also knew that the work Steve produced was
always well thought out and very professionally done. He was a skilled systems analyst and
would help make sure that the work done in the planning phase was solid.

The success of the overall project depended heavily on the planning Barbara and Steve did
during this phase. The foundation for all other project activities is established during project
planning. As Barbara planned for the kickoff meeting to launch the project officially, she
reviewed the areas of project management to make sure that she had addressed all of the crit-
ical issues.

For project scope management, she developed a list of business benefits, a list of system
capabilities, and a context diagram. At this point in the project, the scope definition was still
very general. She would make sure the project’s scope was precisely defined during the infor-
mation-gathering activities of the analysis phase.

She and Steve had developed a detailed work breakdown structure and entered the infor-
mation into Microsoft Project. The schedule was very detailed for the analysis phase, but less
so for the design and implementation phases. She would add those details as decisions were
made about the implementation approach. She thought that her approach to project time
management had been established, and she would have the tools necessary to track the
schedule as the project progressed.

The costs and potential benefits had been estimated and used to develop an NPV estimate.
She would redo the NPV when she redid the schedule at the end of the analysis phase to
ensure that the costs and schedule were within the allowed budget. The other part of cost
management was to monitor the costs during the life of the project. Microsoft Project would
help her track the costs of each task.

Steve had done a lot of the work to identify and assess risks during the feasibility analysis.
Barbara knew that they would both continue to look for risks and assess potential problems
during the project. She asked Steve to take time each week to assess the risks and update the
list of the highest risks for the project. She felt confident that she would not be blindsided by
some unexpected problem.

For project communication and project quality, Barbara established procedures for the
project. She set up a central database to post the project’s status, decisions, and working doc-
uments to make sure that all the team members were kept well informed. She established a
routine and format for weekly status reports from the team leaders and a status report to the
oversight committee. An example of one of her status report memos to the oversight commit-
tee is shown. These status reports all follow a standard format. In addition to the formal sta-
tus memos, she would also write more informal memos to John MacMurty. For project
quality, internal procedures required that team members and RMO users review all work
products. Other quality procedures, such as the test plan, would be established as the project
progressed.

Details about the RMO case
are integrated directly into
each chapter to make a
point or to illustrate a
concept—just-in-time
examples—rather than
isolating the case study in
separate sections of
the chapters.

Project management aspects
of the case are reinforced
throughout by use of RMO
memos describing the status
of the project in every chapter.
The same system project is
used to illustrate traditional
and object-oriented models
and solutions, so both
approaches can be understood
and directly compared.

110 ♦ PART 1 THE SYSTEMS ANALYST

She and Steve had identified the other people they would like to have on the team. John
had been especially helpful in finding solid analysts who were available or who would be
available soon. In fact, Barbara had already interviewed all of the members who were coming
on board. Recognizing the importance of having a team whose members could work together,
she had scheduled several days for the team members to get to know each other, to refine
their internal working procedures, and to teach them about the tools and techniques that
would be used on the project.

All in all, it had been a very hectic but productive month. A lot of work had been done,
and a solid foundation had been established for a successful project.

CHAPTER 2 Approaches to System Development ♦ 39

most of this textbook—we will focus on the initial development project and not on the sup-
port projects. In other words, our primary concern is with getting the system developed and
deployed the very first time.

In today’s diverse development environment, many different approaches to developing
systems are used, and they are based on different SDLCs. As you might suppose, some
approaches have been used for a long time and have varying rates of success. In the ever-
changing world of information technology, new and unique approaches to building systems
have emerged, which also have varying success rates. Although it is difficult to find a single,
comprehensive classification system that encompasses all of the approaches, one useful tech-
nique is to categorize SDLC approaches according to whether they are more predictive or
adaptive. These two classifications represent the end points of a continuum from completely
predictive to completely adaptive (see Figure 2-1).

Recognize that any specific project you work on will have some predictive
and some adaptive elements.

BEST PRACTICE

The choice of SDLC varies depending on the project

Predictive
SDLC

Adaptive
SDLC

Requirements well understood
and well defined.
Low technical risk.

Requirements and needs
uncertain.
High technical risk.

Figure 2-1

Predictive versus

adaptive approaches to

the SDLC

A predictive approach to the SDLC is an approach that assumes that the development
project can be planned and organized in advance and that the new information system can
be developed according to the plan. Predictive SDLCs are useful for building systems that are
well understood and defined. For example, a company may want to convert its old, main-
frame inventory system to a newer networked client/server system. In this type of project, the
staff already understands the requirements very well, and no new processes need to be added.
So, the project can typically be planned carefully, and the system can be built according to the
specifications.

At the other end of the scale, an adaptive approach to the SDLC is used when the exact
requirements of a system or the users’ needs are not well understood. In this situation, the
project cannot be planned completely in advance. Some requirements of the system may yet
need to be determined, after some preliminary development work. Developers should still be
able to build the solution, but they must be flexible and adapt the project as it progresses.

In practice, any project could have—and most do have—both predictive and adaptive ele-
ments. That is why Figure 2-1 shows the characteristics as end points on a sliding scale—not
as two mutually exclusive categories. The predictive approaches are more traditional and were
invented from the 1970s to the 1990s. Many of the newer, adaptive approaches have evolved
along with the object-oriented approach and were created during the 1990s and into the
twenty-first century. Let’s first look at some of the more predictive approaches and then exam-
ine some of the newer adaptive approaches.

THE TRADITIONAL PREDICTIVE APPROACHES TO THE SDLC

The development of a new information system requires several different, but related, activities.
In predictive approaches, we first have a group of activities that plan, organize, and schedule
the project, usually called project planning activities. These activities map out the overall

predictive

approach

an SDLC approach that
assumes the
development project can
be planned and organized
in advance and that the
new information system
can be developed
according to the plan

adaptive

approach

an SDLC approach that is
more flexible, assuming
that the project cannot be
planned out completely in
advance but must be
modified as it progresses

The text describes both
predictive and adaptive
approaches to the SDLC,
and recommends iterative
development for many
projects.

Each chapter includes
several Best Practice
features that highlight
the latest thinking on
techniques and tools.

C6696_FM_CTP.4c 2/8/08 4:14 PM Page xv

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

FEATURES

xvi ♦ FEATURES

As Monica reviewed Stewart’s record, she found that he had

done an excellent job as a team leader on his last project. His last

assignment was as a combination team leader/systems analyst on a

four-person team. He had been involved in systems analysis, design,

and programming, and he also managed the work of the other three

team members. He had assisted in the development of the project

schedule and had been able to keep his team right on schedule. It

also appeared that the quality of his team’s work was as good as, if

not better than, other teams on the project. She wondered what

advice she should give him to help him advance his career. She was

also wondering if now was the time to give him his own project.

1. Do you think the decision by CLT to build its own project

managers from the existing employee base is a good one?

What advice would you give to CLT to make sure that it

has strong project management skills in the company?

2. What kind of criteria would you develop for Monica to use

to measure whether Stewart (or any other potential project

manager) is ready for project management responsibility?

3. How would you structure the job for new project man-

agers to ensure, or at least increase the possibility of, a

high level of success?

4. If you were Monica, what kind of advice would you give to

Stewart about managing his career and attaining his

immediate goal to become a project manager?

RETHINKING ROCKY MOUNTAIN OUTFITTERS

The chapter identified six areas of project feasibility

that need to be evaluated for any new project.

However, as indicated, each of these areas of feasi-

bility can also be considered an evaluation of the

potential risks of the project. Based on your under-

standing of Rocky Mountain Outfitters, both from this chapter and

the information provided in Chapter 1, build a table that summa-

rizes the risks faced by RMO for this new project. Include four

columns titled (1) Project risk, (2) Type of risk, (3) Probability of risk,

and (4) Steps to alleviate risk.

Identify as many risks to the project as you can. Type of risk

means the category or area of the project feasibility that is at risk. It

might help you think about risks in the different categories, for

example (1) risk management, (2) economic, (3) organizational and

cultural, (4) technological, (5) schedule, and (6) resources. The chap-

ter provided a few examples of risk in each of these areas. However,

many other risks can cause project failures. Think as broadly as pos-

sible and expand the list of potential risks in each area.

Obviously, other kinds of risks are associated with a project of

the magnitude of the customer support system. You might want to

consider some risks external to the company, such as economic,

marketplace, legal, environment, and so forth. Other types of inter-

nal risks might also be associated with components that are pur-

chased or outsourced, such as development tools, learning curves,

poor quality of purchased components, and failure of vendors.

A common risk management technique is to build a table and iden-

tify the top 10 risks to the project. Contingency plans can then be built

for the top 10 risks. Periodically, the project management team reevalu-

ates the risk list to determine the current top 10 risks. After you build the

table, identify which risks you would classify as the top 10 risks.

FOCUSING ON RELIABLE PHARMACEUTICAL SERVICE

Chapter 2 discussed Reliable Pharmaceutical

Service’s Web-based application to connect its

client nursing homes directly with a new pre-

scription and billing system. You considered both the risks of a

sequential, waterfall approach to the SDLC and the risks of an itera-

tive and incremental approach to the SDLC for its development.

1. Now consider the way the project was probably initiated.

To what extent is the project the result of (a) an opportu-

nity, (b) a problem, or (c) a directive?

2. Many of the system users (such as employees at health-care

facilities) are not Reliable employees. What risks of project

failure are associated with the mixed user community? What

would you, as a project manager, do to minimize those risks?

3. What are some of the tangible benefits to the project? What

are some of the intangible benefits? What are some of the tan-

gible and intangible costs? How would you handle the project’s

benefits and costs that will accrue to the health-care facilities—

would you include tangible benefits and costs to the nursing

homes in the cost/benefit analyses? Why or why not?

4. Overall, do you think the approach taken to the project

(sequential waterfall versus iterative and incremental)

would make a difference in the tangible and intangible

costs and benefits? Discuss.

5. Overall, do you think the approach taken to the project

would make a difference in minimizing the risks of project

failure? Discuss.

114 ♦ PART 1 THE SYSTEMS ANALYST

FURTHER RESOURCES

Scott W. Ambler, Agile Modeling: Effective Practices for XP and
the RUP. John Wiley and Sons, 2004.

Jim Highsmith, Agile Project Management: Creating Innovative
Products. John Wiley and Sons, 2004.

Gopal K. Kapur, Project Management for Information,
Technology, Business, and Certification. Prentice-Hall, 2005.

Jack R. Meredith and Samuel J. Mantel Jr., Project
Management: A Managerial Approach (6th ed.). John Wiley and
Sons, Inc., 2004.

Joseph Phillips, IT Project Management: On Track from Start to
Finish. McGraw-Hill, 2002.

Project Management Institute, A Guide to the Project Management
Body of Knowledge, 3rd edition. Project Management Institute, 2004.

Walker Royce, Software Project Management: A Unified
Framework. Addison-Wesley, 1998.

Kathy Schwalbe, Information Technology Project Management,
Fifth Edition. Course Technology, 2008.

Every chapter follows up
on the RMO case details
by adding an end-of-
chapter case study named
Rethinking Rocky
Mountain Outfitters.
Each case extends an
example in the chapter or
poses additional ques-
tions to consider about
the RMO system project.

36

APPROACHES TO SYSTEM
DEVELOPMENT2
L E A R N I N G O B J E C T I V E S

After reading this chapter, you should be able to:

■ Explain the purpose and various phases of the traditional systems

development life cycle (SDLC)

■ Explain when to use an adaptive approach to the SDLC in place of the more

predictive traditional SDLC

■ Explain the differences between a model, a tool, a technique, and a

methodology

■ Describe the two overall approaches used to develop information systems:

the traditional approach and the object-oriented approach

■ Describe the key features of current trends in system development: the

Unified Process (UP), Extreme Programming (XP), and Scrum

■ Explain how automated tools are used in system development

CHAPTER

C H A P T E R O U T L I N E

The Systems Development Life Cycle

Activities of Each SDLC Phase

Methodologies, Models, Tools, and Techniques

Two Approaches to System Development

Current Trends in Development

Tools to Support System Development

CHAPTER 2 Approaches to System Development ♦ 37

Kim, Mary, and Bob, graduating seniors, were discussing their recent interview visits to differ-
ent companies that recruited computer information system (CIS) majors on their campus. All
agreed that they had learned a lot by visiting the companies, but they also all felt somewhat
overwhelmed at first.

“At first I wasn’t sure I knew what they were talking about,” Kim cautiously volunteered.
During her on-campus interview, Kim had impressed Ajax Corporation with her knowledge of
data modeling. When she visited the Ajax home office data center for the second interview, the
interviewers spent quite a lot of time describing the company’s system development methodology.

“A few people said to forget everything I learned in school,” continued Kim. Ajax
Corporation had purchased a complete development methodology called IM One from a
small consulting firm. Most employees agreed it works fairly well. The people who had
worked for Ajax for quite a while thought IM One was unique, and they were very proud of it.
They had invested a lot of time and money learning and adapting to it.

“Well, that got my attention when they said forget what I learned in school,” noted Kim,
“but then they started telling me about their SDLC, about iterations, about business events,
about data flow diagrams, and about entity-relationship diagrams, and things like that.” Kim
had recognized that many of the key concepts in the IM One methodology were fairly stan-
dard models and techniques from the structured approach to system development.

“I know what you mean,” said Mary, a very talented programmer who knew just about
every new programming language available. “Consolidated Concepts went on and on about
things like OMG and UML and UP and some people named Booch, Rumbaugh, and
Jacobson. But then it turned out that they were using the object-oriented approach to develop
systems, and they liked the fact that I knew Java and VB .NET. No problem once I got past all
of the terminology they used. They said they’d send me out for training on Rational Software
Architect, a visual modeling tool for the object-oriented approach.”

Bob had a different story. “A few people said analysis and design were no longer a big
deal. I’m thinking, ‘Knowing that would have saved me some time in school.’” Bob had vis-
ited Pinnacle Manufacturing, which had a small system development group supporting man-
ufacturing and inventory control. “They said they try to just jump in and get to the code as
soon as possible. Little documentation. Not much of a project plan. Then they showed me
some books on their desks, and it looked like they had been doing a lot of reading about
analysis and design. I could see they were using Extreme Programming and agile modeling
techniques and focusing only on best practices needed for their small projects. It turns out
they just organize their work differently by looking at risk and writing user stories while
building prototypes. I recognized some sketches of class diagrams and sequence diagrams on
the boss’s whiteboard, so I felt fairly comfortable.”

Kim, Mary, and Bob all agreed that there was much to learn in these work environments
but also that many different terms and points of view are used to describe the same key con-
cepts and techniques they learned in school. They were all glad they focused on the funda-
mentals in their CIS classes and that they had been exposed to a variety of approaches to
system development.

OVERVIEW

As the experiences of Kim, Mary, and Bob demonstrate, there are many ways to develop an
information system, and doing so is very complex. Project managers rely on a variety of aids
to help them with every step of the process. The systems development life cycle (SDLC) intro-
duced in this chapter provides an overall framework for managing the process of system

DEVELOPMENT APPROACHES AT AJAX CORPORATION,
CONSOLIDATED CONCEPTS, AND PINNACLE MANUFACTURING

This edition also
includes the Focusing
on Reliable
Pharmaceutical
Service case study,
which is included
at the end of every
chapter to provide
additional experience
with problem-solving
techniques and issues
addressed in the
chapter. Reliable is a
smaller company than
RMO, and the strategic
information system
plan and specific
system development
project provide a
different perspective to
analysis and design.

Each chapter includes an
opening case study, states
clear learning objectives,
and introduces the chapter
outline.

C6696_FM_CTP.4c 2/8/08 4:14 PM Page xvi

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

FEATURES

FEATURES ♦ xvii

CHAPTER 6 The Traditional Approach to Requirements ♦ 213

Order-entry subsystem

Look up item availability
Create new order
Update order
Produce order summary reports
Produce transaction summary reports

Order fulfillment subsystem

Look up order status
Record order fulfillment
Record back order
Create order return
Produce fulfillment summary report

Customer maintenance subsystem

Provide catalog information
Produce prospective customer activity reports
Update customer account
Distribute promotional package
Create customer charge adjustment
Produce customer adjustment reports

 Catalog maintenance subsystem

Update catalog
Create special product promotion
Create new catalog
Produce catalog activity reports

Figure 6-10

RMO subsystems and

use cases for each

subsystem

Order-entry
subsystem

Accounting

Credit
info

Transaction

Management

Bank Shipping

Customer

Credit
bureau

Order confirmation

Order change

Item availability inquiry

Order details

Order change details

Transaction
summary report

Order summary reports
Order

Item availability response

Change confirmation

Figure 6-11

A context diagram for the

RMO order-entry

subsystem

246 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Figure 7-6 also shows that Look up item availability can be part of an «includes» relation-
ship. So, an analyst can define two types of «includes» use cases: one that is a common inter-
nal subroutine, such as Validate customer account, and is not directly referenced by an external
actor, and one that is directly referenced by external actors. Look up item availability is an exam-
ple of the latter.

Update order
Produce

order summary
report

Produce
transaction
summary

report

Management

Customer

Shipping

Clerk

Look up order
status

Create order
return

Record back
order

Record order
fulfillment

Produce
order fulfillment

report

Customer

Provide
catalog

information

Maintain
customer account

information

Distribute
promotional

package

Create
customer charge

adjustment

Clerk

Marketing

Management

Produce
customer

adjustment
report

Order-entry subsystem

Customer

Look up item
availability

Order clerk

Create new
order

Order fulfillment subsystem

Customer maintenance subsystem

Catalog maintenance subsystem

Create new
catalog

Produce
catalog activity

report

Update
catalog

Merchandising

Create special
promotion

Maintain
product

information

Figure 7-5

A use case diagram of

the customer support

system organized by

subsystem

Each chapter includes extensive figures
and illustrations designed to clarify and
summarize key points and to provide
examples of models and other deliverables
produced by an analyst. Color coding is
used to differentiate traditional models
(diagrams with blue backgrounds), object-
oriented models (diagrams with light tan
backgrounds), and models used with
both approaches (diagrams with yellow
backgrounds).

Margin definitions of key terms are placed in the
text when the term is first used.

CHAPTER 7 The Object-Oriented Approach to Requirements ♦ 253

entering input data and receiving output data. The idea is the same with both diagrams; the
level of detail is different.

The box labeled :System is an object that represents the entire automated system. In SSDs
and all interaction diagrams, analysts use object notation instead of class notation. Object
notation indicates that the box refers to an individual object and not the class of all similar
objects. The notation is simply a rectangle with the name of the object underlined. The colon
before the underlined class name is a frequently used, but optional, part of the object nota-
tion. In an interaction diagram, the messages are sent and received by individual objects, not
by a class. In an SSD, the only object included is one representing the entire system.

Underneath the actor and the :System are vertical dashed lines called lifelines. A lifeline,
or object lifeline, is simply the extension of that object, either actor or object, throughout the
duration of the SSD. The arrows between the lifelines represent the messages that are sent or
received by the actor or the system. Each arrow has an origin and a destination. The origin of
the message is the actor or object that sends it, as indicated by the lifeline at the arrow’s tail.
Similarly, the destination actor or object of a message is indicated by the lifeline that is
touched by the arrowhead. The purpose of lifelines is to indicate the sequence of the mes-
sages sent and received by the actor and object. The sequence of messages is read from top to
bottom in the diagram.

A message is labeled to describe both the message’s purpose and any input data being
sent. The syntax of the message label has several options; the simplest forms are shown in
Figure 7-10. Remember that the arrows are used to represent both a message and input data.
But what is meant by the term message here? In a sequence diagram, a message is considered
to be an action that is invoked on the destination object, much like a command. Notice in
Figure 7-10 that the input message is called inquireOnItem. The clerk is sending a request, or
a message to the system, to find an item. The input data that is sent with the message is con-
tained within the parentheses, and in this case it is data to identify the particular item. The
syntax is simply the name of the message followed by the input parameters in parentheses.
This form of syntax is attached to a solid arrow.

inquireOnItem (catalogID, prodID, size)

item information

Clerk

:System

The object lifeline; shows
the “sequence”
top to bottom

Optional note to explain
something in a diagram

A returned value

The actor
interacting with
the system

An object
(underlined)

representing the
automated system

An input message

item information:
description, price, quantity

 of messages,

Figure 7-10

Sample system sequence

diagram (SSD)

The returned value has a slightly different format and meaning. Notice the arrow is a dashed
arrow. A dashed arrow is used to indicate a response or an answer and, as shown in the figure, it
immediately follows the initiating message. The format of the label is also different. Because it
is a response, only the data that is sent on the response is noted. There is no message requesting

lifeline, or object

lifeline
the vertical line under an
object on a sequence
diagram to show the
passage of time for the
object

C6696_FM_CTP.4c 2/8/08 4:14 PM Page xvii

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

FEATURES

xviii ♦ FEATURES

SUMMARY
System development projects are organized around the systems development life cycle (SDLC), and phases of
the SDLC include activities that must be completed for any system development project. The traditional SDLC
phases are project planning, analysis, design, implementation, and support. Some SDLCs are based on a more
predictive approach to the project, and other SDLCs are based on a more adaptive approach. System develop-
ers learn the SDLC phases and activities sequentially, based on the waterfall model; in practice, however, the
phases overlap and projects contain many iterations of analysis, design, and implementation activities.

You can develop an information system in lots of ways. All development projects use the SDLC to manage
the project, plus models, techniques, and tools that make up a system development methodology. A system
development methodology provides guidelines to follow for completing every activity in the SDLC, and many
different methodologies are in use. Most methodologies are based on one of two approaches to information
systems development: the traditional approach or the object-oriented approach.

Some current trends in system development include the Unified Process (UP), Extreme Programming (XP),
and Scrum. These methodologies provide innovative insights into best practices in system development and
are becoming influential.

Visual modeling tools are special tools designed to help analysts complete development tasks, including
modeling and generating program statements directly from the models.

KEY TERMS

adaptive approach, p. 39

analysis activities, p. 45

application, p. 47

class diagram, p. 60

data flow diagram (DFD), p. 56

design activities, p. 46

entity-relationship diagram (ERD), p. 57

help desk, p. 49

implementation activities, p. 47

incremental development, p. 44

information engineering, p. 58

integrated development environment (IDE), p.51

iteration, p. 43

model, p. 50

object, p. 59

object-oriented analysis (OOA), p. 60

object-oriented approach, p. 59

object-oriented design (OOD), p. 60

object-oriented programming (OOP), p. 60

phases, p. 40

predictive approach, p. 39

problem domain, p. 46

project, p. 38

project planning, p. 45

prototype, p. 42

repository, p. 64

spiral model, p. 42

structure chart, p. 55

structured analysis, p. 56

structured approach, p. 53

structured design, p. 55

structured program, p. 53

support activities, p. 48

system development methodology, p. 49

systems development life cycle (SDLC), p. 38

technique, p. 51

tool, p. 51

top-down programming, p. 54

Unified Process (UP), p. 61

visual modeling tools, p. 51

waterfall model, p. 40

CHAPTER 2 Approaches to System Development ♦ 67

End-of-chapter
material includes a
detailed summary,
and an indexed list
of key terms. EXPERIENTIAL EXERCISES

1. Using Microsoft Project, build a project schedule based on the

following scenario. Print the Gantt chart. If required by your

teacher, also print the Network Diagram (i.e., a PERT chart).

In the table to the right is a list of tasks a student can per-

form to have an international experience by attending a

university abroad. You can build schedules for several ver-

sions of this set of tasks. For the first version, assume that

all predecessor tasks must finish before the succeeding

task can begin (the simplest version). For a second version,

identify several tasks that can begin a few days before the

end of the predecessor task. For a third version, modify the

second version so that some tasks can begin a few days

after the beginning of a predecessor task. Also, insert a

few overview tasks such as Application tasks, Preparation

tasks, Travel tasks, and Arrival tasks. Be sure to state your

assumptions for each version.

2. Build a project plan to show your progress through college.

Include the course prerequisite information. If you have

access to Microsoft Project or another tool, enter the infor-

mation in the project management tool.

3. Using information from your organizational behavior classes

or other sources, write a one-page paper on what kinds of

team-building and training activities might be appropriate

as the project team is expanded for the analysis phase.

4. Ask a systems analyst about the SDLC that his or her com-

pany uses. If possible, ask the analyst to show you a copy

of the project schedule. To what extent is iterative develop-

ment used?

5. Ask a project manager for his or her opinion on each of the

eight project management knowledge areas.

6. Go to the CompTIA Web site (www.compTIA.org) and find

the requirements for the project manager exam (CompTIA

Project+). Write a one-page summary of the expertise and

knowledge required to pass the exam.

Task ID Description Duration (days) Predecessor

1 Obtain forms 1 None

from the international

exchange office

2 Fill out and send 3 1

in the foreign

university application

3 Receive approval 21 2

from the foreign

university

4 Apply for scholarship 3 2

5 Receive notice of 30 4

approval for

scholarship

6 Arrange financing 5 3, 5

7 Arrange for housing 25 6

in dormitory

8 Obtain a passport 35 6

and the required visa

9 Send in preregistration 2 8

forms to the university

10 Make travel 1 7, 9

arrangements

11 Determine clothing 10 10

requirements and

go shopping

12 Pack and make final 3 11

arrangements to leave

13 Travel 1 12

14 Move into the 1 13

dormitory

15 Finalize registration 2 14

for classes and other

university paperwork

16 Begin classes 1 15

CUSTOM LOAD TRUCKING

It was time for Stewart Stockton’s annual performance review. As

Monica Gibbons, an assistant vice president of information systems,

prepared for the interview, she reviewed Stewart’s assignments over

the last year and his performance. Stewart was one of the “up and

coming” systems analysts in the company, and she wanted to be

sure to give him solid advice on how to advance his career. She

knew, for example, that he had a strong desire to become a project

manager and accept increasing levels of responsibility. His desire

was certainly in agreement with the needs of the company.

Custom Load Trucking (CLT) is a nationwide trucking firm that

specializes in the rapid movement of high-technology equipment.

With the rapid growth of the communications and computer indus-

tries, CLT was feeling more and more pressure from its clients to be

able to move its loads more rapidly and precisely. Several new infor-

mation systems were planned that would enable CLT to schedule and

track shipments and trucks almost to the minute. However, trucking

was not necessarily a high-interest industry for information systems

experts. With the shortage in the job market, CLT had decided not to

try to hire project managers for these new projects but to build strong

project managers from within the organization.

CASE STUDIES

CHAPTER 3 The Analyst as a Project Manager ♦ 113

As Monica reviewed Stewart’s record, she found that he had

done an excellent job as a team leader on his last project. His last

assignment was as a combination team leader/systems analyst on a

four-person team. He had been involved in systems analysis, design,

and programming, and he also managed the work of the other three

team members. He had assisted in the development of the project

schedule and had been able to keep his team right on schedule. It

also appeared that the quality of his team’s work was as good as, if

not better than, other teams on the project. She wondered what

advice she should give him to help him advance his career. She was

also wondering if now was the time to give him his own project.

1. Do you think the decision by CLT to build its own project

managers from the existing employee base is a good one?

What advice would you give to CLT to make sure that it

has strong project management skills in the company?

2. What kind of criteria would you develop for Monica to use

to measure whether Stewart (or any other potential project

manager) is ready for project management responsibility?

3. How would you structure the job for new project man-

agers to ensure, or at least increase the possibility of, a

high level of success?

4. If you were Monica, what kind of advice would you give to

Stewart about managing his career and attaining his

immediate goal to become a project manager?

RETHINKING ROCKY MOUNTAIN OUTFITTERS

The chapter identified six areas of project feasibility

that need to be evaluated for any new project.

However, as indicated, each of these areas of feasi-

bility can also be considered an evaluation of the

potential risks of the project. Based on your under-

standing of Rocky Mountain Outfitters, both from this chapter and

the information provided in Chapter 1, build a table that summa-

rizes the risks faced by RMO for this new project. Include four

columns titled (1) Project risk, (2) Type of risk, (3) Probability of risk,

and (4) Steps to alleviate risk.

Identify as many risks to the project as you can. Type of risk

means the category or area of the project feasibility that is at risk. It

might help you think about risks in the different categories, for

example (1) risk management, (2) economic, (3) organizational and

cultural, (4) technological, (5) schedule, and (6) resources. The chap-

ter provided a few examples of risk in each of these areas. However,

many other risks can cause project failures. Think as broadly as pos-

sible and expand the list of potential risks in each area.

Obviously, other kinds of risks are associated with a project of

the magnitude of the customer support system. You might want to

consider some risks external to the company, such as economic,

marketplace, legal, environment, and so forth. Other types of inter-

nal risks might also be associated with components that are pur-

chased or outsourced, such as development tools, learning curves,

poor quality of purchased components, and failure of vendors.

A common risk management technique is to build a table and iden-

tify the top 10 risks to the project. Contingency plans can then be built

for the top 10 risks. Periodically, the project management team reevalu-

ates the risk list to determine the current top 10 risks. After you build the

table, identify which risks you would classify as the top 10 risks.

FOCUSING ON RELIABLE PHARMACEUTICAL SERVICE

Chapter 2 discussed Reliable Pharmaceutical

Service’s Web-based application to connect its

client nursing homes directly with a new pre-

scription and billing system. You considered both the risks of a

sequential, waterfall approach to the SDLC and the risks of an itera-

tive and incremental approach to the SDLC for its development.

1. Now consider the way the project was probably initiated.

To what extent is the project the result of (a) an opportu-

nity, (b) a problem, or (c) a directive?

2. Many of the system users (such as employees at health-care

facilities) are not Reliable employees. What risks of project

failure are associated with the mixed user community? What

would you, as a project manager, do to minimize those risks?

3. What are some of the tangible benefits to the project? What

are some of the intangible benefits? What are some of the tan-

gible and intangible costs? How would you handle the project’s

benefits and costs that will accrue to the health-care facilities—

would you include tangible benefits and costs to the nursing

homes in the cost/benefit analyses? Why or why not?

4. Overall, do you think the approach taken to the project

(sequential waterfall versus iterative and incremental)

would make a difference in the tangible and intangible

costs and benefits? Discuss.

5. Overall, do you think the approach taken to the project

would make a difference in minimizing the risks of project

failure? Discuss.

114 ♦ PART 1 THE SYSTEMS ANALYST

FURTHER RESOURCES

Scott W. Ambler, Agile Modeling: Effective Practices for XP and
the RUP. John Wiley and Sons, 2004.

Jim Highsmith, Agile Project Management: Creating Innovative
Products. John Wiley and Sons, 2004.

Gopal K. Kapur, Project Management for Information,
Technology, Business, and Certification. Prentice-Hall, 2005.

Jack R. Meredith and Samuel J. Mantel Jr., Project
Management: A Managerial Approach (6th ed.). John Wiley and
Sons, Inc., 2004.

Joseph Phillips, IT Project Management: On Track from Start to
Finish. McGraw-Hill, 2002.

Project Management Institute, A Guide to the Project Management
Body of Knowledge, 3rd edition. Project Management Institute, 2004.

Walker Royce, Software Project Management: A Unified
Framework. Addison-Wesley, 1998.

Kathy Schwalbe, Information Technology Project Management,
Fifth Edition. Course Technology, 2008.

Each chapter also includes ample review questions, problems and exercises to get
the student thinking critically, a collection of experiential exercises involving addi-
tional research or problem solving, end-of-chapter case studies that invite students
to practice completing analysis and design tasks appropriate to the chapter, and a list
of further resources and references.

1. What are the five phases of the traditional SDLC?

2. What characteristics of a project call for a predictive

approach to the SDLC? What characteristics of a project

call for an adaptive approach to the SDLC?

3. How is the SDLC based on the problem-solving approach

described in Chapter 1?

4. What is the objective of each phase of the SDLC? Describe

briefly.

5. How is iteration used across phases?

6. What is the difference between a model and a tool?

7. What is the difference between a technique and a

methodology?

8. Which of the two approaches to system development was

the earliest?

9. Which of the two approaches to system development is

the most recent?

10. Which of the traditional approaches focuses on overall

strategic systems planning?

11. Which of the traditional approaches is a more complete

methodology?

12. What are the three constructs used in structured

programming?

13. What graphical model is used with the structured design

technique?

14. What graphical model is used with the modern structured

analysis technique?

15. What model is the central focus of the information engi-

neering approach?

16. Explain what is meant by a waterfall life cycle model.

17. What concept suggests repeating activities over and over

until you achieve your objective?

18. What concept suggests completing part of the system and

putting it into operation before continuing with the rest of

the system?

19. What are some of the features of the Unified Process (UP)?

20. What are some of the features of Extreme

Programming (XP)?

21. What are some of the features of Scrum?

22. What are visual modeling tools? Why are they used?

THINKING CRITICALLY

1. Write a one-page paper that distinguishes among the fun-

damental purposes of the analysis phase, the design

phase, and the implementation phase.

2. Describe a system project that might have three subsys-

tems. Discuss how three iterations might be used for the

project.

3. Why might it make sense to teach analysis and design

phases and activities sequentially, like a waterfall, even

though in practice iterations are used in nearly all develop-

ment projects?

4. List some of the models that architects create to show dif-

ferent aspects of a house they are designing. Explain why

several models are needed.

5. What models might an automotive designer use to show

different aspects of a car?

6. Sketch the layout of your room at home. Now write a

description of the layout of your room. Are these both

models of your room? Which is more accurate? More

detailed? Easier to follow for someone unfamiliar with

your room?

7. Describe a “technique” you use to help you complete the

activity “Get to class on time.” What are some “tools” you

use with the technique?

8. Describe a “technique” you use to make sure you get

assignments done on time. What are some “tools” you use

with the technique?

9. What are some other techniques you use to help you com-

plete activities in your life?

10. There are at least two approaches to system development, a

variety of life cycles, and a long list of techniques and mod-

els that are used in some approaches but not in others.

Consider why this is so. Discuss these possible reasons, indi-

cating which are the most important: The field is so young;

the technology changes so fast; different organizations have

such different needs; there are so many different types of

systems; and people with widely different backgrounds are

developing systems.

REVIEW QUESTIONS

68 ♦ PART 1 THE SYSTEMS ANALYST

C6696_FM_CTP.4c 2/8/08 4:14 PM Page xviii

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

http://www.compTIA.org

We have been very gratified as authors to receive so many supportive and enthusiastic com-
ments about Systems Analysis and Design in a Changing World. Students and instructors in the
United States and Canada have found our text to be the most up to date and flexible book
available. The book has also been translated into many languages and is now used produc-
tively in Europe, Australia, New Zealand, India, China, and elsewhere. Our innovative and
truly balanced coverage of traditional structured approaches and newer object-oriented
approaches has continued to keep pace with changes in the field. The IS 2002 model curricu-
lum suggests including a balanced coverage of both traditional and objected-oriented analysis
and design, something this text has supported from the very beginning. The proposed IS 2008
model curriculum continues to place systems analysis and design in the core of IS/IT. This
content is essential for system development majors as well as careers in business intelligence,
business process management, ERP/package selection and support, and information technol-
ogy service management. In this fifth edition, we continue to lead the way by making it feasi-
ble to cover object-oriented analysis and design in much greater depth using the latest OO
models and design patterns. We also provide up-to-date coverage of adaptive and agile tech-
niques and processes, and emphasize layered system architectures and Web development.
Finally, we include substantial coverage of project management tools and techniques, includ-
ing coverage of iterative and agile project management.

OBJECTIVES AND VISION

This text is designed for use in undergraduate and graduate courses that teach systems analysis
and design. Systems analysis and design is a practical field that relies on a core set of concepts
and principles, as well as what sometimes seems an eclectic collection of rapidly evolving
tools and techniques. Therefore, learning analysis and design today requires an appreciation
of the tried-and-true techniques widely embraced by experienced analysts, plus mastery of
new and emerging tools and techniques that recent graduates are increasingly expected to
apply on the job. It is not easy to develop and support information systems in today’s rapidly
changing environment, but the satisfaction and rewards for a job well done are substantial.

This text was developed by a team who was committed to producing an analysis and design
text that was different—a text that is flexible and innovative, yet comprehensive and deep. We
were guided by the belief that the text must be flexible enough to appeal both to instructors
emphasizing more traditional approaches to systems analysis and design and to those empha-
sizing the latest object-oriented techniques. At the same time, we did not want to oversimplify
the problem of system development. Many new developments affect systems analysis and
design, and we wanted to include key trends—use cases, predictive and adaptive life cycles,
agile development, UML, Web development, packaged solutions, enterprise resource planning
(ERP), components, and so on.

We also wanted the text to teach the key concepts and techniques, not just describe them.
Therefore, we focus on fundamentals of lasting value and then show how these fundamentals
apply to all development approaches. We explore both traditional structured analysis and
design and object-oriented analysis and design in depth. Flexible and innovative?
Comprehensive and deep? We think you will agree that our text achieves these objectives.

PREFACE

PREFACE ♦ xix

C6696_FM_CTP.4c 2/8/08 4:14 PM Page xix

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

INNOVATIONS

This text is unique in its integration of key systems modeling concepts that apply to both the
traditional structured approach and the newer object-oriented approach—events that trigger
system use cases and objects/entities that are part of the system’s problem domain. We devote
one chapter to identifying use cases and modeling key objects/entities. After completing that
chapter, instructors can emphasize structured analysis and design or object-oriented analysis
and design, or both. The object-oriented approach is not added as an afterthought—it is
assumed from the beginning that everyone should understand the key object-oriented con-
cepts. The traditional approach is not discarded—it is assumed from the beginning that every-
one should understand the key structured concepts.

FULL COVERAGE OF OO APPROACH

The object-oriented approach presented in this text is based on the Unified Modeling
Language (UML 2.0) from the Object Management Group, as originated by Grady Booch,
James Rumbaugh, and Ivar Jacobson. A model-driven approach to analysis starts with use
cases and scenarios and then defines problem domain classes involved in the users’ work. We
include requirements modeling with use case diagrams, use case descriptions, activity dia-
grams, and system sequence diagrams. Design models are also discussed in detail, with partic-
ular attention to use case realization with sequence diagrams, design class diagrams, and
package diagrams. Design principles and design patterns are discussed throughout. Our data-
base design chapter covers two approaches to object persistence—a hybrid approach using
relational database management and a pure approach using object database management sys-
tems (ODBMS). An iterative, adaptive, and agile approach to OO development is emphasized
throughout. Instructors who emphasize the object-oriented approach will not be disap-
pointed by the presentation and depth of coverage in this text.

FULL COVERAGE OF TRADITIONAL APPROACH

The traditional approach presented in this text is based on modern structured analysis and
design as refined by Stephen McMenamin and John Palmer, Ed Yourdon, and Meilir Page-
Jones. Modern structured analysis is an integrated, model-driven approach that includes event
partitioning, data modeling with entity-relationship diagrams (ERDs), and process modeling
with data flow diagrams (DFDs). Modern structured design is also based on event partition-
ing and uses the structure chart for software design. Database design using relational database
management techniques is featured. In this edition, we encourage students to try use cases
and use case descriptions as an alternative approach to defining business processing require-
ments. Instructors who emphasize the structured approach to development will be pleased by
the presentation and depth of coverage in this text.

EMERGING TOOLS AND TRENDS

Additional concepts and techniques are included in response to the realities of system devel-
opment today. First, system development and the system development life cycle (SDLC) are
explicitly defined as highly iterative. Although the text is organized as a sequential series of
phases, the actual development project and the project plan are iterative. Second, emerging
techniques and methodologies that use an iterative approach are introduced, including the
Unified Process (UP), Extreme Programming (XP), Agile Development, and Scrum. Finally,

PREFACE

xx ♦ PREFACE

C6696_FM_CTP.4c 2/8/08 4:14 PM Page xx

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

packaged solutions and enterprise resource planning (ERP) are described as alternatives to
custom development throughout the book. They are also described in detail in a separate ERP
chapter on the book’s Web site.

EMPHASIS ON ITERATION AND ARCHITECTURE

We did not reduce the amount of attention paid to the traditional approach to development.
Many instructors choose to emphasize the traditional approach, but they also now cover the
object-oriented approach to varying degrees. For both the traditional and the OO approach,
however, we emphasize iterative development and three-layer architecture throughout. Web
architectures and patterns are also included and modeled with UML. Predictive and adaptive
approaches to the SDLC are discussed in relation to both approaches.

PROJECT MANAGEMENT COVERAGE AND SOFTWARE TOOLS

Many undergraduate programs depend on their systems analysis and design course to teach
project management principles. To satisfy this need, we cover project management by taking a
three-pronged approach. First, specific project management techniques, skills, and tasks are
included and highlighted throughout chapters of the book. This integration teaches students
how to apply specific project management tasks to the various phases and activities of the sys-
tems development life cycle, including iterative development. Second, we include a 120-day
trial version of Microsoft Project 2007 Professional in the back of the book so that students
can obtain hands-on experience with this important tool. Third, a fairly extensive treatment
of project management concepts and principles is provided in an appendix on the book’s Web
site. This information is based on the Project Management Body of Knowledge (PMBOK), as
developed by the Project Management Institute—the primary professional organization for
project managers in the United States.

CHANGES FOR THE FIFTH EDITION

As we began considering updates to include in the fifth edition, we focused on refining some
of the presentation and pedagogy, tightening some of the examples, and updating the mater-
ial to reflect ongoing changes in analysis and design theory and practice. We also made some
major changes based on our current research and feedback from instructors using the book.

The balanced coverage of the structured approaches and newer object-oriented approaches
remains intact. This text can be used to emphasize the traditional structured approach with
data flow diagrams or use case modeling, entity-relationship diagrams, structure charts, and
relational databases; to focus on the object-oriented approach with use case modeling,
domain and design class diagrams, interaction diagrams, package diagrams, and state machine
diagrams; or to cover and compare both approaches in depth. We expanded the coverage of
use cases to include them as a requirements model for the traditional approach as well as for
the object-oriented approach. More and more development teams that work with traditional
approaches and architectures are finding use cases and use case descriptions helpful. We did
not remove the discussion of data flow diagrams, but we suggest that some instructors might
cover use cases instead.

PREFACE

PREFACE ♦ xxi

C6696_FM_CTP.4c 2/8/08 4:14 PM Page xxi

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

IMPROVED ORGANIZATION

We changed the organization and order of some material within some chapters. We left some
material on the book’s Web site as an online supplemental chapter and appendices. This gives
instructors more flexibility in designing their courses, and it also makes the book more man-
ageable. In this edition we made substantial changes to the OO design coverage by including
two OO design chapters.

PREDICTIVE VERSUS ADAPTIVE APPROACHES TO THE SDLC

Another key change is the emphasis on both predictive and adaptive approaches to the SDLC
as a way to define a continuum between sequential and highly iterative life cycles. Project
managers should be able to tailor the SDLC to meet specific project needs.

ENHANCED OO DESIGN COVERAGE

Probably the most noticeable change in the last edition was the extensive enhancement and
expanded coverage of the object-oriented approach. In this edition, we continue to refine the
discussion and examples to make them as accessible as possible without sacrificing depth.
Chapter 11 is all new, emphasizing the OO design process, design architectures, and design
principles. Chapter 12 is based on the fourth edition’s Chapter 11, but it received extensive
updates to the examples. As a result, the OO coverage is improved and greatly expanded.

ENHANCED COVERAGE OF IMPLEMENTATION AND SUPPORT

In this edition, we extensively updated our chapter on implementation and support (Chapter 16).
Although analysis and design courses have traditionally surveyed implementation, iterative
approaches call for more emphasis on programmers, implementation and integration techniques,
and testing in early iterations. Therefore, it becomes impossible to consider analysis and design
without considering implementation and testing throughout the project.

EXPANDED COVERAGE OF EMERGING APPROACHES

Our text has always presented emerging concepts and approaches to analysis and design and sys-
tem development. In this edition, we more fully integrate some specific agile methodologies
within the discussion of adaptive approaches to the SDLC in Chapter 2. Then in Chapter 17, we
discuss agile development, the Unified Process (UP), Extreme Programming (XP), and Scrum.

STUDENT COMPANION WEB SITE

We have created an exciting online companion for students as they work through the fifth edi-
tion of Systems Analysis and Design in a Changing World. In the back of this text, you will find a
key code that provides full access to a robust Web site, www.course.com/mis/sad5. This Web
resource includes the following features:

• Practice Quizzes. New quizzes, created specifically for this text, allow users to test them-
selves on the content of each chapter and immediately see what questions they answered
correctly and incorrectly. For each question answered incorrectly, users are given the cor-
rect answer and the page in the text where that information is covered. Special testing soft-
ware randomly compiles a selection of questions from a large database, so quizzes can be
taken multiple times on a given chapter, with some new questions included each time.

PREFACE

xxii ♦ PREFACE

C6696_FM_CTP.4c 2/8/08 4:14 PM Page xxii

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

http://www.course.com/mis/sad5

• Case Project. The Web site offers an additional case project that is similar in scope and
complexity to the Reliable Pharmaceuticals case in the book. This case project gives stu-
dents the opportunity to sharpen their skills. It has installments for each chapter as well as
corresponding solutions.

• PowerPoint Slides. Students can view the book’s PowerPoint presentations, which cover
the key points from each chapter. These presentations are a useful study tool.

• Online Chapters and Appendices. Students can access the following features on the site:
• Online Supplemental Chapter 1, Packages and Enterprise Resource Planning
• Appendix A, Principles of Project Management
• Appendix B, Project Schedules with PERT/CPM Charts
• Appendix C, Calculating Net Present Value, Payback Period, and Return on Investment
• Appendix D, Presenting the Results to Management
• Appendix E, Guide to Using Microsoft Project

• Useful Web Links. The site offers a repository of links to various Web sites where students
can find more information about systems analysis and design in industry, possible careers,
and other interesting resources for further learning.

ORGANIZATION AND USE

As in the fourth edition, the fifth edition is organized into four parts. Because of the increased
separation of traditional and OO materials for system design and the expanded coverage of
OO concepts, this print edition includes 17 chapters, supported by an additional chapter and
five appendices on the book’s Web site. Depending on the approach taken by the instructor,
many chapters or sections of chapters can be skipped without loss of continuity. Some chap-
ters are entirely optional. We begin with an overview of the entire text. Later, we discuss differ-
ent approaches to using the text in analysis and design courses, and include suggested course
outlines for instructors that emphasize either the traditional structured approach or the
object-oriented approach. These outlines are also useful for instructors who teach graduate
courses on analysis and design.

PART 1: THE SYSTEMS ANALYST

Chapter 1 discusses the work of an information systems analyst, including a streamlined discus-
sion of systems and the role of the systems analyst as a problem solver in a modern business
organization. The strategic information systems plan for Rocky Mountain Outfitters is discussed,
and the customer support system is identified as the planned project ready to start development.
Chapter 2 then asks, Now that we have a project, what do we have to do to get this system built?
That is, what are the methodologies, models, tools, and techniques that can be used to develop
systems? Predictive and adaptive approaches to the system development life cycle (SDLC) and
iterative variations are introduced. We make it clear that a variety of approaches exist for system
development and that today’s analysts need to be familiar with all of them. Even if students spe-
cialize in one approach in their course or later in their job, they should be able to distinguish
among structured, object-oriented, and several agile methodologies in a meaningful way.
Chapter 3 moves right to the heart of the course—the system development project—introduced
while describing the project planning phase of the SDLC in detail. Project planning, feasibility
assessment, and project management techniques are covered. Students are drawn quickly into
the RMO project so that the material has a meaningful context.

PREFACE

PREFACE ♦ xxiii

C6696_FM_CTP.4c 2/8/08 4:14 PM Page xxiii

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

PART 2: SYSTEMS ANALYSIS ACTIVITIES

Part 2 moves ahead with systems analysis techniques. Chapter 4 describes the activities of the
analysis phase of the SDLC in more detail. Then it focuses on investigating system require-
ments, including gathering information and interviewing system owners and users. Chapter 5
covers modeling system requirements, which includes event partitioning, use cases, and mod-
eling objects/entities, as described earlier. Chapter 6 continues requirements modeling using
the traditional approach, including data flow diagrams (DFDs), data flow definitions, and
process descriptions. Chapter 7 continues the discussion begun in Chapter 5 using the object-
oriented approach to requirements. Instructors can choose to emphasize Chapter 6 or Chapter 7
to focus the course on either the traditional or the object-oriented approach, or both. Chapter 8
presents an overview of technical environments that affect the generation of alternative sys-
tem solutions. Then, a comprehensive guide to generating and evaluating alternatives is pre-
sented, including the reality that a packaged solution is always a viable option.

PART 3: SYSTEMS DESIGN TASKS

Chapter 9 introduces systems design and discusses the activities of the systems design phase
of the SDLC in more detail. Details of the technological environment that affect design are
reviewed, including networks, client/server architecture, and three-layer design. Chapter 10
discusses the traditional approach to design, including the latest thinking on three-layer
designs. Chapter 11 and Chapter 12 address object-oriented design. Chapter 11 teaches design
concepts, UML design models, and architectural design in depth. Chapter 12 teaches students
how to design the interaction details for each use case—use case realization using sequence
diagrams, communication diagrams, design class diagrams, and package diagrams. Instructors
can choose to emphasize Chapter 10 or Chapter 11 to focus the course on either the tradi-
tional or the object-oriented approach, or both. More depth in OO design can be provided by
covering Chapter 12 in addition to Chapter 11. Chapter 13 covers database design—relational,
hybrid, and object-oriented databases. Chapter 14 covers user interfaces and human-computer
interaction; we include general principles and concepts of dialog design in addition to using
UML diagrams to model the dialog. Chapter 15 discusses system interfaces, with particular
attention to system controls and system security.

PART 4: IMPLEMENTATION AND SUPPORT

Systems implementation is increasingly technology specific, and because of the diverse develop-
ment environments in the real world, we decided to streamline the discussion of implementa-
tion. Chapter 16 provides an overview of implementation and support that addresses traditional
technology and object technology. We also include a comprehensive discussion of some emerg-
ing approaches to system development in Chapter 17, including agile development, the Unified
Process (UP), Extreme Programming (XP), and others. Similarly, although packaged solutions
are discussed as viable alternatives throughout, we include a detailed discussion of packages and
enterprise resource planning (ERP) in Online Supplemental Chapter 1, including specific exam-
ples from SAP.

PREFACE

xxiv ♦ PREFACE

C6696_FM_CTP.4c 2/8/08 4:14 PM Page xxiv

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

DESIGNING YOUR ANALYSIS AND DESIGN COURSE

As discussed earlier, there are many approaches to teaching analysis and design courses, and
the objectives of the course differ considerably from college to college. In some IS depart-
ments, the analysis and design course is a capstone course in which students apply the mater-
ial learned in prior database, telecommunications, and programming courses to a real analysis
and design project. In other IS departments, analysis and design is used as an introduction to
the field of system development, taken prior to more specialized courses. Some IS depart-
ments offer a two-course sequence emphasizing analysis in the first semester and design and
implementation in the second semester. Some IS departments have only one course that cov-
ers both analysis and design.

The design of the analysis and design course, always difficult, is complicated even more by
the choice of emphasizing either the traditional structured approach or the newer object-
oriented approach, again depending on local curriculum priorities. Additionally, the more
iterative approach to development, in general, has made choices about sequencing the analy-
sis and design topics more difficult. For example, with iterative development, a two-course
sequence cannot be divided into analysis and then design as easily.

Given these issues, it is not practical to offer sample syllabi that will work for all of these
options. The objectives, course content, assignments, and projects have too many variations.
What we can offer are some suggestions for using the text in various approaches to the course.

TRADITIONAL ANALYSIS AND DESIGN COURSE

A traditional systems analysis and design course provides coverage of activities and tasks using
structured analysis and structured design, with database design, input/output/controls design,
and dialog (interface) design. It is usually assumed that the project will use custom develop-
ment, including Web development. The course emphasizes the SDLC, project management,
information gathering, and management reporting. One-semester courses are usually limited
to completing some prototypes of the user interface to give students closure. Sometimes this
course is spread over two semesters, with some implementation of an actual system in the sec-
ond semester for a more complete development experience.

For this approach to the analysis and design course, a reasonable outline would omit
chapters and sections detailing OO, current trends, and packages (these concepts are intro-
duced throughout the text, however, so students will still be familiar with them). Additionally,
because of the amount of material to cover, the appendices detailing project management,
financial feasibility, scheduling, and presentations might be omitted.

A suggested outline for a course emphasizing the traditional approach follows:

Chapter 1: The World of the Information Systems Analyst
Chapter 2: Approaches to System Development
Chapter 3: The Analyst as a Project Manager
Chapter 4: Investigating System Requirements
Chapter 5: Modeling System Requirements
Chapter 6: The Traditional Approach to Requirements
Chapter 8: Evaluating Alternatives for Requirements, Environment, and Implementation
Chapter 9: Elements of System Design
Chapter 10: The Traditional Approach to Design
Chapter 13: Designing Databases (skip OO design sections)

PREFACE

PREFACE ♦ xxv

C6696_FM_CTP.4c 2/8/08 4:14 PM Page xxv

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Chapter 14: Designing the User Interface (skip UML examples)
Chapter 15: Designing System Interfaces, Controls, and Security (skip OO sections)
Chapter 16: Making the System Operational (skip OO sections)

OBJECT-ORIENTED ANALYSIS AND DESIGN COURSE

This course is similar to the coverage of both analysis and design in the traditional course,
except that object-oriented models and techniques are emphasized exclusively. The course
covers object-oriented analysis and design, with database design, input/output/controls
design, and dialog (interface) design. It is usually assumed that the projects will use custom
development, including Web development. The course emphasizes iterative development with
three-layer architecture, project management, information gathering, and management report-
ing. One-semester courses are usually limited to completing some prototypes of the user inter-
face to give students closure. Sometimes this course is spread over two semesters, with some
implementation of an actual system in the second semester for a more complete development
experience. Iterative development is usually emphasized.

For this approach to the analysis and design course, a reasonable outline would omit
chapters and sections detailing structured analysis and structured design. Chapter 17 might be
included to cover components and iteration, but packages probably would not be covered.
Additionally, because of the amount of material to cover, the appendices detailing project
management, financial feasibility, scheduling, and presentations might be omitted.

A suggested outline for a course emphasizing object-oriented development follows:

Chapter 1: The World of the Information Systems Analyst
Chapter 2: Approaches to System Development
Chapter 3: The Analyst as a Project Manager
Chapter 4: Investigating System Requirements
Chapter 5: Modeling System Requirements
Chapter 7: The Object-Oriented Approach to Requirements
Chapter 8: Evaluating Alternatives for Requirements, Environment, and Implementation
Chapter 9: Elements of System Design
Chapter 11: Object-Oriented Design: Principles
Chapter 12: Object-Oriented Design: Use Case Realizations
Chapter 13: Designing Databases
Chapter 14: Designing the User Interface
Chapter 15: Designing System Interfaces, Controls, and Security
Chapter 16: Making the System Operational
Chapter 17: Current Trends in System Development

TRADITIONAL COURSE WITH IN-DEPTH ANALYSIS AND
PROJECT MANAGEMENT

Some courses delve more deeply into systems analysis methods and emphasize project man-
agement. Sometimes these courses are graduate courses, and sometimes they assume design
and implementation are covered in more technical courses. In some cases, it might be
assumed that packages are likely solutions rather than custom development, so defining
requirements and managing the process are more important than design activities.

PREFACE

xxvi ♦ PREFACE

C6696_FM_CTP.4c 2/8/08 4:14 PM Page xxvi

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The appendices covering project management, financial feasibility, scheduling, and pre-
sentations should be included. Chapters on detailed design might be omitted. The
packages/ERP chapter (Online Supplemental Chapter 1) might be included, if appropriate.

A suggested outline for courses emphasizing the traditional approach, with in-depth cov-
erage of analysis and project management, follows:

Chapter 1: The World of the Information Systems Analyst
Chapter 2: Approaches to System Development
Chapter 3: The Analyst as a Project Manager
Online Appendix A: Principles of Project Management
Online Appendix B: Project Schedules with PERT/CPM Charts
Online Appendix C: Calculating Net Present Value, Payback Period, and Return on Investment
Chapter 4: Investigating System Requirements
Online Appendix D: Presenting the Results to Management
Chapter 5: Modeling System Requirements
Chapter 6: The Traditional Approach to Requirements
Chapter 8: Evaluating Alternatives for Requirements, Environment, and Implementation
Chapter 9: Elements of System Design
Online Supplemental Chapter 1: Packages and Enterprise Resource Planning

OBJECT-ORIENTED COURSE WITH IN-DEPTH ANALYSIS AND
PROJECT MANAGEMENT

Some courses cover object-oriented systems analysis methods in more depth—but not OO
design—and emphasize project management. Sometimes these courses are graduate courses,
and sometimes they assume design and implementation are covered in more technical
courses. In some cases, it might be assumed that packages are likely solutions rather than cus-
tom development, so defining requirements and managing the process are more important
than design activities.

The appendices covering project management, financial feasibility, scheduling, and presenta-
tions should be included. Chapters on detailed design might be omitted. The packages/ERP chap-
ter (Online Supplemental Chapter 1) might be included, if appropriate.

A suggested outline for a course covering object-oriented analysis, with in-depth coverage
of project management, follows:

Chapter 1: The World of the Information Systems Analyst
Chapter 2: Approaches to System Development
Chapter 3: The Analyst as a Project Manager
Online Appendix A: Principles of Project Management
Online Appendix B: Project Schedules with PERT/CPM Charts
Online Appendix C: Calculating Net Present Value, Payback Period, and Return on Investment
Chapter 4: Investigating System Requirements
Online Appendix D: Presenting the Results to Management
Chapter 5: Modeling System Requirements
Chapter 7: The Object-Oriented Approach to Requirements
Chapter 8: Evaluating Alternatives for Requirements, Environment, and Implementation
Chapter 9: Elements of System Design
Online Supplemental Chapter 1: Packages and Enterprise Resource Planning

PREFACE

PREFACE ♦ xxvii

C6696_FM_CTP.4c 2/8/08 4:14 PM Page xxvii

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

COMPARATIVE ANALYSIS AND DESIGN COURSE

Some courses survey the field of analysis and design to provide a comprehensive exposure to
major approaches. Sometimes these courses are graduate courses for experienced developers,
and sometimes they emphasize concepts over detailed hands-on experience with techniques.
A reading knowledge of the key models might be the objective. However, the instructor often
will require hands-on projects using both traditional and object-oriented techniques for the
same system in the same course.

The entire book can be covered for the most complete treatment. Alternatively, sections of
material that cover details about some of the techniques can be omitted. A fast-paced survey
course can cover the chapters quickly for recognition and reading knowledge of models.
Chapter 17 and Online Supplemental Chapter 1 might directly follow Chapter 8, as shown in
the following outline, and then the course can continue surveying design. If the comparative
course emphasizes systems analysis and project management, it might end after Online
Supplemental Chapter 1 without covering design. There are many possibilities to consider.

A suggested outline for a comparative course follows:

Chapter 1: The World of the Information Systems Analyst
Chapter 2: Approaches to System Development
Chapter 3: The Analyst as a Project Manager
Chapter 4: Investigating System Requirements
Chapter 5: Modeling System Requirements
Chapter 6: The Traditional Approach to Requirements
Chapter 7: The Object-Oriented Approach to Requirements
Chapter 8: Evaluating Alternatives for Requirements, Environment, and Implementation
Chapter 17: Current Trends in System Development
Online Supplemental Chapter 1: Packages and Enterprise Resource Planning
Chapter 9: Elements of System Design
Chapter 10: The Traditional Approach to Design
Chapter 11: Object-Oriented Design: Principles
Chapter 13: Designing Databases
Chapter 14: Designing the User Interface
Chapter 15: Designing System Interfaces, Controls, and Security
Chapter 16: Making the System Operational

AN ITERATIVE APPROACH TO THE ANALYSIS AND
DESIGN COURSE

One of the biggest challenges facing analysis and design instructors is how to handle iterative
development. This is an issue for both the traditional approach and the object-oriented
approach. Textbooks can teach analysis techniques and then design techniques sequentially,
but that is not the way the techniques are used in practice. Students do not always appreciate
this point. One way to make the course resemble real-world practice is to teach iteratively. The
idea that no one gets it right the first time certainly applies to learning analysis and design.

As with iterative development, the course could survey analysis and design techniques
rapidly, perhaps so students could obtain a reading knowledge of the models and then go
back over the analysis and design material in more depth. Some sections of chapters might be
skipped the first time through. But there is a great difference between understanding and

PREFACE

xxviii ♦ PREFACE

C6696_FM_CTP.4c 2/8/08 4:14 PM Page xxviii

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

interpreting analysis and design models and actually creating analysis and design models.
Therefore, it might make sense to go through the techniques and make a reading knowledge a
goal for the first iteration. Then students can be asked to reconsider the models as they create
new ones based on a course project.

It would be difficult to ask students to read everything once and then to reread it all again.
Therefore, one approach might be to rapidly survey the field without digressing into specifics.
Then the second iteration could add new material while teaching prior material in depth. For
example, the first iteration might emphasize Chapter 5 but skim through either Chapter 6 or 7
(depending on whether traditional or OO is emphasized). You might cover the overview of
design in Chapter 9, but the rest of the design chapters might be limited to Chapter 10 or
Chapter 11 (depending on whether traditional or OO is emphasized). The second iteration
could go into requirements models and design chapters in depth.

There are many other possibilities to consider. What is important is to consider the itera-
tive approach in some way when designing your course. We would appreciate any feedback
you can provide on ideas you have considered or tried with an iterative approach to teaching
analysis and design.

AVAILABLE SUPPORT

Systems Analysis and Design in a Changing World, Fifth Edition, includes teaching tools to sup-
port instructors in the classroom. The ancillary materials that accompany the textbook include
an Instructor’s Manual, solutions, Test Banks and Test Engine, Distance Learning content,
PowerPoint presentations, and Figure Files. Please contact your Cengage Course Technology
sales representative to request the Teaching Tools CD-ROM, if you have not already received
it. Or, go to the Web page for this book at www.course.com to download many of these items.

THE INSTRUCTOR’S MANUAL

The Instructor’s Manual includes suggestions and strategies for using the text, including course
outlines for instructors that emphasize the traditional structured approach or the object-
oriented approach. The manual is also helpful for those teaching graduate courses on analysis
and design.

SOLUTIONS

We provide instructors with answers to review questions and suggested solutions to chapter
exercises and cases. Detailed traditional and UML OO models are included for all exercises
and cases that ask for modeling solutions.

EXAMVIEW®

This objective-based test generator lets the instructor create paper, LAN, or Web-based tests
from test banks designed specifically for this Course Technology text. Instructors can use the
QuickTest Wizard to create tests in fewer than five minutes by taking advantage of Course
Technology’s question banks, or instructors can create customized exams.

PREFACE

PREFACE ♦ xxix

C6696_FM_CTP.4c 2/8/08 4:14 PM Page xxix

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

http://www.course.com

DISTANCE LEARNING CONTENT

Course Technology, the premiere innovator in management information systems publishing,
is proud to present online courses in WebCT and Blackboard.

• Blackboard and WebCT Level 1 Online Content. If you use Blackboard or WebCT, the
test bank for this textbook is available at no cost in a simple, ready-to-use format. Go to
www.course.com and search for this textbook to download the test bank.

• Blackboard and WebCT Level 2 Online Content. Blackboard Level 2 and WebCT Level 2
are also available for Systems Analysis and Design in a Changing World. Level 2 offers course
management and access to a Web site that is fully populated with content for this book.

For more information on how to bring distance learning to their course, instructors should
contact their Course Technology marketing representative.

POWERPOINT PRESENTATIONS

Microsoft PowerPoint slides are included for each chapter. Instructors might use the slides in a
variety of ways, such as teaching aids during classroom presentations or as printed handouts
for classroom distribution. Instructors can add their own slides for additional topics they
introduce to the class.

FIGURE FILES

Figure files allow instructors to create their own presentations using figures taken directly from
the text.

SOFTWARE BUNDLING OPTIONS

Many instructors like to include software for students to use for exercises and course projects,
and this text offers many bundling possibilities. Some instructors like to emphasize visual
modeling tools, and Course Technology can bundle several popular tools with the text.

CREDITS AND ACKNOWLEDGMENTS

This book was originally launched following some extensive brainstorming by senior vice pres-
ident and publisher Kristen Duerr of Course Technology and lead author John Satzinger. We
agreed that an analysis and design text required a major commitment from the publisher to be
competitive. We also agreed that no one person could complete a text that met the objectives—
flexible and innovative, yet comprehensive and deep. Therefore, Course Technology took an
active role in assembling a team of authors who shared the vision. The managing editor
brought in to direct the initial project was Jennifer Locke, who had a major role in bringing the
authors together and shaping the direction and final form of the text. We were also fortunate to
have Barrie Tysko placed in charge of managing the second and third editions.

We were very fortunate to have senior product manager Eunice Yeates-Fogle placed in
charge of managing the fourth edition. Eunice also managed the development of our other
Course Technology text—Object-Oriented Analysis and Design with the Unified Process. This fifth
edition was managed by Kate Hennessy, who was charged with recruiting a new developmen-
tal editor, negotiating with the production department for an accelerated writing and editing

PREFACE

xxx ♦ PREFACE

C6696_FM_CTP.4c 2/8/08 4:14 PM Page xxx

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

http://www.course.com

schedule, and dealing with numerous author uncertainties and scheduling conflicts that made
the project quite daunting from the publisher’s point of view.

Another essential member of the team was developmental editor Dan Seiter. Dan jumped in
and quickly adapted to the styles and personalities of the author team, and he rapidly digested
and mastered the complex content and objectives of the text. Our previous developmental edi-
tor, Karen Hill of Elm Street Publishing Services, guided us through the first four editions. She
collected and digested the comments and reactions of initial reviewers, provided guidance and
design for the features and chapter pedagogy, suggested improvements and refinements to the
organization and content, and edited the chapters to provide a consistent style.

We are grateful for the forward thinking and continuing support of Course Technology
executive editors Mac Mendelsohn, Bob Woodbury, and David Boelio. Many other people
were involved in the production of this text. Amanda Young Shelton of Course Technology
provided substantial support for the first edition. Marisa Taylor and her production team at
GEX Publishing Services came through with every commitment on schedule and produced a
beautiful and functional text.

We also want to thank some other key people for their specific contributions—Richard A.
Johnson of Missouri State University for writing Online Supplemental Chapter 1 on packages and
ERP, and William Baker for contributing material on presentation techniques. Many other col-
leagues and friends at Missouri State University, Brigham Young University, the University of New
Mexico, and elsewhere contributed to and supported our work in one way or another. Special
thanks also go to Lavette Teague, Lorne Olfman, and Paul Gray for guidance and inspiration.

Last, but certainly not least, we want to thank all of the reviewers who worked so hard for
us, beginning with an initial proposal and continuing throughout the completion of all five
editions of this text. We were lucky enough to have reviewers with broad perspectives, in-depth
knowledge, and diverse preferences. We listened very carefully, and the text is much better as a
result of their input. Reviewers for the various editions included:

Rob Anson, Boise State University
Marsha Baddeley, Niagara College
Teri Barnes, DeVry Institute—Phoenix
Robert Beatty, University of Wisconsin—Milwaukee
Anthony Cameron, Fayetteville Technical Community College
Genard Catalano, Columbia College
Paul H. Cheney, University of Central Florida
Jung Choi, Wright State University
Jon D. Clark, Colorado State University
Lawrence E. Domine, Milwaukee Area Technical College
Jeff Hedrington, University of Phoenix
Ellen D. Hoadley, Loyola College in Maryland
Norman Jobes, Conestoga College, Waterloo, Ontario
Gerald Karush, Southern New Hampshire University
Robert Keim, Arizona State University
Rajiv Kishore, The State University of New York, Buffalo
Rebecca Koop, Wright State University
Hsiang-Jui Kung, Georgia Southern University
James E. LaBarre, University of Wisconsin—Eau Claire
Tsun-Yin Law, Seneca College

PREFACE

PREFACE ♦ xxxi

C6696_FM_CTP.4c 2/8/08 4:14 PM Page xxxi

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

David Little, High Point University
George M. Marakas, Indiana University
Roger McHaney, Kansas State University
Cindi A. Nadelman, New England College
Bruce Neubauer, Pittsburgh State University
Michael Nicholas, Davenport University—Grand Rapids
George Pennells
Julian-Mark Pettigrew
Mary Prescott, University of South Florida
Alex Ramirez, Carleton University
Eliot Rich, The State University of New York, Albany
Robert Saldarini, Bergen Community College
Laurie Schatzberg, University of New Mexico
Deborah Stockbridge, Quincy College
Jean Smith, Technical College of the Lowcountry
Peter Tarasewich, Northeastern University
Craig VanLengen, Northern Arizona University
Bruce Vanstone, Bond University
Terence M. Waterman, Golden Gate University

All of us involved in the development of this text wish you all the best as you take on the
challenge of analysis and design in a changing world.

—John Satzinger

—Robert Jackson

—Steve Burd

PREFACE

xxxii ♦ PREFACE

C6696_FM_CTP.4c 2/8/08 4:14 PM Page xxxii

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

1

THE SYSTEMS
ANALYST

C H A P T E R 1
The World of the Information Systems Analyst

C H A P T E R 2
Approaches to System Development

C H A P T E R 3
The Analyst as a Project Manager

1
PART

C6696_01_CTP.4c 1/28/08 8:21 AM Page 1

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2

THE WORLD OF THE
INFORMATION SYSTEMS ANALYST1
L E A R N I N G O B J E C T I V E S

After reading this chapter, you should be able to:

■ Explain the key role of a systems analyst in business

■ Describe the various types of systems and technology an analyst might use

■ Explain the importance of technical skills, people skills, and business skills for

an analyst

■ Explain why ethical behavior is crucial for a systems analyst’s career

■ Describe various job titles in the field and places of employment where analy-

sis and design work is done

■ Discuss the analyst’s role in strategic planning for an organization

■ Describe the analyst’s role in a system development project

CHAPTER

C H A P T E R O U T L I N E

The Analyst as a Business Problem Solver

Systems That Solve Business Problems

Required Skills of the Systems Analyst

Analysis-Related Careers

The Analyst’s Role in Strategic Planning

Rocky Mountain Outfitters and Its Strategic Information Systems Plan

The Analyst as a System Developer (the Heart of the Course)

C6696_01_CTP.4c 1/28/08 8:21 AM Page 2

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 1 The World of the Information Systems Analyst ♦ 3

Mary Wright thought back about her two-year career as a programmer analyst. She had been
asked to talk to visiting computer information system (CIS) students about life on the job. “It
seems like yesterday that I finally graduated from college and loaded up a U-Haul to start my
new job at Consolidated,” she began.

Consolidated Refineries is an independent petroleum refining company in west Texas.
Consolidated buys crude oil from freelance petroleum producers and refines it into gasoline
and other petroleum products for sale to independent distributors. Demand for refined petro-
leum products had been increasing rapidly, and Consolidated was producing at maximum
capacity. Capacity planning systems and refining operations systems were particularly impor-
tant computer information systems for Consolidated, because careful planning and process
monitoring resulted in increased production at reduced costs. This increasing demand, and
other competitive changes in the energy industry, made information systems particularly
important to Consolidated.

Mary continued her informal talk to visiting students. “At first I did programming, mainly
fixing things that end users wanted done. I completed some training on Java and object-ori-
ented analysis to round out my experience. The job was pretty much what I had expected at
first until everything went crazy over the IPCS project.”

The Integrated Process Control System (IPCS) project was part of the company’s informa-
tion systems plan drawn up the year before. Edward King, the CEO of Consolidated
Refineries, had pushed for more strategic planning at the company from the beginning,
including drawing up a five-year strategic plan for information systems. The IPCS develop-
ment project was scheduled to begin in the third or fourth year of the plan, but suddenly pri-
orities changed. Demand for petroleum products had never been higher, and supplies of
crude oil were becoming scarce. At the same time, political pressure was making price
increases an unpopular option.

Something had to be done to increase production and reduce costs. It would be years
before an additional refinery could be built, and additional crude oil supplies from new oil
fields were years away. The only option for Consolidated’s growth and increased profits was
to do a better job with the plants and supplies it had. So, top executives decided to make a
major commitment to implementing the IPCS project, with the goal of radically improving
capacity planning and process monitoring. Everyone at Consolidated also wanted access to
this information anywhere and anytime.

“It seemed like the IPCS project was the only thing the company cared about,” continued
Mary. “I was assigned to the project as the junior analyst assisting the project manager, so I
got in on everything. Suddenly I was in meeting after meeting, and I had to digest all kinds of
information about refining and distribution, as if I were a petroleum engineer. I met with pro-
duction supervisors, suppliers, and marketing managers to learn about the oil business, just
as if I were taking business school courses. I traveled all over to visit oil fields and pipelines—
including a four-day trip to Alaska on about two days’ notice! I interviewed technology ven-
dors’ representatives and consultants who specialized in capacity planning and process
control systems. I’ve been spending a lot of time at my computer, too, writing reports, letters,
and memos—not programming!

“We’ve been working on the project for seven months now, and every time I turn around,
Mr. King, our CEO, is saying something about how important the IPCS project is to the future
of the company. He repeats the story to employees and to the stockholders. Mr. King attends
many of our status meetings, and he even sat next to me the day I presented a list of key
requirements for the system to the top management team.

“This is not at all the way I thought it would be.”

A SYSTEMS ANALYST AT CONSOLIDATED REFINERIES

C6696_01_CTP.4c 1/28/08 8:21 AM Page 3

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

OVERVIEW

As Mary Wright’s story about Consolidated Refineries illustrates, information systems with
strategic value are critical to the success of business organizations and their top executives.
Most of the activities and tasks completed by a system developer, even a new graduate like
Mary, involve much more than programming. Systems analysis is really more about under-
standing the business and its goals and strategies, defining requirements for information sys-
tems that support those goals and strategies, and supporting the business. It’s not at all what
most college students imagine it to be.

People today are attracted to information systems careers because information technology
(IT) can have a dramatic impact on productivity and profits. Most of you regularly use the lat-
est technologies for online purchases and reservations, online auctions and customer sup-
port, and e-mail and wireless messaging. But it is not the technology itself that increases
productivity and profits; it is the people who develop information system solutions that har-
ness the power of the technology that makes these benefits possible. The challenges are great
because more and more people expect to have information systems that provide access to
information anywhere and anytime.

The key to successful system development is thorough systems analysis and design to
understand what the business requires from the information system. Systems analysis means
understanding and specifying in detail what the information system should accomplish.
Systems design means specifying in detail how the many components of the information sys-
tem should be physically implemented. This text is about systems analysis and design tech-
niques used by a systems analyst, a business professional who develops information systems.

This chapter describes the world of the systems analyst—the nature of the work, the
knowledge and skills that are important, and the types of systems and special projects an ana-
lyst works on. First, we define the analyst’s work as problem solving for an organization, so
the problem-solving process the analyst follows is described. Next, because most problems
an analyst works on are solved in part by an information system, the chapter reviews the types
of information systems that businesses use. A systems analyst is a business professional who
requires extensive technical, business, and people knowledge and skills, so these skills are
reviewed next. Then we survey the variety of workplaces and positions in which analysis work
is done. Sometimes an analyst works on special projects such as strategic planning, business
process reengineering, and enterprise resource planning. An analyst’s work is really not at all
the way most CIS students think it will be.

Finally, the chapter introduces Rocky Mountain Outfitters (RMO), a regional sports cloth-
ing distributor headquartered in Park City, Utah. RMO is following a strategic information
systems plan that calls for a series of information system development and integration pro-
jects over the next several years. The project that RMO is about to launch is a system develop-
ment project for a new customer support system that will integrate phone, mail, and
Web-based orders. The Rocky Mountain Outfitters case is used throughout the text to illus-
trate analysis and design techniques.

THE ANALYST AS A BUSINESS PROBLEM SOLVER

Systems analysis and design is, first and foremost, a practical field grounded in time-tested
and rapidly evolving knowledge and techniques. Analysts must certainly know about com-
puters and computer programs. They possess special skills and develop expertise in program-
ming. But they must also bring to the job a fundamental curiosity to explore how things are
done and the determination to make them work better.

Developing information systems is not just about writing programs. Information systems
are developed to solve problems for organizations, as the opening case study demonstrated,

4 ♦ PART 1 THE SYSTEMS ANALYST

systems analysis

the process of
understanding and
specifying in detail what
the information system
should accomplish

systems design

the process of specifying
in detail how the many
components of the
information system
should be physically
implemented

systems analyst

a business professional
who uses analysis and
design techniques to
solve business problems
using information
technology

C6696_01_CTP.4c 1/28/08 8:21 AM Page 4

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 1 The World of the Information Systems Analyst ♦ 5

and a systems analyst is often thought of as a problem solver rather than a programmer. So,
what kinds of problems does an analyst typically solve?

• Customers want to order products any time of the day or night. So, the problem is how to
process those orders around the clock without adding to the selling cost.

• Production needs to plan very carefully the amount of each type of product to produce each
week. So, the problem is how to estimate the dozens of parameters that affect production
and then allow planners to explore different scenarios before committing to a specific plan.

• Suppliers want to minimize their inventory holding costs by shipping parts used in the
manufacturing process in smaller daily batches. So, the problem is how to order in
smaller lots and accept daily shipments to take advantage of supplier discounts.

• Marketing wants to anticipate customer needs better by tracking purchasing patterns and
buyer trends. So, the problem is how to collect and analyze information on customer
behavior that marketing can put to use.

• Management continually wants to know the current financial picture of the company,
including profit and loss, cash flow, and stock market forecasts. So, the problem is how to
collect, analyze, and present all of the financial information management wants.

• Employees demand more flexibility in their benefits programs, and management wants to
build loyalty and morale. So, the problem is how to process transactions for flexible
health plans, wellness programs, employee investment options, retirement accounts, and
other benefit programs offered to employees.

Information system developers work on problems such as these—and many more. Some
of these problems are large and strategically important. Some are much smaller, affecting
fewer people, but important in their own way. All programming for the information system
that solves the business problem is important, but solving each of these problems involves
more than programming.

How does an analyst solve problems? Systems analysis and design focuses on understand-
ing the business problem and outlining the approach to be taken to solve it. Figure 1-1 shows
a general approach to problem solving that can be adapted to solving business problems
using information technology. Obviously, part of the solution is a new information system,
but that is just part of the story.

The analyst must first understand the problem and learn everything possible about it—
who is involved, what business processes come into play, and what other systems would be
affected by solving the problem. Then the analyst needs to confirm for management that the
benefits of solving the problem outweigh the costs. Sometimes it would cost a fortune to
solve the problem, so it might not be worth solving.

If solving the problem is feasible, the analyst defines in detail what is required to solve it—
what specific objectives must be satisfied, what data needs to be stored and used, what pro-
cessing must be done to the data, and what outputs must be produced. What needs to be
done must be defined first. How it will be done is not important yet.

After detailed requirements are defined, the analyst develops a set of possible solutions.
Each possible solution (an alternative) needs to be thought through carefully. Usually, an
information system alternative is defined as a set of choices about physical components that
make up an information system—how it will be done. Many choices must be made, involving
questions such as these:

• What are the needed components?
• What technology should be used to build the different components?
• Where are the components located?
• How will components communicate over networks?
• How are components configured into a system?
• How will people interact with the system?

Research and
understand the

problem

Verify that the
benefits of solving

the problem
outweigh the costs

Develop a set of
possible solutions

(alternatives)

Decide which
solution is best,

and make a
recommendation

Define the details of
the chosen solution

Implement the
solution

Monitor to make
sure that you obtain
the desired results

Define the
requirements for

solving the problem

Figure 1-1

The analyst’s approach to

problem solving

C6696_01_CTP.4c 1/28/08 8:21 AM Page 5

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

• Which components are custom-made, and which are purchased from vendors?
• Who should build the custom-made components?
• Who should assemble and support the components?

Many different alternatives must be considered, and the challenge is to select the best—
that is, the solution with the fewest risks and most benefits. Alternatives for solving the prob-
lem must be cost-effective, but they also must be consistent with the corporate strategic plan.
Does the alternative contribute to the basic goals and objectives of the organization? Will it
integrate seamlessly with other planned systems? Does it use technology that fits the strategic
direction that management has defined? Will end users be receptive to it? Analysts must con-
sider many factors and make tough decisions.

After the systems analyst has determined, in consultation with management, which alter-
native to recommend and management has approved the recommendation, the design details
must be worked out. Here the analyst is concerned with creating a blueprint (design specifi-
cations) for how the new system will work. Systems design specifications describe the con-
struction details of all parts of the system, including databases, user interfaces, networks,
operating procedures, conversion plans, and, of course, program modules.

Thus far we haven’t mentioned programming, even though we’re near the end of the steps
outlined in Figure 1-1. Inexperienced developers have a tendency to rush into programming
without completing the earlier steps. Sometimes early programming may be needed to evalu-
ate technical feasibility or to help users understand how a completed system might look and
behave. But much of the time, early programming results in wasted time and money because
key system requirements or design constraints are not well understood. Building a system
based on incomplete or misunderstood requirements ensures that the project will be over bud-
get, late, and will deliver a system that doesn’t fully solve the problems it was intended to
address. An information system can cost a lot of money to build and install—perhaps millions
of dollars. It is not unusual for dozens of programmers to work on programs to get a system up
and running, and those programmers need to know exactly what the system is to accomplish—
thus, detailed specifications are required. This text presents the tools and techniques that an
analyst uses during system development to create the detailed specifications. Some of these
specifications are the result of systems analysis, and some are the result of systems design.

Although this text is oriented toward potential systems analysts, it also provides a good
foundation for others who will deal with business problems that could be solved with the
help of an information system. Managers throughout business must become more and more
knowledgeable about using information technology to solve business problems. Many gen-
eral business students take a systems analysis and design course to round out their back-
ground in two-year and four-year degree programs. Many graduate programs, such as master
of business administration (MBA) and master of accountancy (M.Acc) programs, have tech-
nology tracks with courses that use this book. Remember that systems analysis and design
work is not just about developing systems; it is really about solving business problems using
information technology. So even though they never build information systems, managers
need to gain expertise in these concepts to be effective in their jobs.

SYSTEMS THAT SOLVE BUSINESS PROBLEMS

We described the systems analyst as a business problem solver. We said that the solution to
the problem is usually an information system. Before we talk about how you learn to be a sys-
tems analyst, let’s quickly review some information systems concepts.

INFORMATION SYSTEMS

A system is a collection of interrelated components that function together to achieve some
outcome. An information system is a collection of interrelated components that collect,

6 ♦ PART 1 THE SYSTEMS ANALYST

information

system

a collection of
interrelated components
that collect, process,
store, and provide as
output the information
needed to complete
business tasks

system

a collection of
interrelated
components that
function together to
achieve some
outcome

C6696_01_CTP.4c 1/28/08 8:21 AM Page 6

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 1 The World of the Information Systems Analyst ♦ 7

process, store, and provide as output the information needed to complete a business task.
Completing a business task is usually the “problem” we talked about earlier.

A payroll system, for example, collects information on employees and their work, processes
and stores that information, and then produces paychecks and payroll reports (among other
things) for the organization. A sales management system collects information about cus-
tomers, sales, products, and inventory levels. It enables customers and sales personnel to create
and modify sales orders, select payment methods, and output sales information for tasks such
as generating financial statements, computing bonuses, and scheduling production.

What are the interrelated components of an information system? You can think about
components in several ways. Any system can have subsystems. A subsystem is a system that is
part of another system, so subsystems might be one way to think about the components of a
system. For example, a sales management system might be one subsystem of a customer rela-
tionship management (CRM) system. Another CRM subsystem might enable customers to
view past and current orders, track order fulfillment and shipping, and modify their account
information. A third CRM subsystem might maintain the product catalog database and pro-
vide Web-based access to product specifications and manuals. A fourth CRM subsystem might
provide technical support via telephone and a Web site with detailed tracking of customer
support requests and related reporting to improve call center management and product qual-
ity. When looking at the business as a single system, the CRM system is only one subsystem
among others, including the accounting and financial management system, the manufactur-
ing management system, and the human resources management system.

The view of a system as a collection of subsystems is very useful to the analyst. It enables
the analyst to focus attention on a single area of a business or organization, a group of related
areas, or the interfaces among areas. Figure 1-2 shows how one system can be divided, or
decomposed, into subsystems, which in turn can be further decomposed into subsystems. This
approach to dividing a system into components is referred to as functional decomposition.

All Information Systems

Customer relationship management system

Accounting and financial management system

Sales
management

system

Product
information

system

Technical
support
system

Account
management

system

Human resources management system

Manufacturing management system

Figure 1-2

Information systems and

subsystems

subsystem

a system that is part of a
larger system

functional

decomposition

dividing a system into
components based on
subsystems that are
further divided into
smaller subsystems

C6696_01_CTP.4c 1/28/08 8:21 AM Page 7

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Another way to think about the components of a system is to list the parts that interact.
For example, an information system includes hardware, software, inputs, outputs, data, peo-
ple, and procedures. This view is also very useful to the analyst. These interrelated compo-
nents function together in a system, as shown in Figure 1-3.

Every system has a boundary between it and its environment. Any inputs or outputs must
cross the system boundary. Defining these inputs and outputs is an important part of sys-
tems analysis and design. In an information system, people are also key components, and
these people do some of the system’s work. So there is another boundary that is important to
a systems analyst—the automation boundary. On one side of the automation boundary is
the automated part of the system, where work is done by computers. On the other side is the
manual part of the system, where work is done by people (see Figure 1-4).

8 ♦ PART 1 THE SYSTEMS ANALYST

Hardware

People

Procedures

Outputs

Inputs

Software

Data

Customer support system

Figure 1-3

Information systems and

component parts

Manual part of the system—
tasks completed by people

Environment surrounding the system

System
boundary

Automation
boundary

Automated part of
the system—tasks completed

by the computer

Figure 1-4

The system boundary

versus the automation

boundary

system boundary

the separation between a
system and its
environment that inputs
and outputs must cross

automation

boundary

the separation between
the automated part of a
system and the manual
part of a system

C6696_01_CTP.4c 1/28/08 8:21 AM Page 8

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

A customer relationship management (CRM) system incorporates processes that sup-
port marketing, sales, and service operations involving direct and indirect customer interac-
tion. A supply chain management (SCM) system incorporates processes that seamlessly
integrate product development, product acquisition, manufacturing, and inventory manage-
ment. Both systems are important because they are part of the interface between the organiza-
tion and key external entities. Both types of systems have had rapid changes over the last two
decades, including expanded scope and functionality, significant application of Web-based
technologies, and increased integration across organizational boundaries. For example, most
modern organizations now manage sales and service via a single system, enable Web-based
ordering and account management via consumer-oriented Web sites, and employ automated
interfaces for business customers that directly connect one organization’s SCM to other orga-
nizations’ CRMs. Integration across organizational boundaries has increased the speed and
efficiency of business transactions and enabled modern business practices such as just-in-time
delivery of raw materials in manufacturing organizations and direct shipment from manufac-
turers to end users by third-party resellers.

CHAPTER 1 The World of the Information Systems Analyst ♦ 9

TYPES OF INFORMATION SYSTEMS

Because organizations perform many different types of activities, many types of information
systems exist—all of which can be innovative and use the latest technologies. The types of
information systems found in most businesses are shown in Figure 1-5. You learned about
these types of systems in your introductory information systems course, so we briefly review
only the most common ones here.

Customers Investors

Database

Employees Suppliers

Customer
relationship

management
system

Knowledge
management

system

Accounting
and financial
management

system

Collaboration
support
system

Business
intelligence

system

Human
resource

management
system

Manufacturing
management

system

Supply chain
management

system

Figure 1-5

Types of information

systems

customer

relationship

management

(CRM) system

a system that supports
marketing, sales, and
service operations
involving direct and
indirect customer
interaction

supply chain

management

(SCM) system

a system that seamlessly
integrates product
development, product
acquisition,
manufacturing, and
inventory management

C6696_01_CTP.4c 1/28/08 8:21 AM Page 9

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Other systems that interface with external entities include accounting and financial
management (AFM) systems and human resource management (HRM) systems. AFM sys-
tems record accounting information needed to produce financial statements and other
reports used by investors and creditors. AFM systems also include financial functions such as
cash management, cash flow forecasting, and securities management. HRM systems include
processes concerned with employees, such as payroll, health insurance, pensions, hiring, and
training. AFM and HRM systems are partly governed by external regulations and must fre-
quently interact with regulatory authorities in areas such as taxes, public financial markets,
and occupational health and safety.

Organizations also have information systems with few or no interactions with external
entities. A manufacturing management system controls internal production processes that
turn raw materials into finished goods. A knowledge management system (KMS) supports
the storage of and access to documents from all parts of the organization. It enables rapid
communication of policies, procedures, and data and helps ensure continuity of knowledge
despite changes in personnel assignments.

A collaboration support system (CSS) enables geographically distributed personnel to
collaborate on projects and tasks. CSSs encompass a variety of technologies, including voice
communications, video-conferencing, project management and scheduling tools, and Wiki
technology that enables Web-based management of documents by project participants. A
business intelligence system supports strategic planning and executive decision making. It
enables users to organize internal and external data about customers, suppliers, competitors, and
economic conditions for use in statistical analysis, simulations, and other forms of planning.

Today, many companies use enterprise resource planning (ERP) systems that incorpo-
rate most or all of the system types described previously in this section. Software vendors such
as SAP, Oracle, and IBM offer comprehensive packages for companies in specific industries.
To adopt an ERP solution, the company must carefully study its existing processes and infor-
mation needs and then determine which ERP vendor provides the best match. ERP systems
are so complex that an organization must often commit nearly everyone in the information
systems department and throughout the organization to research options. They are also very
expensive, both in initial costs and support costs. Extensive change is involved for manage-
ment and for staff. After the decision is made to adopt an ERP system, it is very difficult to
return to the old ways of doing business, or to the old systems.

An important aspect of all types of information systems is their data integration. For exam-
ple, order data originally captured by the CRM system is needed by the SCM system to drive pur-
chasing, the manufacturing management system to drive production scheduling, the AFM
system for accounting and to help determine near-term financing requirements, and the busi-
ness intelligence system to drive estimates of future sales and profitability. Data sharing among
all these systems is made possible by databases—centrally managed collections of data that can
store large amounts of information and make it accessible to many users and systems at the
same time. Databases and database technology are further discussed in Chapter 13.

REQUIRED SKILLS OF THE SYSTEMS ANALYST

Systems analysts (or any professionals doing systems analysis and design work) need a great
variety of special skills. First, they need to be able to understand how to build information
systems, which requires quite a bit of technical knowledge. Then, as discussed previously, they
have to understand the business they are working for and how the business uses each of the
types of systems. Finally, the analysts need to understand quite a bit about people and the
way they work. People are the source of information about requirements, the labor that
builds systems, and the ultimate users of the information system. Figure 1-6 summarizes the
analyst’s knowledge and skill requirements.

10 ♦ PART 1 THE SYSTEMS ANALYST

accounting

and financial

management

(AFM) system

a system that records
accounting information
needed to produce
financial statements and
other reports used by
investors and creditors

human resource

management

(HRM) system

a system that supports
employee-related tasks
such as payroll, benefits,
hiring, and training

manufacturing

management

system

a system that controls
internal production
processes that turn raw
materials into finished
goods

knowledge

management

system (KMS)

a system that supports
the storage of and
access to documents
from all parts of the
organization

collaboration

support system

(CSS)

a system that enables
geographically
distributed personnel to
collaborate on projects
and tasks

business

intelligence

system

a system that supports
strategic planning and
executive decision making

C6696_01_CTP.4c 1/28/08 8:21 AM Page 10

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 1 The World of the Information Systems Analyst ♦ 11

TECHNICAL KNOWLEDGE AND SKILLS

It should not be surprising that a systems analyst needs technical expertise. The scope,
breadth, and depth of technology employed in medium- and large-scale organizations are
vast. A company’s “simple” online order-processing application might involve a system with
thousands of users spread over hundreds of locations. The database might contain hundreds
of tables with millions of records in each table. The system might have taken years to con-
struct, cost millions of dollars, and be supported by global networks, hundreds of servers, and
dozens of support staff. If the system fails for even an hour, the company could lose millions
of dollars in sales and disrupt its entire supply chain. Such a system is a critical business
resource, so the staff that support and maintain it work in round-the-clock shifts and are on
call day and night in case of a problem. The importance of technology to modern organiza-
tions cannot be overstated.

Even if an analyst is not involved in activities such as programming, network design, or hard-
ware configuration, it is still crucial to have an understanding of different types of technology—
what they are used for, how they work, and how they are evolving. No one person can be an
expert at all types of technology; there are technical specialists to consult for the details. But a sys-
tems analyst should understand the fundamentals about the following:

• Computers and how they work
• File, database, and storage hardware and software
• Input and output hardware and software
• Computer networks and protocols
• Programming languages, operating systems, and utilities
• Communication and collaboration technology such as digital telephones, video-

conferencing, and Web-based document management systems

Just as an organization’s business environment continually changes, so does the technol-
ogy used for its information systems. The rapid change in technology often drives other
needed changes. Thus, all participants in information system development should upgrade
their knowledge and skills continually. Those who don’t will be left behind.

Technical
knowledge

Technical
skills

Business
knowledge

Business
skills

People
knowledge

People
skills

Knowledge and skills required of a systems analyst

Figure 1-6

Required skills of the

systems analyst

enterprise

resource

planning (ERP)

a process in which an
organization commits to
using an integrated set of
software packages for
key information systems

database

a centrally managed
collection of data that is
accessible to many
users and systems at
the same time

C6696_01_CTP.4c 1/28/08 8:21 AM Page 11

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

A systems analyst also needs to know a lot about tools and techniques for developing sys-
tems. Tools are software products that are used to develop analysis and design specifications and
completed system components. Some tools used in system development include the following:

• Software packages such as Intuit QuickBooks, Microsoft Access, and Adobe Dreamweaver
that can be used to implement small systems or develop subsystems

• Integrated development environments (IDEs) such as Oracle JDeveloper and Microsoft
Visual Studio that support program development, database design, software testing, and
system deployment

• Computer-aided visual modeling tools, such as Rational XDE Modeler, Visible Analyst,
and Embarcadero Describe, that help analysts create, store, modify, and manage system
specifications and sometimes generate programs, databases, Web-based interfaces, and
other software components

• Automated testing tools, configuration management tools, software library management
tools, documentation support tools, project management tools, and so on

Techniques are strategies for completing specific system development activities. How do
you plan and manage a system development project? How do you define requirements? How
do you design user interactions using design principles and best practices? How do you com-
plete implementation and testing? How do you install and support a new information sys-
tem? Much of this text explains how to use specific techniques for project planning, defining
requirements, and designing system components. But it also covers some aspects of imple-
mentation and support. Some examples of techniques include the following:

• Project planning techniques
• Cost/benefit analysis techniques
• Interviewing techniques
• Requirements modeling techniques
• Architectural design techniques
• Network configuration techniques
• Database design techniques

BUSINESS KNOWLEDGE AND SKILLS

Other knowledge and skills that are crucial for an analyst include those that apply to under-
standing business organizations in general. After all, the problem to be solved is a business
problem. What does the analyst need to know? The following are examples:

• What business functions do organizations perform?
• How are organizations structured?
• How are organizations managed?
• What type of work goes on in organizations (finance, manufacturing, marketing, cus-

tomer service, and so on)?

Systems analysts benefit from a fairly broad understanding of businesses in general, so
they typically study business administration in college. In fact, computer information systems
(CIS) or management information systems (MIS) majors are often included in the college of
business for that reason. The accounting, marketing, management, and operations courses
taken in a CIS or MIS degree program serve a very important purpose of preparing the gradu-
ate for the workplace. Project management techniques such as planning, scheduling, budget-
ing, feasibility analysis, and management reporting are particularly important.

Systems analysts also need to understand the type of organization for which they work.
Some analysts specialize in a specific industry for their entire career—perhaps in manufacturing,
retailing, financial services, or aerospace. The reason for this business focus is simple: It takes a
long time to understand the problems of a specific industry. An analyst with deep understand-
ing of a specific industry can solve complex problems for companies in the industry.

12 ♦ PART 1 THE SYSTEMS ANALYST

tools

software products used
to help develop analysis
and design specifications
and completed system
components

techniques

strategies for completing
specific system
development activities

C6696_01_CTP.4c 1/28/08 8:21 AM Page 12

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 1 The World of the Information Systems Analyst ♦ 13

Familiarity with a specific company also provides important guidance on system needs
and changes. Often, just knowing the people who work for a company and understanding
subtleties of the company culture can make a big difference in the effectiveness of an analyst.
It takes years of experience working for a company to really understand what is going on. The
more an analyst knows about how an organization works, the more effective he can be. Some
specifics the analyst needs to know about the company include the following:

• What the specific organization does
• What makes it successful
• What its strategies and plans are
• What its traditions and values are

Be sure you understand the organization, its culture, its mission, and its
objectives before jumping to conclusions about system solutions.

BEST PRACTICE

PEOPLE KNOWLEDGE AND SKILLS

Interpersonal skills are perhaps the analyst’s most important skills, because analysts rely on
others, including managers, users, programmers, technical specialists, customers, and ven-
dors, to take a system from initial idea to final implementation. The analyst is a translator for
all project participants, translating business objectives into functional requirements, user
needs into system specifications, and technical jargon and details into terms that nontechni-
cal personnel can easily understand. The analyst must be an effective communicator in many
contexts, including conversations, interviews, technical reviews, and formal presentations.

Required interpersonal skills go well beyond oral and written communication. For exam-
ple, the analyst must develop rapport with users who may be resistant to change, negotiate
with management for resources such as budget, time, and personnel, and manage develop-
ment personnel with many different skills, capabilities, and attitudes. The analyst must be an
effective teacher, mentor, confidant, collaborator, manager, and leader, shifting easily among
those roles many times over the course of a typical work day. In an increasing multinational
environment, the analyst must effectively interact with people of diverse backgrounds, cus-
toms, and beliefs.

All of these interpersonal skills are critical to project success. The wrong system is acquired
or constructed when business and user requirements are misunderstood or ignored. Projects
fail without support from managers, users, and development staff. Critical subsystems don’t
interact correctly when technical specifications are incorrectly communicated or documented.
The development team can’t adapt to new information and change without effective feedback
among all project participants.

Analysts typically devote several weeks per year to training and continuing
education. An analyst should devote time to developing so-called “soft
skills” such as interviewing, team management, and leadership, and should
develop hard skills such as database design, programming, and
telecommunications.

BEST PRACTICE

A FEW WORDS ABOUT INTEGRITY AND ETHICS

One aspect of a career in information systems that students often underestimate is the impor-
tance of personal integrity and ethics. A systems analyst is asked to look into problems that
involve information from many different parts of an organization. Especially if it involves

soft skills

skills in
nontechnical
areas such as
interviewing,
team manage-
ment, and leadership

hard skills

skills in technical areas
such as database design,
programming, and
telecommunications

C6696_01_CTP.4c 1/28/08 8:21 AM Page 13

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

individual employees, the information might be private, such as salary, health, and job per-
formance. The analyst must have the integrity to keep this information private.

The problems the analyst works on can also involve confidential corporate information,
including proprietary information about products or planned products, strategic plans or tac-
tics, and even top-secret information involving government military contracts. Sometimes a
company’s security processes or specific security systems can be involved in the analyst’s work.
Analysts are expected to uphold the highest ethical standards when it comes to private pro-
prietary information, whether the analysts are employees or outside consultants.

Ethics and integrity also include follow-through on commitments, dealing directly with
mistakes and gaps in relevant knowledge and skills, and practicing open and honest commu-
nication. As a pivotal member of the development team, an analyst’s lack of follow-through
or task completion can cause problems that reverberate throughout the project. No one can
be highly skilled in every aspect of system development across all application areas and orga-
nizational contexts. An analyst must take honest stock of his or her strengths, weaknesses, and
performance, ask for needed help and resources, and be ready to provide the same to others.
The analyst must also balance organizational privacy needs and the reluctance of some pro-
ject participants to provide complete information with the improved outcomes that arise
from free exchange of information and ideas. It is a difficult balance to strike, but one that is
critical to project success.

ANALYSIS-RELATED CAREERS

Employment in the fields of information systems and computer technology spans a wide vari-
ety of skills, organizations, and roles. Rapid changes in technology, business practices, and
the structure of the global economy have changed related jobs. Typical information system
graduates of the late twentieth century were employed as programmer analysts. Job tasks con-
sisted primarily of programming with some analysis and design. As employees moved “up
the ladder” the mix of activities changed, the breadth and importance of analysis and design
activities increased, and supervisory responsibilities for maintenance and development pro-
ject teams were gradually added. Employees typically worked within a dedicated information
systems department of a business or government organization or for a company that devel-
oped and maintained information systems under contract to other organizations. The “career
ladder” was usually well defined and skills were easily transferred among jobs.

The employment picture is much more complex in the twenty-first century. The number
of programmer analysts employed by “brick and mortar” companies has decreased due to
increased productivity and outsourcing. Many software development jobs have shifted to
companies that produce and sell ERP software, and many of those companies have moved
some or all operations out of North America and Western Europe to India, China, and coun-
tries of the old Soviet bloc. Given the significant changes that have occurred, is there really a
need for analysis and design skills and are there any related jobs in North America and
Western Europe?

The answer is yes, but the number and nature of the jobs, their titles, and the organiza-
tions that fill those positions are much more complex than in the past. Despite the wide-
spread use of ERP software, many businesses still have smaller in-house development staffs
that concentrate on areas of strategic importance, competitive advantage, and unique firm
requirements. In-house development, including analysis and design, is especially common in
security-sensitive industries, national defense, and research and development in national lab-
oratories. Thus, employment of analysts and software developers within traditional industries
continues, but at a slower pace than in the past.

14 ♦ PART 1 THE SYSTEMS ANALYST

C6696_01_CTP.4c 1/28/08 8:21 AM Page 14

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 1 The World of the Information Systems Analyst ♦ 15

Changes in software development, technology, and business practices have created many
new career opportunities for analysts, including:

• Sales and support of ERP software
• Business analysts for user organizations
• Auditing, compliance, and security
• Web development

Companies that produce and sell ERP software have become a significant part of the infor-
mation systems employment picture. Large companies such as SAP, Oracle, and IBM have sig-
nificant ERP market share, though there are many smaller and more specialized competitors.
Selling and supporting ERP software requires many analysis and design skills. ERP systems are
complex combinations of hardware and software components. Determining the component
mix that best matches a particular customer and deploying and supporting that solution
requires considerable analysis and design skills. Thus, the job of account representative for
many ERP firms requires considerable skill in analysis and sometimes in design. In addition,
ERP firms employ many analysts and designers to support account representatives and to con-
tinually improve their products to match changing technology and customer needs.

User organizations in “line areas” such as finance, customer service, and logistics often
employ personnel with significant analysis and design responsibilities. These employees eval-
uate changing business needs, redesign business processes to better satisfy those needs, and
research, evaluate, purchase, deploy, and support new technology to support the redesigned
processes. They often work closely with ERP firms and act as user representatives and contract
managers for their employers. Although such a position entails many different skills, analysis
and design skills are essential. Unlike traditional programmer analyst jobs, these positions
are difficult to outsource and less likely to be moved offshore, though they are often globally
distributed in large multinational organizations.

Accounting is an area of rapid job growth for information systems professionals, espe-
cially within large accounting and auditing firms and within the accounting and internal
audit staffs of their clients. The Sarbanes-Oxley Act in the United States, and similar legisla-
tion and regulation in other countries, requires publicly traded companies to continually
evaluate the adequacy of their financial reporting and internal control systems. Auditors must
also certify the adequacy of business processes and evaluate whether the firm is at risk of near-
term failure due to financial, legal, market, or other problems. Because businesses rely heav-
ily on automated systems to support business processes and financial reporting, accountants
and auditors work closely with technical personnel who understand those systems. The core
skill set required for those jobs is analysis and design. Employees with experience and skills
both in accounting and information systems are in high demand.

As Web technology has permeated modern organizations, the demand for employees with
related skills has skyrocketed. Most medium- and large-scale organizations have in-house
staff that develop and maintain Web sites, build Web-based application software, and serve as
internal Web consultants to other parts of the organization. Many consulting firms specialize
in developing and maintaining a Web presence for other organizations. Analysis and design
skills are an important part of developing and maintaining Web-based applications and Web
presence. To employ such systems to maximal advantage, developers must analyze business
needs and design appropriate systems deployed with appropriate technology.

As you’ve probably surmised by now, career opportunities for analysts and people with
significant analysis and design skills are as varied as the related job titles and descriptions.
Here are some job titles you might encounter:

• Programmer analyst
• Business systems analyst
• System liaison
• End-user analyst

C6696_01_CTP.4c 1/28/08 8:21 AM Page 15

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

• Business consultant
• Systems consultant
• Systems support analyst
• Systems designer
• Software engineer
• System architect
• Web architect
• Webmaster
• Web developer

Sometimes systems analysts might also be called project leaders or project managers. Be
prepared to hear all kinds of titles for people who are involved in analysis and design work.

In sum, the career prospects for analysts are bright, but the nature of related jobs, their loca-
tion, and the typical career development path for analysts and other information system profes-
sionals has changed significantly over the last two decades. As in many other areas of the
economy, large numbers of employees doing similar tasks for a single company is no longer the
norm. Similar tasks are now more automated and more dispersed, resulting in jobs in a greater
variety of organizations with broader responsibilities and rapidly changing requirements.
Analysis and design skills are at the core of many of these new jobs. Employees who can under-
stand business processes, user needs, and the technology that supports those processes and
needs are in high demand. Continuing penetration of information technology into every aspect
of modern organizations ensures that demand will be strong far into the future.

THE ANALYST’S ROLE IN STRATEGIC PLANNING

We have described a systems analyst as someone who solves specific business problems by
developing or maintaining information systems. The analyst might also be involved with
senior managers on strategic management problems—that is, problems involving the future
of the organization and plans and processes to ensure its survival and growth. Sometimes an
analyst who is only a few years out of college can be summoned to meet with top-level execu-
tives and even be asked to present recommendations to achieve corporate goals. How might
this happen?

SPECIAL PROJECTS

First, the analyst might be working to solve a problem that affects executives, such as design-
ing an MIS to provide information to executives. The analyst might interview the executives
to find out what information they need to do their work. An analyst might be asked to spend
a day with an executive or even travel with an executive to get a feel for the nature of the exec-
utive’s work. Then the analyst might develop and demonstrate prototypes of the system to get
more insight into the needs of the executives.

Another situation that could involve an analyst in strategic management problems is a
business process reengineering study. Business process reengineering seeks to alter radically
the nature of the work done in a business function. The objective is radical improvement in
performance, not just incremental improvement. Therefore, the analyst might be asked to par-
ticipate in a study that carefully examines existing business processes and procedures and
then to propose information system solutions that can have a radical impact. Many tools and
techniques of analysis and design are used to analyze business processes, redesign them, and
then provide computer support to make them work.

16 ♦ PART 1 THE SYSTEMS ANALYST

business process

reengineering

a technique that seeks to
alter the nature of the
work done in a business
function, with the
objective of radically
improving performance

C6696_01_CTP.4c 1/28/08 8:21 AM Page 16

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 1 The World of the Information Systems Analyst ♦ 17

STRATEGIC PLANNING

Most business organizations invest considerable time and energy completing strategic plans
that typically cover five or more years. During the strategic planning process, executives ask
themselves such fundamental questions about the company as where the business is now,
where they want the business to be, and what they have to do to get there. A typical strategic
planning process can take months or even years, and often plans are continually updated.
Many people from throughout the organization are involved, all completing forecasts and
analyses, which are combined into the overall strategic plan. After a strategic plan is set, it dri-
ves all of the organization’s processes, so all areas of the organization must participate and
coordinate their activities. Therefore, a marketing strategic plan and a production strategic
plan must fit within the overall strategic plan.

INFORMATION SYSTEMS STRATEGIC PLANNING

One major component of the strategic plan is the information systems strategic plan. Today,
information systems are so tightly integrated into an organization that nearly any planned
change calls for new or improved information systems. Beyond that, the information systems
themselves often drive the strategic plan. For example, after some chaotic early years involv-
ing the Internet, many new Internet-based companies have survived (such as Amazon.com
and eBay), and many other companies have altered their business processes and developed
new markets in which to compete. In other cases, the opportunities presented by new infor-
mation systems technology have led to new products and markets with more subtle impacts.
Information systems and the possibilities that they present play a large role in the strategic
plans of most organizations.

Information systems strategic planning sometimes involves the whole organization.
Usually at the recommendation of the chief information systems executive, top management
will authorize a major project to plan the information systems for the entire organization.

In developing the information systems strategic plan, members of the staff look at the
overall organization to anticipate problems rather than react to systems problems as they
come up. Several techniques help the organization complete an information systems strategic
planning project. A consulting firm is often hired to help with the project. Consultants can
offer experience with strategic planning techniques and can train managers and analysts to
complete the plan.

Usually managers and staff from all areas of the organization are involved, but the project
team is generally led by information systems managers with the assistance of consultants.
Systems analysts often become involved in collecting information and interviewing people.

Many documents and existing systems are reviewed. Then the team tries to create a model of
the entire organization—to map the business functions it performs. Another model, one that
shows the types of data the entire organization creates and uses, is also developed. The team
examines all of the locations where business functions are performed and data is created and
used. From these models, the team puts together a list of integrated information systems for the
organization, called the application architecture plan. Then, given the existing systems and
other factors, the team outlines the sequence needed to implement the required systems.

Using the list of information systems needed, the team defines the technology architecture
plan—that is, the types of hardware, software, and communications networks required to
implement all of the planned systems. The team must look at trends in technology and make
commitments to specific technologies and possibly even technology vendors. The components
of the information systems strategic plan are shown in Figure 1-7.

In an ideal world, a comprehensive information systems planning project would solve all
of the problems that information systems managers face. Unfortunately, the world continues
to change at such a rate that plans must be continually updated. Unplanned information sys-
tem projects come up all the time, and priorities must be continually evaluated.

strategic

planning

a process during which
executives try to answer
questions about the
company, such as where
the business is now,
where they want the
business to be, and what
they have to do to get
there

information

systems

strategic plan

the plan defining the
technology and
applications that the
information systems
function needs to support
the organization’s
strategic plan

application

architecture plan

a description of the
integrated information
systems that the
organization needs to
carry out its business
functions

technology

architecture plan

a description of the
hardware, software, and
communications
networks required to
implement planned
information systems

C6696_01_CTP.4c 1/28/08 8:21 AM Page 17

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

ROCKY MOUNTAIN OUTFITTERS AND ITS STRATEGIC INFORMATION SYSTEMS PLAN

To demonstrate the important systems analysis and design techniques in this text, we follow a
system development project for a company named Rocky Mountain Outfitters (RMO). RMO
is a sports clothing manufacturer and distributor that is about to begin development of a new
customer support system. You will encounter RMO customer support system examples in all
chapters of this book. For now, try to get a feel for the nature of the business, the approach
the company took to define the information systems strategic plan, and the basic objectives
of the customer support system that is part of the plan.

INTRODUCING ROCKY MOUNTAIN OUTFITTERS (RMO)

RMO started in 1978 as the dream of John and Liz Blankens of Park City, Utah. Liz had always
been interested in fashion and clothing and had worked her way through college by designing,
sewing, and selling winter sports clothes to the local ski shops in Park City. She continued with
this side business even after she graduated, and soon it was taking all of her time.

Liz had been dating John Blankens since they met at a fashion merchandising convention.
John had worked for several years for a retail department store chain after college and had
just completed his MBA. Together they decided to try to expand Liz’s business into retailing
to reach a larger customer base.

The first step in their expansion involved direct mail-order sales to customers using a
small catalog (see Figure 1-8). Liz immediately had to expand the manufacturing operations
by adding a designer and production supervisor. As interest in the catalog increased, Liz and
John sought out additional lines of clothing and accessories to sell along with their own
product lines. They also opened a retail store in Park City.

18 ♦ PART 1 THE SYSTEMS ANALYST

Application
architecture plan Set of integrated information systems

needed by the organization to carry
out its business functions

Information systems strategic plan

Technology
architecture plan

Set of hardware, software, and
communications networks required to
implement all of the planned systems

Figure 1-7

Components of an

information systems

strategic plan

C6696_01_CTP.4c 1/28/08 8:21 AM Page 18

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 1 The World of the Information Systems Analyst ♦ 19

By the early 2000s, RMO had grown to become a significant regional sports clothing dis-
tributor in the Rocky Mountain and Western states. The states of Arizona, New Mexico,
Colorado, Utah, Wyoming, Idaho, Oregon, Washington, and Nevada, and the eastern edge of
California had seen tremendous growth in recreation activities. Along with the increased
interest in outdoor sports, the market for both winter and summer sports clothes had
exploded. Skiing, snowboarding, mountain biking, water skiing, jet skiing, river running, jog-
ging, hiking, ATV biking, camping, mountain climbing, and rappelling had all seen a tremen-
dous increase in interest in these states. Of course, people needed appropriate sports clothes
for their activities, so RMO expanded its line of sportswear to respond to this market. It also
added a line of high-fashion active wear and accessories to round out its offerings to the
expanding market of active people. The current RMO catalog offers an extensive selection (see
Figure 1-9).

Rocky Mountain Outfitters now employs more than 600 people and generates almost
$180 million annually in sales. The mail-order operation is still the major source of revenue,
at $90 million. Phone-order sales are $50 million. In-store retail sales have remained a mod-
est part of the business, with sales of $5 million at the Park City retail store and $5 million at
the recently opened Denver store. In 2004, John and Liz contracted with an outside firm to
develop and host a Web-based ordering system. Though the system has been working since
early 2005, it accounts for a disappointing $30 million in sales.

RMO STRATEGIC ISSUES

Rocky Mountain Outfitters was one of the first sports clothing distributors to provide a Web
site featuring its products. The site originally gave RMO a simple Web presence to enhance its
image and to allow potential customers to request a copy of the catalog. It also served as a
portal for links to all sorts of outdoor sports Web sites. The first RMO Web site enhancement
added more specific product information, including weekly specials that could be ordered by
phone. Eventually, nearly all product offerings were included in an online catalog posted at
the Web site. But orders could only be placed by mail or by phone.

Figure 1-8

Early RMO catalog cover

(Fall 1978)

C6696_01_CTP.4c 1/28/08 8:21 AM Page 19

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

20 ♦ PART 1 THE SYSTEMS ANALYST

John and Liz had considered making a major commitment to business-to-consumer
(B2C) e-commerce in the early 2000s. They worried about the risk of sudden and potentially
explosive growth, but felt that they had to develop an online ordering system to remain com-
petitive. At the time, in-house staff was not trained in Web technologies, so John and Liz
decided to outsource development and operation of the Web site.

By 2007, they realized that the Web-based ordering system was substantially underper-
forming against the competition for many reasons, including the following:

• Slow and cumbersome updates to online content
• Poor coordination with in-house customer service functions
• Poor coordination between Web-based ordering and supply chain management functions
• Poor technical support and other support by the site operator
• Deteriorating relations with RMO management

In late 2006, RMO performed a detailed market analysis that showed alarming trends,
including the following:

• RMO sales growth was slower than the industry average, resulting in decreasing market
share.

• The average age of customers ordering by phone and mail was increasing, and was much
higher than the industry average age of all customers.

• Compared to competitors, RMO’s Web-based sales were a much smaller percentage of
total sales, and the average order amount was lower than the industry average.

The analysis painted a disturbing picture of declining performance. Continued strong
sales to older customers via traditional channels were offset by weak sales to younger cus-
tomers via the Web. RMO was failing to attract and retain the customers who represented the
bulk of present and future business.

2010 CATALOG

2010 CATA
LO

G

Figure 1-9

Current RMO catalog

cover (Fall 2010)

C6696_01_CTP.4c 1/28/08 8:21 AM Page 20

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 1 The World of the Information Systems Analyst ♦ 21

The next section provides some additional background on RMO and summarizes the
overall information systems plan it is currently following. Subsequent chapters of this book
focus on one of the crucial information systems that is part of the plan—the customer sup-
port system.

RMO’S ORGANIZATIONAL STRUCTURE AND LOCATIONS

Rocky Mountain Outfitters is still managed on a daily basis by John and Liz Blankens. John is
president, and Liz is vice president of merchandising and distribution (see Figure 1-10). Other
top managers include William McDougal, vice president of marketing and sales, and JoAnn
White, vice president of finance and systems. The systems department reports to JoAnn White.

One hundred thirteen employees work in human resources, merchandising, accounting
and finance, marketing, and information systems in the corporate offices in Park City, Utah.
There are two retail stores: the original Park City store and the newer Denver store.
Manufacturing facilities for high-fashion clothing and accessories are located in Salt Lake City
and more recently in Portland, Oregon. Most other products are manufactured under con-
tract in Central America and Asia. There are three distribution/warehouse facilities: Salt Lake
City, Albuquerque, and Portland. All mail-order processing is done in a facility in Provo,
Utah, employing 58 people. The phone-sales center, employing 20, is located in Salt Lake
City. Figure 1-11 shows the locations of these facilities.

THE RMO INFORMATION SYSTEMS DEPARTMENT

The information systems department is headed by Mac Preston, an assistant vice president
with the title chief information officer (CIO), and there are nearly 50 employees in the
department (see Figure 1-12). Since 2007, RMO has aggressively modernized development
and other IT skills through extensive training and new hires. Mac’s title of CIO reflects a pro-
motion following the successful completion of the information systems strategic planning
project. He is not quite equal to a full vice president, but his position is considered increas-
ingly important to the future of the company. Mac reports to the finance and systems vice
president, whose background is in finance and accounting. The information systems depart-
ment will eventually report directly to the CEO if Mac has success implementing the new
strategic information systems plan.

Mac organized information systems into two areas—system support and system develop-
ment. Ann Hamilton is director of system support. System support involves such functions as
telecommunications, database administration, operations, and user support. John MacMurty
is director of system development. System development includes four project managers, six
systems analysts, 10 programmer analysts, and a couple of clerical support employees.

Most business executives understand that information systems are
strategically important, and they usually have excellent ideas and insights.
Be sure to ask for their input.

BEST PRACTICE

In early 2007, John and Liz hired a consulting firm to evaluate their current application
and IT architecture and to help them with strategic IS planning. The consultants recom-
mended modernizing much of the RMO technology infrastructure and implementing com-
pletely new supply chain management and Web-based ordering systems. Upgrading the
existing Web-ordering system was ruled out due to outdated technology, numerous flaws, and
poor vendor performance.

C6696_01_CTP.4c 1/28/08 8:21 AM Page 21

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

22 ♦ PART 1 THE SYSTEMS ANALYST

JoAnn White
VP Finance and

Systems

April Sterling
AVP Accounting

and Finance

Mac Preston
Chief Information

Officer

John MacMurty
Director of System

Development

Ann Hamilton
Director of System

Support

Genny Monson
AVP Retail Sales

Joe Jones
AVP Marketing/

Advertising

Robert Schneider
Director of Catalog

Sales

Christine Roundy
Manager of Telephone

Sales

William McDougal
VP Marketing

and Sales

MaryAnn Whitehead
Director of

International
Purchasing

Nathan Brunner
AVP Production

Henry Manwaring
Director of U.S.

Purchasing

Karen Hansen
Director of

New Design

Brian Haddock
Director of
Operations

Elizabeth Blankens
VP Merchandising
and Distribution

Jason Nadold
Manager

Warehousing/ Shipping

John Blankens
President CEO

Figure 1-10

Rocky Mountain

Outfitters’ organizational

structure

C6696_01_CTP.4c 1/28/08 8:21 AM Page 22

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 1 The World of the Information Systems Analyst ♦ 23

Distribution/
warehouse facilities

Albuquerque, NM

Manufacturing
facilities
Portland, OR

Mail-order
processing

Provo, UT

Corporate office
Park City, UT

Retail store
Denver

Phone sales
Salt Lake City

Distribution/
warehouse
facilities
Salt Lake City

Distribution/
warehouse
facilities
Portland, OR

Retail stores
Park City, UT

Manufacturing
facilities

Salt Lake City

Figure 1-11

Rocky Mountain

Outfitters’ locations

Chief information officer

Administrative assistant (1)

Director of system support

Managers (4)
Telecom analysts (2)
Database analysts (2)
Operations (6)
User support (4)
Secretarial/clerical (2)
Off-site operations (4)

Director of system development

Project managers (4)
Systems analysts (6)
Programmer analysts (10)
Secretarial/clerical (2)

IS staffing

Figure 1-12

RMO information

systems department

staffing

C6696_01_CTP.4c 1/28/08 8:21 AM Page 23

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

EXISTING RMO SYSTEMS

Most of the computer technology and information systems staff at RMO is located at the data
center in Park City. A server cluster supports the inventory, mail-order, accounting, and
human resource functions. A high-capacity network connects the data center to the manufac-
turing, distribution, and mail-order sites for data exchange, video-conferencing, and tele-
phone services.

Smaller servers at the home office, distribution sites, and manufacturing sites support
office functions and provide core networking and communication services. Retail stores run a
point-of-sale software package on local servers that exchanges data directly with the inventory
system at the data center. The phone-sales center has multiple servers supporting office func-
tions, core networking and communication services, call center management software, and
an order-processing application that interacts directly with the data center servers.

The existing information systems and their technology are organized as follows:

• Supply Chain Management. Originally developed in-house as a mainframe application
using COBOL/CICS with some VSAM files and a DB2 relational database. In 2002, the
application was migrated to upgraded server hardware and reimplemented as a
client/server application using C++, DB2, and Windows terminal services. It supports
inventory control, purchasing, and distribution, but does not have good integration
among those functions.

• Mail Order. A mainframe application developed in-house using COBOL. Mail-order
clerks in Provo use simple microcomputers that emulate older IBM terminals. Despite its
age, the application is fast and efficient but unsuitable for handling phone orders. It was
last upgraded in 1999.

• Phone Order. A modest Windows application developed using Visual Basic and Microsoft
SQL Server as a quick solution to customer demand for phone orders. It is poorly inte-
grated with merchandising/distribution and has reached capacity. Implemented nine
years ago.

• Retail Store Systems. A retail store package with point-of-sale processing. It was upgraded
eight years ago from overnight batch to real-time inventory updates to the data center.

• Office Systems. Small local servers and networked personal and laptop computers sup-
port applications such as Microsoft Office at the Park City offices and other sites. The
servers were all recently upgraded to run Windows Server 2008.

• Human Resources. An application developed in-house for payroll and benefits running
on servers at the data center. Implemented using C and DB2 17 years ago with continuing
minor updates.

• Accounting/Finance. Originally a mainframe package from a leading accounting package
vendor. Migrated to newer servers in 2003 with minor software upgrades, but otherwise
unchanged.

• Web-based Catalog and Order System. Currently managed and operated by an outside
company under a contract that expires in 2011. The system exchanges data in real time with
data center servers, but has difficulty in keeping catalog content current, irregular perfor-
mance, and a poor user interface that has led to many customer complaints and lost sales.

THE INFORMATION SYSTEMS STRATEGIC PLAN

The information systems strategic plan developed with the help of the consultants includes
the technology architecture plan and the application architecture plan. The planning team
looked closely at existing systems and at the business objectives of RMO. As initially pro-
posed, supply chain management and customer relationship management provided a vision
for the plan. These ideas support the strategic objectives of RMO to build more direct cus-
tomer relationships and to expand the marketing presence beyond the Western states.

24 ♦ PART 1 THE SYSTEMS ANALYST

C6696_01_CTP.4c 1/28/08 8:21 AM Page 24

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 1 The World of the Information Systems Analyst ♦ 25

The main features of the plans include the following:

Technology architecture plan

1. Further distribute business applications across multiple locations and computer systems,
reserving the data center for Web server, database, and telecommunications functions to
allow incremental and rapid growth in capacity.

2. Migrate strategic business processes to the Internet and Web, first supporting supply
chain management, next supporting direct customer ordering on a new, dynamic Web
site, and finally supporting additional customer relationship management (CRM) func-
tions that link internal systems and databases.

3. Anticipate the eventual move toward Web-based intranet solutions for business functions
such as human resources, accounting, finance, and information management, using pur-
chased software to the greatest extent possible.

Application architecture plan

1. Supply chain management (SCM): Implement systems that seamlessly integrate product
development, product acquisition, manufacturing, and inventory management in antici-
pation of rapid sales growth. Custom development with support of consultants.

2. Customer support system (CSS): Implement an order-processing and fulfillment system
that seamlessly integrates with the supply chain management systems to support mail,
phone, and Web-based ordering. Custom in-house development.

3. Strategic information management system (SIMS): Implement an information system
that can extract and analyze supply chain and customer support information for strategic
and operational decision making and control. Package solution.

4. Retail store system (RSS): Replace the existing retail store system with a system that can
integrate with the customer support system. Package solution.

5. Accounting/finance: Purchase a package solution, definitely an intranet application, to
maximize employee access to financial data for planning and control.

6. Human resources: Purchase a package solution, definitely an intranet application, to
maximize employee access to human resource (HR) forms, procedures, and benefits
information.

The timetable for implementing the application architecture plan is shown in Figure 1-13.
Key components of the supply chain management system, particularly inventory manage-
ment components, must be defined before the customer support system project can be
started. The customer support system project must be started as soon as possible, though, as
it is the core system supporting customer relationship management.

John and Liz consider the SCM system and the CSS to be their core business processes.
They’ve decided to develop and maintain those systems in-house to ensure the fulfillment of
specific RMO requirements. Consultants have been called in to help define requirements and
develop the integration plan for supply chain management. Several leading consulting firms
specialize in supply chain management.

The customer support system will also be developed in-house, although limited use of
purchased components is anticipated.

The other systems in the plan will probably be software package solutions selected from
among the best-rated software currently available. Using packaged solutions for these business
functions will free in-house IS staff to concentrate on the core supply chain and customer rela-
tionship management systems. The key requirement for packaged solutions is to integrate
seamlessly with other RMO systems and use modern intranet and Web-based technology.

C6696_01_CTP.4c 1/28/08 8:21 AM Page 25

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

THE CUSTOMER SUPPORT SYSTEM

The RMO system development project described in this text is the customer support system
(CSS). Rocky Mountain Outfitters has always prided itself on its customer orientation. One of
the core competencies of RMO has been its ability to develop and maintain customer loyalty.
John Blankens knew and understood customer relationship management principles long before
the phrase came into common use. His pride in that knowledge has been shaken by recent sales
performance and customer complaints. He’s determined to right the ship and reenergize RMO’s
customer-oriented focus with a significant infusion of effort, technology, and money.

The application architecture plan detailed some specific objectives for the customer sup-
port system. The system should include all functions associated with providing products for
the customer, from order entry to arrival of the shipment, such as:

• Customer inquiries/catalog requests
• Order entry
• Order tracking
• Shipping
• Back ordering
• Returns
• Sales analysis

26 ♦ PART 1 THE SYSTEMS ANALYST

Supply
Chain

Management
(SCM)

Customer
Support
System
(CSS)

Strategic
Information

Management
System
(SIMS)

Retail Store
System
(RSS)

Accounting/
Finance
System

2009–2010:
Project under way. Consultant-assisted new development to

integrate seamlessly product development, product
acquisition, manufacturing, and inventory management in

anticipation of rapid sales growth.

2010–2011:
Project beginning now. New development to implement an order-
processing and fulfillment system that seamlessly integrates

with the supply chain management system to support the three
order-processing requirements: mail order, phone order, and

direct customer access via the Web.

2011:
Package solution that can extract and analyze

supply chain and customer support information
for strategic and operational decision making and

control.

2011:
Package solution that can integrate with

customer support system.

2012:
Package intranet solution.

Human
Resource
System

2013:
Package intranet solution.

New distributed
database

integrating
corporate data

Figure 1-13

The timetable for

RMO’s application

architecture plan

C6696_01_CTP.4c 1/28/08 8:21 AM Page 26

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 1 The World of the Information Systems Analyst ♦ 27

Customers should be able to order by telephone, mail, or the Web with equal ease. All cat-
alog items would also be available through a sophisticated RMO Web catalog, and the Web
catalog must be consistent with printed catalogs so that customers can browse the printed cat-
alog and then order at the RMO Web site, if they choose. In addition, customers might find
an item in the printed catalog and search for more information at the Web site.

Order-entry processing needs to support the graphical, self-help style of a customer-
oriented Web interface, as well as a streamlined, rapid-response interface required by trained
sales representatives. Every sales employee must have rapid access to all information about
products, inventory, orders, and customers and be able to apply the information in a way that
provides customers with the best possible service.

Although some objectives are defined for the system, a complete systems analysis will
define the requirements for the system in detail. These objectives only form some guidelines
to keep in mind as the project gets under way.

THE ANALYST AS A SYSTEM DEVELOPER (THE HEART OF THE COURSE)

We have discussed many roles that a systems analyst can play in an organization, including strate-
gic planning and helping identify the major information systems projects that the business will
pursue. However, the main job of an analyst is working on a specific information systems devel-
opment project. This text is about planning and executing an information systems project—in
other words, working as a system developer. The text is organized around this theme. In this sec-
tion, we provide an overview of the text—a preview of what system development involves—as
exemplified by the development process ahead for Barbara Halifax, who is in charge of the RMO
customer support system project that is about to start (see memo).

C6696_01_CTP.4c 1/28/08 8:21 AM Page 27

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

PART 1: THE SYSTEMS ANALYST

The first part of the text describes the work of the systems analyst. This chapter (Chapter 1)
describes the nature of the analyst’s work in terms of types of problems solved, the required
skills, and the job titles and places where an analyst might work. We hope it is clear so far that
the analyst does much more than think about and write programs. The rest of the text is orga-
nized around the problem-solving approach we described at the beginning of the chapter.

Not only does the analyst get involved with business problems, but he or she can work on
very high-level strategic issues and with people at all levels of the organization relatively early
in his or her career. This chapter also described Rocky Mountain Outfitters and its strategic
information systems plan. The rest of the text focuses on one of the planned new systems—
the customer support system—and its development.

Chapter 2 focuses on the variety of approaches available for developing an information
system. The system development life cycle (SDLC) is introduced as a technique for managing
and controlling a project. A variety of tools, techniques, and methodologies are discussed,
including the traditional structured approach and the newer object-oriented approach.
System developers should be familiar with the fundamental concepts of both approaches.
This text covers both approaches throughout, pointing out where they are similar and where
they are different.

Chapter 3 gets to the heart of the system development project by describing how a project
is planned and managed. The SDLC provides the structure used for project management.
Other project management tools and techniques are also introduced, including feasibility
studies, project scheduling, and project staffing. An information systems project is just like
any other project in these respects. It is important for an analyst to understand the role of pro-
ject management. Specific issues also arise when planning an information systems project,
and an analyst needs to be familiar with them and the way they relate to the larger context of
the activities of project planning for an information systems project.

PART 2: SYSTEMS ANALYSIS TASKS

Chapters 4 through 8 cover systems analysis in detail. Chapter 4 discusses techniques for
gathering information about the problem that the new system is to solve so that the system
requirements can be defined. The various people who are affected by the system (the stake-
holders) are also discussed. All of these people need to be interviewed and kept up to date on
the status of the project. Techniques such as prototyping and walkthroughs are introduced to
help the analyst communicate with everyone involved.

Chapter 5 introduces the concept of models and modeling to record the detailed require-
ments for the system in a useful form. When discussing an information system, two key con-
cepts are particularly useful: “events” that cause the system to respond and “things” the
system needs to store information about. These two concepts, events and things, are impor-
tant no matter which approach to system development you are using—either the traditional
structured approach or the object-oriented approach. Business events are used to identify sys-
tem activities in the traditional approach, and use cases in the object-oriented approach. The
entity-relationship diagram (ERD) is introduced as a model for showing the things affected
in the traditional approach, and the class diagram is introduced as a model of things in the
object-oriented approach.

Chapters 6 and 7 continue the discussion of modeling system requirements, at which
point the traditional structured approach begins to look different from the object-oriented
approach. Chapter 6 covers the traditional approach to requirements, which focuses on
processes. Data flow diagrams (DFDs), structured English, and data flow definitions are
emphasized. Chapter 7 covers the object-oriented approach to requirements, which focuses
on objects and user interactions. Use cases, use case diagrams, and system sequence diagrams

28 ♦ PART 1 THE SYSTEMS ANALYST

C6696_01_CTP.4c 1/28/08 8:21 AM Page 28

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 1 The World of the Information Systems Analyst ♦ 29

are emphasized. System developers should be familiar with both approaches to defining sys-
tems requirements, but it is important to recognize that in a given system development pro-
ject, one approach or the other will typically be used. However, many developers are now
finding use cases and the use case diagram helpful for defining functional requirements even
though they plan to design the system using the traditional approach. So, all readers will ben-
efit from studying the use case section of Chapter 7.

Chapter 8 demonstrates techniques for generating alternatives for actually implementing
the system. Each alternative is described and evaluated carefully for feasibility. Then, the best
alternative is recommended to management. The final approval of the recommended alterna-
tive is a key decision point for the project.

PART 3: SYSTEMS DESIGN TASKS

After one of the alternatives is approved, work on the actual design details begins. Chapters 9
through 15 cover system design issues. Chapter 9 provides an overview of systems design,
including the activities completed during the design phase and the general technical environ-
ments that are used to implement the system. The three-layer design approach used with both
the traditional and object-oriented approaches is introduced. Chapter 10 discusses the tradi-
tional approach to system design, showing the types of models used (system flowcharts, struc-
ture charts, and pseudocode). Chapters 11 and 12 discuss the object-oriented approach to
design, showing the types of models used (sequence diagrams, communication diagrams,
design class diagrams, and package diagrams). Important design patterns and approaches to
evaluating the quality of object-oriented designs are also discussed.

Chapter 13 describes the issues involved in designing the database for the system, using
either a relational database, an object-oriented database, or a hybrid approach that combines
relational databases with object technology.

Chapter 14 discusses the user interface to the system, providing an overview of the field of
human-computer interaction (HCI) and guidelines for developing user-friendly systems. The
chapter covers Windows graphical user interfaces and browser-based interfaces used in Web
development. These design concepts apply to both the traditional approach and the object-
oriented approach.

Chapter 15 covers the design of system interfaces, system controls, and security. System
interfaces include output design of various types of reports that are typically produced online
and on paper. Information systems controls are discussed, including the importance of ensur-
ing that inputs are accurate and complete and that processing is done correctly. Techniques
for protecting the system from unauthorized access are also discussed. These concepts also
apply to both the traditional approach and the object-oriented approach.

PART 4: IMPLEMENTATION AND SUPPORT

Chapter 16 describes the fourth and fifth phases of the SDLC: system implementation and
system support. No matter how the system is obtained, a major part of the project is making
the system operational and keeping it that way. The analyst’s role in implementing the system
includes quality control, testing, training users, and conversion to operating the new system.
Maintenance and support of the system can continue for many years, involving fixing prob-
lems and enhancing the system over time.

Often, a new programmer analyst is involved in maintenance and support of an existing
system. Maintenance and support of the system are also the most expensive parts of the pro-
ject, and decisions made during analysis and design can have a big impact on the ease of
maintenance and the overall cost of the system over its lifetime.

This text emphasizes systems analysis and design using a view of the system development
process that makes extensive use of iteration and modeling. But you should also be familiar
with current trends that focus more explicitly on iteration, risk, and other techniques. The

C6696_01_CTP.4c 1/28/08 8:21 AM Page 29

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Unified Process (UP), Agile Modeling, Extreme Programming (XP), Scrum, and object frame-
works and component-based development are all discussed in Chapter 17.

ADDITIONAL MATERIALS ON WEB SITE

This edition includes some important additional materials on the book’s Web site,
www.course.com/mis/sad5. Implementing a software package instead of custom development of
a system is almost always a viable alternative, as discussed in Chapter 1 and in more detail in
Chapter 8. Packages and enterprise resource planning are discussed in Online Supplemental
Chapter 1. Also available are online appendices that cover additional material on project man-
agement, project planning, financial feasibility, interviewing, and using Microsoft Project.

30 ♦ PART 1 THE SYSTEMS ANALYST

C6696_01_CTP.4c 1/28/08 8:21 AM Page 30

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

http://www.course.com/mis/sad5

SUMMARY
A systems analyst is someone who solves business problems using information systems technology. Problem
solving means looking into the problem in great detail, understanding everything about the problem, generat-
ing several alternatives for solving the problem, and then picking the best solution. Information systems are
usually part of the solution, and information systems development is much more than writing programs.

A system is a collection of interrelated components that function together to achieve some outcome.
Information systems, like other systems, contain components, and an information systems outcome is the
solution to a business problem. Information systems components can be thought of as subsystems that inter-
act or as hardware, software, inputs, outputs, data, people, and procedures. Many different types of systems
solve organizational problems, including customer relationship management systems, supply chain manage-
ment systems, human resource management systems, manufacturing management systems, accounting and
financial management systems, and purchased software that integrates these systems, often referred to as
enterprise resource planning systems. In addition, organizations use collaboration support systems and busi-
ness intelligence systems.

A systems analyst needs broad knowledge and a variety of skills, including technical, business, and people
knowledge and skills. Integrity and ethical behavior are crucial to the success of the analyst. Analysts
encounter a variety of technologies that often change rapidly. Systems analysis and design work is done by
people with a variety of job titles: not only systems analyst but programmer analyst, systems consultant, sys-
tems engineer, and Web developer, among others. Analysts also work for consulting firms, as independent
contractors, and for companies that produce software packages.

A systems analyst can become involved in strategic planning by working with executives on special projects,
by helping with business process reengineering projects, and by working on company strategic plans. Analysts
also assist businesses in their efforts to select and implement enterprise resource planning systems. Sometimes
an information systems strategic planning project is conducted for the entire organization, and analysts often are
involved. The Rocky Mountain Outfitters planning project described in this chapter is an example.

Usually the systems analyst works on a system development project, one that solves a business problem
identified by strategic planning. That is the emphasis in the rest of this text: how the analyst works on a sys-
tem development project, completing project planning, systems analysis, systems design, systems implemen-
tation, and system support activities. The Rocky Mountain Outfitters customer support system project is used to illustrate the system
development process.

KEY TERMS

accounting and financial management (AFM) systems, p. 10

application architecture plan, p. 17

automation boundary, p. 8

business intelligence system, p. 10

business process reengineering, p. 16

collaboration support system (CSS), p. 10

customer relationship management (CRM) system, p. 9

database, p. 11

enterprise resource planning (ERP), p. 11

functional decomposition, p. 7

hard skills, p. 13

human resource management (HRM) system, p. 10

information system, p. 6

information systems strategic plan, p. 17

knowledge management system, p. 10

manufacturing management system, p. 10

soft skills, p. 13

strategic planning, p. 17

subsystem, p. 7

supply chain management (SCM) system, p. 9

system, p. 6

system boundary, p. 8

systems analysis, p. 4

systems analyst, p. 4

systems design, p. 4

techniques, p. 12

technology architecture plan, p. 17

tools, p. 12

CHAPTER 1 The World of the Information Systems Analyst ♦ 31

C6696_01_CTP.4c 1/28/08 8:21 AM Page 31

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

1. Give an example of a business problem.

2. What are the main steps followed when solving a problem?

3. Define system.

4. Define information system.

5. What types of information systems are found in most

organizations?

6. List the six fundamental technologies an analyst needs to

understand.

7. List four types of tools the analyst needs to use to develop

systems.

8. List five types of techniques used during system development.

9. What are some of the things an analyst needs to under-

stand about businesses and organizations in general?

10. What are some of the things an analyst needs to understand

about people?

11. List 10 job titles that involve analysis and design work.

12. How might an analyst become involved with executives and

strategic planning relatively early in his career?

THINKING CRITICALLY

1. Describe a business problem your university has that you

would like to see solved. How can information technology

help solve it?

2. Describe how you would go about solving a problem you

face. Is the approach taken by a systems analyst, as described

in the text, any different?

3. Many different types of information systems were

described in this chapter. Give an example of each type of

system that might be used by a university.

4. What is the difference between technical skills and busi-

ness skills? Explain how a computer science graduate

might be strong in one area and weak in another. Discuss

how the preparation for a CIS or MIS graduate is different

from that for a computer science graduate.

5. Explain why an analyst needs to understand how people

think, how they learn, how they react to change, how they

communicate, and how they work.

6. Who needs greater integrity to be successful, a salesperson

or a systems analyst? Or does every working professional

need integrity and ethical behavior to be successful? Discuss.

7. Explain why developing a small information system for use by a

single department requires different skills than developing a

large information system with many internal and external users.

8. How might working for a consulting firm for a variety of

companies make it difficult for the consultant to under-

stand the business problem a particular company faces?

What might be easier for the consultant to understand

about a business problem?

9. Explain why a strategic information systems planning pro-

ject must involve people outside the information systems

department. Why would a consulting firm be called in to

help organize the project?

10. Explain why a commitment to enterprise resource planning

(ERP) would be very difficult to undo after it has been made.

EXPERIENTIAL EXERCISES

1. It is important to understand the nature of the business

you work for as an analyst. Contact some information sys-

tems developers and ask them about their employers. Do

they seem to know a lot about the nature of the business?

If so, how did the developers gain that knowledge—for

example, was it through self-study, formal training or

course work, or on-the-job training via participation in sys-

tem development projects? What are the developers’ plans

for the future—for example, do the plans involve more

training, more courses, or working on projects in specific

business areas?

2. Think about the type of position you want (for example,

working for a specific company, working for a consulting

firm, or working for a software vendor). Do some research

on each job by looking at companies’ recruiting brochures

or Web sites. What do they indicate are the key skills they

look for in a new hire? Are there any noticeable differences

between consulting firms and the other organizations?

3. You have read an overview of the Rocky Mountain

Outfitters’ strategic information systems plan, including

the technology architecture plan and the application archi-

tecture plan. Research system planning at your university.

Is there a plan for how information technology will be used

over the next few years? If so, describe some of the key

provisions of the technology architecture plan and the

application architecture plan.

32 ♦ PART 1 THE SYSTEMS ANALYST

REVIEW QUESTIONS

C6696_01_CTP.4c 1/28/08 8:21 AM Page 32

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 1 The World of the Information Systems Analyst ♦ 33

CASE STUDIES
ASSOCIATION FOR INFORMATION TECHNOLOGY
PROFESSIONALS MEETING

“I’ll tell you exactly what I look for when I interview a new college

grad,” Alice Adams volunteered. Alice, a system development man-

ager at a local bank, was talking with several professional acquain-

tances at a monthly dinner meeting of the Association for

Information Technology Professionals (AITP). AITP provides opportu-

nities for information systems professionals to get together occa-

sionally and share experiences. Usually a few dozen professionals

from information systems departments at a variety of companies

attend the monthly meetings.

“When I interview students, I look for problem-solving skills,”

continued Alice. “Every student I interview claims to know all about

Java and .NET and Dreamweaver and XYZ, or whatever the latest

development package is. But I always ask interviewees one thing:

‘How do you generally approach solving problems?’ And then I

want to know if they have even thought much about banks like

mine and financial services generally, so I ask, ‘What would you say

are the greatest problems facing the banking industry these days?’”

Jim Parsons, a database administrator for the local hospital,

laughed. “Yes, I know what you mean. It really impresses me if they

seem to appreciate how a hospital functions, what the problems are

for us—how information technology can help solve some of our

problems. It is the ability to see the big picture that really gets my

attention.”

“Yeah, I’m with you,” added Sam Young, the manager of mar-

keting systems for a retail store chain. “I am not that impressed

with the specific technical skills an applicant has. I assume they have

the aptitude and some skills. I do want to know how well they can

communicate. I do want to know how much they know about the

nature of our business. I do want to know how interested they are

in retail stores and the problems we face.”

“Exactly,” confirmed Alice.

1. Do you agree with Alice and the others about the impor-

tance of problem-solving skills? Industry-specific insight?

Communication skills? Discuss.

2. Should you research how a hospital is managed before

interviewing for a position with an information systems

manager at a hospital? Discuss.

3. In terms of your career, do you think it really makes a dif-

ference whether you work for a bank, a hospital, or a retail

chain? Or is an information systems job going to be the

same no matter where you work? Discuss.

RETHINKING ROCKY MOUNTAIN OUTFITTERS

RMO’s strategic information systems plan calls for

building a new supply chain management (SCM)

system prior to building the customer support sys-

tem (CSS). John Blankens has stated often that cus-

tomer orientation is the key to success. If that is so, why not build

the CSS first, so customers can immediately benefit from improved

customer ordering and fulfillment? Wouldn’t that increase sales and

profits faster? RMO already has factories that produce many items

RMO sells, and RMO has long-standing relationships with suppliers

around the globe. The product catalog is well established, and the

business has existing customers who appear eager and willing to

shop online. Why wait? Perhaps John Blankens has made a mistake

in planning.

1. What are some of the reasons that RMO decided to build

the supply chain management system prior to the cus-

tomer support system?

2. What are some of the consequences to RMO if it is wrong

to wait to build the customer support system?

3. What are some of the consequences to RMO if the own-

ers change their minds and start with the customer sup-

port system before building the supply chain

management system?

4. What are some other changes that you might make to the

RMO strategic information systems plan (both the applica-

tion architecture plan and the technology architecture

plan)? Discuss.

FOCUSING ON RELIABLE PHARMACEUTICAL SERVICE

The Reliable Pharmaceutical Service is a privately

held company incorporated in 1975 in

Albuquerque, New Mexico. It provides phar-

macy services to health-care delivery organizations that are too small

to have their own in-house pharmacy. Reliable grew rapidly in its first

decade, and by the late 1980s its clients included two dozen nursing

homes, three residential rehabilitation facilities, two small psychiatric

hospitals, and four small specialty medical hospitals. In 1990,

Reliable expanded its Albuquerque service area to include Santa Fe

and started two new service areas in Las Cruces and Gallup.

Reliable accepts pharmacy orders for patients in client facilities

and delivers the orders in locked cases every 12 hours. In the

Albuquerque and Santa Fe service area, Reliable employs

C6696_01_CTP.4c 1/28/08 8:21 AM Page 33

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

34 ♦ PART 1 THE SYSTEMS ANALYST

approximately 12 delivery personnel, 20 pharmacist’s assistants

(PAs), 6 licensed pharmacists, and 10 office and clerical staff.

Another 15 employees work in the Las Cruces and Gallup service

areas. The management team includes another six people, mainly

company owners.

Personnel at each health-care facility submit patient prescription

orders by telephone. Many prescriptions are standing orders, which

are filled during every delivery cycle until specifically canceled. Orders

are logged into a computer as they are received. At the start of each

12-hour shift, the computer generates case manifests for each floor

or wing of each client facility. A case manifest identifies each patient

and the drugs he or she has been prescribed, including when and

how often the drugs should be administered. The shift supervisor

assigns the case manifests to pharmacists, who in turn assign tasks

to PAs. Pharmacists supervise and coordinate the PAs’ work.

All drugs for a single patient are collected in one plastic drawer

of a locking case. Each case is marked with the institution’s name,

floor number, and wing number (if applicable). Each drawer is

marked with the patient’s name and room number. Dividers are

inserted within a drawer to separate multiple prescriptions for the

same patient. When all of the individual components of an order

have been assembled, a pharmacist makes a final check of the con-

tents, signs each page of the manifest, and places two copies of the

manifest in the bottom of the case, one copy in a file cabinet in the

assembly area, and the final copy in a mail basket for billing. When

all of the cases have been assembled, they are loaded onto a truck

and delivered to the health-care facilities.

Order entry, billing, and inventory management procedures are

a hodgepodge of manual and computer-assisted methods. Reliable

uses a combination of Excel spreadsheets, an Access database, and

antiquated custom-developed billing software running on personal

computers. Pharmacy assistants use the custom-developed billing

software to enter orders received by telephone and to produce case

manifests. The system has become increasingly unwieldy as facility

contracts and Medicare and Medicaid reimbursement procedures

have become more complex. Some costs are billed to the health-

care facilities, some to insurance companies, some to Medicare and

Medicaid, and some directly to patients. The company that devel-

oped and maintained the billing software has gone out of business,

and the office staff has had to work around software shortcomings

and limitations with cumbersome procedures. Inventory manage-

ment is done manually.

In 2004, Reliable’s revenues leveled off at $40 million and profits

plateaued at $5.5 million. By 2008, revenue was declining approxi-

mately 4 percent per year, and profit was declining at over 8 percent

per year. Several reasons for the decline included the following:

• Price controls in both Medicare and Medicaid reimbursements and
contracts with facilities managed by health maintenance organi-
zations (HMOs) and large national health-care companies

• Increasing competition from national retail pharmacy chains such
as Walgreens and in-house pharmacies at large local hospitals

• Inefficient operating procedures, which haven’t received a com-
prehensive review or overhaul in almost two decades

Reliable’s management team spent most of the last year devel-

oping a strategic plan, the key element of which is a major effort to

streamline operations to improve service and reduce costs.

Management sees this effort as the only hope of surviving in a

future dominated by large health-care companies that can dictate

price and outsource pharmaceutical services to whomever they

choose. Management plans a significant expansion into neighbor-

ing states after the system is up and running to recoup its costs and

increase economies of scale.

Reliable is much smaller than Rocky Mountain Outfitters, the

company discussed in this chapter. But the organization still requires

a comprehensive set of information systems to support its opera-

tions and management. We will include a case study at the end of

each chapter that applies chapter concepts to Reliable

Pharmaceutical Service.

1. How many information systems staff members do you

think Reliable can reasonably afford to employ? What mix

of skills would they require? How flexible would they have

to be in terms of the work they do each day?

2. What impact should Web and wireless technology have

on the way Reliable deploys its systems? Should the Web

and wireless technology change the way Reliable does

business?

3. Create an application architecture plan and a technology

architecture plan for Reliable Pharmaceutical Service to fol-

low for the next five years. What system projects come first

in your plan? What system projects come later?

C6696_01_CTP.4c 1/28/08 8:21 AM Page 34

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 1 The World of the Information Systems Analyst ♦ 35

FURTHER RESOURCES

For a comprehensive review of information systems concepts, see:

Effy Oz, Management Information Systems, Fifth Edition.

Course Technology, 2006.

Kathy Schwalbe, Information Technology Project Management,

Fifth Edition. Course Technology, 2007.

Ralph M. Stair and George W. Reynolds, Principles of

Information Systems, Eighth Edition. Course Technology, 2007.

C6696_01_CTP.4c 1/28/08 8:21 AM Page 35

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

36

APPROACHES TO SYSTEM
DEVELOPMENT2
L E A R N I N G O B J E C T I V E S

After reading this chapter, you should be able to:

■ Explain the purpose and various phases of the traditional systems

development life cycle (SDLC)

■ Explain when to use an adaptive approach to the SDLC in place of the more

predictive traditional SDLC

■ Explain the differences between a model, a tool, a technique, and a

methodology

■ Describe the two overall approaches used to develop information systems:

the traditional approach and the object-oriented approach

■ Describe the key features of current trends in system development: the

Unified Process (UP), Extreme Programming (XP), and Scrum

■ Explain how automated tools are used in system development

CHAPTER

C H A P T E R O U T L I N E

The Systems Development Life Cycle

Activities of Each SDLC Phase

Methodologies, Models, Tools, and Techniques

Two Approaches to System Development

Current Trends in Development

Tools to Support System Development

C6696_02_CTP.4c 1/28/08 8:21 AM Page 36

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 2 Approaches to System Development ♦ 37

Kim, Mary, and Bob, graduating seniors, were discussing their recent interview visits to differ-
ent companies that recruited computer information system (CIS) majors on their campus. All
agreed that they had learned a lot by visiting the companies, but they also all felt somewhat
overwhelmed at first.

“At first I wasn’t sure I knew what they were talking about,” Kim cautiously volunteered.
During her on-campus interview, Kim had impressed Ajax Corporation with her knowledge of
data modeling. When she visited the Ajax home office data center for the second interview, the
interviewers spent quite a lot of time describing the company’s system development methodology.

“A few people said to forget everything I learned in school,” continued Kim. Ajax
Corporation had purchased a complete development methodology called IM One from a
small consulting firm. Most employees agreed it works fairly well. The people who had
worked for Ajax for quite a while thought IM One was unique, and they were very proud of it.
They had invested a lot of time and money learning and adapting to it.

“Well, that got my attention when they said forget what I learned in school,” noted Kim,
“but then they started telling me about their SDLC, about iterations, about business events,
about data flow diagrams, and about entity-relationship diagrams, and things like that.” Kim
had recognized that many of the key concepts in the IM One methodology were fairly stan-
dard models and techniques from the structured approach to system development.

“I know what you mean,” said Mary, a very talented programmer who knew just about
every new programming language available. “Consolidated Concepts went on and on about
things like OMG and UML and UP and some people named Booch, Rumbaugh, and
Jacobson. But then it turned out that they were using the object-oriented approach to develop
systems, and they liked the fact that I knew Java and VB .NET. No problem once I got past all
of the terminology they used. They said they’d send me out for training on Rational Software
Architect, a visual modeling tool for the object-oriented approach.”

Bob had a different story. “A few people said analysis and design were no longer a big
deal. I’m thinking, ‘Knowing that would have saved me some time in school.’” Bob had vis-
ited Pinnacle Manufacturing, which had a small system development group supporting man-
ufacturing and inventory control. “They said they try to just jump in and get to the code as
soon as possible. Little documentation. Not much of a project plan. Then they showed me
some books on their desks, and it looked like they had been doing a lot of reading about
analysis and design. I could see they were using Extreme Programming and agile modeling
techniques and focusing only on best practices needed for their small projects. It turns out
they just organize their work differently by looking at risk and writing user stories while
building prototypes. I recognized some sketches of class diagrams and sequence diagrams on
the boss’s whiteboard, so I felt fairly comfortable.”

Kim, Mary, and Bob all agreed that there was much to learn in these work environments
but also that many different terms and points of view are used to describe the same key con-
cepts and techniques they learned in school. They were all glad they focused on the funda-
mentals in their CIS classes and that they had been exposed to a variety of approaches to
system development.

OVERVIEW

As the experiences of Kim, Mary, and Bob demonstrate, there are many ways to develop an
information system, and doing so is very complex. Project managers rely on a variety of aids
to help them with every step of the process. The systems development life cycle (SDLC) intro-
duced in this chapter provides an overall framework for managing the process of system

DEVELOPMENT APPROACHES AT AJAX CORPORATION,
CONSOLIDATED CONCEPTS, AND PINNACLE MANUFACTURING

C6696_02_CTP.4c 1/28/08 8:21 AM Page 37

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

development. But the developer relies on many more concepts for help, including method-
ologies, models, tools, and techniques. It is very important for you to understand what these
concepts are before exploring system development in any detail.

This chapter reviews two main approaches to system development that are currently used
to develop business systems: the traditional approach and the object-oriented approach. The
traditional approach refers to both structured system development (structured analysis, struc-
tured design, and structured programming) and information engineering (IE). The object-
oriented approach refers to system development using newer object technologies that require
a different approach to analysis, design, and programming.

Traditional and object-oriented approaches use the SDLC as a project management frame-
work, and this chapter describes some variations of the SDLC. In addition, an analyst needs
to be familiar with some current trends in system development that may continue to influ-
ence analysis and design. Finally, system developers need computer support tools to complete
work tasks, including programming tools and specially designed drawing tools. This chapter
presents some examples of these software tools. Most of the models, tools, and techniques
discussed in this chapter are used during the analysis and design phases of the SDLC.

At Rocky Mountain Outfitters, one of Barbara Halifax’s initial jobs as the project manager
for the customer support system project is to make decisions about the approach used to
develop the system. All of the options described in this chapter are open to her. We will not
describe her final decisions, though, because we use the customer support system example
throughout this text as we present more details about all approaches.

THE SYSTEMS DEVELOPMENT LIFE CYCLE

Chapter 1 explained that systems analysts solve business problems. For problem-solving work
to be productive, it needs to be organized and goal oriented. Analysts achieve these results by
organizing the work into projects. A project is a planned undertaking that has a beginning
and an end and that produces a desired result or product. The term system development project
describes a planned undertaking that produces a new information system. Some system
development projects are very large, requiring thousands of hours of work by many people
and spanning several calendar years. In the RMO case study introduced in Chapter 1, the sys-
tem being developed will be a moderately sized computer-based information system, requir-
ing a moderately sized project lasting less than a year. Many system development projects are
smaller, lasting a month or two. For a system development project to be successful, the peo-
ple developing the system must have a detailed plan to follow. Success depends heavily on
having a plan that includes an organized, methodical sequence of tasks and activities that cul-
minate with an information system that is reliable, robust, and efficient.

One of the key, fundamental concepts in information system development is the systems
development life cycle. Businesses and organizations use information systems to support all
the many, varied processes that a business needs to carry out its functions. As explained in
Chapter 1, there are many different kinds of information systems, and each has its own focus
and purpose in supporting business processes. Each one of these information systems has a
life of its own, and we, as system developers, refer to this idea as the life cycle of a system.
During the life of an information system, it is first conceived as an idea; then it is designed,
built, and deployed during a development project; and finally it is put into production and
used to support the business. However, even during its productive use, a system is still a
dynamic, living entity that is updated, modified, and repaired through smaller projects. This
entire process of building, deploying, using, and updating an information system is called the
systems development life cycle, or SDLC.

As noted previously, several different projects may be required during the life of a system,
first to develop the original system and then to upgrade it later. In this chapter—and in fact in

38 ♦ PART 1 THE SYSTEMS ANALYST

project

a planned undertaking
that has a beginning and
an end and that produces
a desired result or
product

systems develop-

ment life cycle

(SDLC)

the entire process of
building, deploying,
using, and updating an
information system

C6696_02_CTP.4c 1/28/08 8:21 AM Page 38

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 2 Approaches to System Development ♦ 39

most of this textbook—we will focus on the initial development project and not on the sup-
port projects. In other words, our primary concern is with getting the system developed and
deployed the very first time.

In today’s diverse development environment, many different approaches to developing
systems are used, and they are based on different SDLCs. As you might suppose, some
approaches have been used for a long time and have varying rates of success. In the ever-
changing world of information technology, new and unique approaches to building systems
have emerged, which also have varying success rates. Although it is difficult to find a single,
comprehensive classification system that encompasses all of the approaches, one useful tech-
nique is to categorize SDLC approaches according to whether they are more predictive or
adaptive. These two classifications represent the end points of a continuum from completely
predictive to completely adaptive (see Figure 2-1).

Recognize that any specific project you work on will have some predictive
and some adaptive elements.

BEST PRACTICE

The choice of SDLC varies depending on the project

Predictive
SDLC

Adaptive
SDLC

Requirements well understood
and well defined.
Low technical risk.

Requirements and needs
uncertain.
High technical risk.

Figure 2-1

Predictive versus

adaptive approaches to

the SDLC

A predictive approach to the SDLC is an approach that assumes that the development
project can be planned and organized in advance and that the new information system can
be developed according to the plan. Predictive SDLCs are useful for building systems that are
well understood and defined. For example, a company may want to convert its old, main-
frame inventory system to a newer networked client/server system. In this type of project, the
staff already understands the requirements very well, and no new processes need to be added.
So, the project can typically be planned carefully, and the system can be built according to the
specifications.

At the other end of the scale, an adaptive approach to the SDLC is used when the exact
requirements of a system or the users’ needs are not well understood. In this situation, the
project cannot be planned completely in advance. Some requirements of the system may yet
need to be determined, after some preliminary development work. Developers should still be
able to build the solution, but they must be flexible and adapt the project as it progresses.

In practice, any project could have—and most do have—both predictive and adaptive ele-
ments. That is why Figure 2-1 shows the characteristics as end points on a sliding scale—not
as two mutually exclusive categories. The predictive approaches are more traditional and were
invented from the 1970s to the 1990s. Many of the newer, adaptive approaches have evolved
along with the object-oriented approach and were created during the 1990s and into the
twenty-first century. Let’s first look at some of the more predictive approaches and then exam-
ine some of the newer adaptive approaches.

THE TRADITIONAL PREDICTIVE APPROACHES TO THE SDLC

The development of a new information system requires several different, but related, activities.
In predictive approaches, we first have a group of activities that plan, organize, and schedule
the project, usually called project planning activities. These activities map out the overall

predictive

approach

an SDLC approach that
assumes the
development project can
be planned and organized
in advance and that the
new information system
can be developed
according to the plan

adaptive

approach

an SDLC approach that is
more flexible, assuming
that the project cannot be
planned out completely in
advance but must be
modified as it progresses

C6696_02_CTP.4c 1/28/08 8:21 AM Page 39

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

structure of the project. Next, a group of activities must focus on understanding the business
problem that needs to be solved and on defining the business requirements. We refer to this
set of activities as analysis activities. The intent is to understand exactly what the system must
do to support the business processes. A third group of activities is focused on designing the
new system. Those activities, called design activities, use the requirements that were defined
earlier to develop the program structure and algorithms for the new system. Yet another group
of activities is necessary to build the system. We call those activities implementation activities,
and they include programming, testing, and installing the system for the business users.

These four groups of activities—planning, analysis, design, and implementation—are
sometimes referred to as phases, and they are the elements that provide the framework for
managing the project. Another phase, called the support phase, includes the activities needed
to upgrade and maintain the system after it has been deployed. The support phase is part of
the overall SDLC, but it is not normally considered to be part of the initial development proj-
ect. Figure 2-2 illustrates the five phases of a traditional SDLC.

40 ♦ PART 1 THE SYSTEMS ANALYST

The five phases are quite similar to the steps in the general problem-solving approach out-
lined in Chapter 1. First, the organization recognizes it has a problem to solve (project plan-
ning). Next, the project team investigates and thoroughly understands the problem and the
requirements for a solution (analysis). After the problem is understood, a solution is specified
in detail (design). The system that solves the problem is then built and installed (implementa-
tion). As long as the system is being used by the organization, it is maintained and enhanced
to make sure it continues to provide the intended benefits (support). See Figure 2-3.

Project planning
phase Analysis

phase Design
phase Implementation

phase Support
phase

Figure 2-2

Information system

development phases

SDLC phase Objective

Project planning To identify the scope of the new system, ensure that the project is
feasible, and develop a schedule, resource plan, and budget for the
remainder of the project

Analysis To understand and document in detail the business needs and the
processing requirements of the new system

Design To design the solution system based on the requirements defined and
decisions made during analysis

Implementation To build, test, and install a reliable information system with trained users
ready to benefit as expected from use of the system

Support To keep the system running productively, both initially and during the
many years of the system’s lifetime

Figure 2-3

SDLC phases and

objectives

The SDLC approach that is farthest to the left on the predictive/adaptive scale—that is,
most predictive—is called a waterfall model. As shown in Figure 2-4, the waterfall model
assumes that the various phases of a project can be carried out and completed entirely
sequentially. A detailed plan is first developed, then the requirements are thoroughly speci-
fied, then the system is designed down to the last algorithm, then it is programmed, tested,
and installed. After a project drops over the waterfall into the next phase, there is no going

phases

related system
development activities,
which are grouped into
categories of project
planning, analysis,
design, implementation,
and support

waterfall model

an SDLC approach that
assumes the various
phases of a project can be
completed sequentially—
one phase leads (falls)
into the next phase

C6696_02_CTP.4c 1/28/08 8:21 AM Page 40

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 2 Approaches to System Development ♦ 41

back. In practice, the waterfall model requires rigid planning and final decision making at
each step of the development project. You can probably guess that a pure waterfall model
does not work very well. Developers, being human, have never been able to complete a phase
without making mistakes or leaving out important components that had to be added later.
Even though we do not use the waterfall model in its purest form anymore, it still provides a
valuable foundation to understand development. No matter what system is being developed,
we still need to include planning activities, analysis activities, design activities, and imple-
mentation activities. We just cannot do them in rigid waterfall steps.

Project planning
phase

Analysis phase

Design phase

Implementation
phase

Planning
specifications

frozen

Analysis
specifications

frozen

Design
specifications

frozen

Finished system delivered
exactly as specified

Figure 2-4

The waterfall model of

the SDLC

Moving to the right on the predictive/adaptive scale, we find modified waterfall models.
We still want to be predictive—that is, still develop a fairly thorough plan—but we recognize
that the phases of projects must overlap, influencing and depending on each other. Some
analysis must be done before the design can start, but during the design, we discover that we
need more detail in the requirements, or even that some of the requirements cannot be met
in the manner originally requested. Figure 2-5 illustrates how these activities can overlap.

Another reason phases overlap is efficiency. While the team members are analyzing needs,
they may be thinking about and designing various forms or reports. To help them understand
the needs of the users, they may want to design some of the final system. But when they do
early design, they will frequently throw some components away and save others for later
inclusion in the final system. In addition, many components of a computer system are inter-
dependent, which requires analysts to do both analysis and some design at the same time.

Then why not overlap all activities completely? The answer is dependency. Some activities
naturally depend on the results of prior work. Analysts cannot get very far into design with-
out a basic understanding of the nature of the problem. Thus, some analysis must happen
before design. It would also be inefficient for programmers to write program code before hav-
ing an overall design structure, because they would have to throw too much away.

Many companies’ information systems and many projects today are based on a modified
waterfall model. For projects that build well-understood applications, a modified waterfall
model is appropriate. Even systems based on an object-oriented approach can be built with
modified waterfall models.

C6696_02_CTP.4c 1/28/08 8:21 AM Page 41

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

THE NEWER ADAPTIVE APPROACHES TO THE SDLC

Remember that by an adaptive approach, we mean a development approach in which project
activities—including plans and models—are adjusted as the project progresses. Farther to the
right on the scale is a very popular approach called the spiral model. The spiral model con-
tains many adaptive elements, and it is generally considered to be the first adaptive approach
to system development. The life cycle is shown as a spiral, starting in the center and working
its way outward, over and over again, until the project is complete. This model looks very dif-
ferent from the static waterfall model and sets the tone for the project to be managed differ-
ently. Figure 2-6 shows the spiral model graphically.

You can implement a spiral approach in many different ways. The example in Figure 2-6
begins with an initial planning phase, as shown in the center of the figure. The purpose of
this phase is to gather just enough information to begin developing an initial prototype (dis-
cussed next). Planning phase activities include a feasibility study, a high-level user require-
ments survey, generation of implementation alternatives, and choice of an overall design and
implementation strategy.

After the initial planning is completed, work begins in earnest on the first prototype (the
blue ring in the figure). A prototype is a preliminary working model of a larger system. For
each prototype, the development process follows a sequential path through analysis, design,
construction, testing, integration with previous prototype components, and planning for the
next prototype. When planning for the next prototype is completed, the cycle of activities
begins again. Although the figure shows four prototypes, the spiral model approach can be
adapted for any number of prototypes.

A key concept of the spiral approach is the focus on risk. Although there are many choices
about what to focus on in each iteration, the spiral model recommends identifying risk factors
that must be studied and mitigated. The part of the system that appears to have the greatest
risk should be addressed in the first iteration. Sometimes the greatest risk is not one subsystem
or one set of system functions; rather, the greatest risk might be the technological feasibility of
new technology. If so, the first iteration might focus on a prototype that proves the technology
will work as planned. Then the second iteration might begin work on a prototype that
addresses risk associated with the system requirements or other issues. Another time, the great-
est risk might be user acceptance of change. So the first iteration might focus on producing a
prototype to show the users that their working lives will be enriched by the new system.

42 ♦ PART 1 THE SYSTEMS ANALYST

Additional project management tasksProject planning

Analysis Additional analysis activities

Additional design activitiesDesign

Implementation

=Completion of major components of project

Support

Figure 2-5

The overlap of system

development phases

spiral model

an adaptive SDLC
approach that cycles over
and over again through
development activities
until a project is
complete

prototype

a preliminary working
model showing some
aspect of a larger system

C6696_02_CTP.4c 1/28/08 8:21 AM Page 42

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 2-6, which shows the spiral model, uses the term iteration. In problem solving, itera-
tions are used to divide a very large, complex problem into smaller, more easily managed prob-
lems. Each small problem is solved in turn until the large problem is solved. System development
uses iteration for the same purpose. We take a large system and figure out some way to partition
it, or divide it into smaller components. Then we plan, analyze, design, and implement each
smaller component. Of course, we also add an integration step to combine the smaller compo-
nents into a comprehensive solution. This approach is frequently called an iterative approach to
the SDLC. Many of the more popular adaptive approaches today use iteration as a fundamental
element of the approach. Figure 2-7 illustrates how an iterative approach works.

Iteration means that work activities—analysis, design, implementation—are done once,
then again, and yet again; they are repeated. With each iteration, the developers refine the
result so that it is closer to what is ultimately needed. Iteration assumes that no one gets the
right result the first time. With an information system, you need to do some analysis and then
some design before you really know whether the system will work and accomplish its goals.
Then you do more analysis and design to make improvements. In this view, it is not realistic
to complete analysis (define all of the requirements) before starting work on the design.
Similarly, completing the design is very difficult unless you know how the implementation
will work (particularly with constantly changing technology). So you complete some design,
then some implementation, and the iteration process continues—more analysis, more
design, and more implementation. Naturally, the approach to or the amount of iteration
depends on the complexity of the project.

You can organize iterations in several ways. One approach is to define the key functions that
the system must include and then implement those key functions in the first iteration. After they
are completed, the next set of required, but less crucial, system functions are implemented.
Finally, optional system functions, those that would be “nice to have,” are implemented in the
last iteration. Another approach is to focus on one subsystem at a time. The first subsystem
implemented contains the core functions and data on which the other subsystems depend.
Then the next iteration includes an additional subsystem, and so on.

CHAPTER 2 Approaches to System Development ♦ 43

Construct fourth prototype

Construct third prototype

Construct second
prototype

Construct first
prototype

Plan first
iteration

Plan next
iteration

Test
and

integrate

Analyze
and

design

Figure 2-6

The spiral life

cycle model

iteration

system development
process in which work
activities—analysis,
design, implementation—
are done once, then
again, and yet again on
different system
components; they are
repeated until the system
is closer to what is
ultimately needed

C6696_02_CTP.4c 1/28/08 8:21 AM Page 43

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Sometimes iterations are defined according to the complexity or risk of certain compo-
nents. Often, the most complex or risky parts of the system are addressed first because plans
can be changed earlier in the project without huge consequences. Other times, some of the
simplest parts are handled first to get as much of the system finished as quickly as possible.
How the iterations are defined depends on many factors and might be different with every
project you encounter. Most adaptive approaches suggest tackling the toughest problems with
the highest risk first.

44 ♦ PART 1 THE SYSTEMS ANALYST

Some analysis

Some design

Some
implementation

More analysis

More design

More
implementation

Even more
analysis

Even more
design

Even more
implementation

Figure 2-7

Iteration of system

development activities

Address the aspects of the project that pose the greatest risk in early
project iterations.

BEST PRACTICE

A related approach, which is a type of iterative approach, is called incremental
development. With this approach, you complete parts of the system in a few iterations and
then put the system into operation for users. This approach gets part of the system into users’
hands as early as possible so they can benefit from it. Then you complete a few more itera-
tions to develop another part of the system, integrate it with the first part, and again put it

incremental

development

a development approach
that completes parts of
a system in several
iterations and then
puts them into operation
for users

C6696_02_CTP.4c 1/28/08 8:21 AM Page 44

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 2 Approaches to System Development ♦ 45

into operation. Finally, you complete the last part and integrate it with the rest. Today, much
of system development uses varying degrees of iteration. The object-oriented approach is
always described as highly iterative.

ACTIVITIES OF EACH SDLC “PHASE”

We described each SDLC phase generally and demonstrated how the activities of each phase
are often carried out iteratively. Next, we discuss the activities of the SDLC phases—project
planning, analysis, design, implementation, and support—in more detail.

PROJECT PLANNING

The primary objectives of project planning are to identify the scope of the new system, ensure
that the project is feasible, and develop a schedule, resource plan, and budget for the remain-
der of the project. We identify five activities in project planning:

• Define the problem.
• Produce the project schedule.
• Confirm project feasibility.
• Staff the project.
• Launch the project.

The most important activity of project planning is to define precisely the business prob-
lem and the scope of the required solution. At this stage in the project, you will not know all
of the functions or processes that will be included within the system. However, it is important
to identify the major uses of the new system and the business problems that the new system
must address.

The two activities of producing the project schedule and staffing the project are clearly
closely related. A detailed project schedule listing tasks, activities, and required staff is devel-
oped. Fortunately, some excellent methods and tools are available to provide support for this
activity, which are explained in the next chapter. Large projects require elaborate schedules
with specific, identifiable milestones and control procedures, and a critical part of this phase
is identifying the necessary human resources and planning to acquire them at the required
times during the project.

The next major element is to confirm that the project is feasible. Many projects are initi-
ated as part of an enterprise-wide strategic plan. Within the overall plan, each project must
also stand on its own merit. Feasibility analysis investigates economic, organizational, techni-
cal, resource, and schedule feasibility. Each of these types of feasibility analysis is explained in
more detail in the next chapter.

Finally, the total plan for the project is reviewed with upper management, and the project
is initiated. Initiation of the project entails allocating funds, assigning project members, and
obtaining other necessary resources such as office and development tools. An official
announcement often communicates the project launch.

ANALYSIS ACTIVITIES

The primary objective of the analysis activities is to understand and document the business
needs and the processing requirements of the new system. Analysis is essentially a discovery
process. The key words that drive the activities during analysis are discovery and understanding.
Six primary activities are considered part of this phase:

• Gather information.
• Define system requirements.
• Build prototypes for discovery of requirements.

project planning

the initial activities of the
SDLC, whose objective is
to identify the scope of
the new system and plan
the project

analysis activities

the activities of the SDLC
whose objective is to
understand the user
needs and develop
requirements

C6696_02_CTP.4c 1/28/08 8:21 AM Page 45

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

• Prioritize requirements.
• Generate and evaluate alternatives.
• Review recommendations with management.

Gathering information is a fundamental part of analysis. During this activity, the systems
analysts meet with users to learn as much as possible about the problem domain—the area
of the user’s business that needs an information system solution and that is being researched.
The analysts obtain information about the problem domain by observing the users as they
do their work; by interviewing and asking questions of the users; by reading existing docu-
ments about procedures, business rules, and job responsibilities; and by reviewing existing
automated systems. In addition to gathering information from the users of the system, the
analysts should consult other interested parties. They may include middle management,
senior executives, and at times even external customers. Gathering information is the core
activity for discovery and understanding.

But it is not sufficient simply to gather information. Analysts must review, analyze, and
structure the information obtained so that they can develop an overall understanding of the
new system’s requirements. This activity is called defining the system requirements, and the
primary technique that is used is drawing diagrams to express and model the new system’s
processing requirements.

As we discussed earlier, one important activity that can help an analyst gather and under-
stand the requirements is to build a prototype of pieces of the new system. Then users can
review them. Users often find it easier to express their needs by reviewing working prototypes of
alternatives. “A picture is worth a thousand words” is as true in defining system requirements as
it is in general, and a prototype is the “picture” that can elicit valuable insights from end users.

As the processing requirements are uncovered, each must be prioritized. There are always
more requests for automation support than there is budget or resources to provide it. Thus,
the most important needs must be identified and given priority for development. As the ana-
lysts prioritize the requirements, they also research various alternatives for implementing the
system. Implementation alternatives include building the system in-house, buying a software
package, or contracting to a third party to develop and install a new system.

Finally, the team selects and recommends an alternative to upper management. The rec-
ommendation recaps the results of the analysis phase activities, and together the team makes
firm decisions about an alternative.

DESIGN ACTIVITIES

The objective of the design activities is to design the solution system based on the require-
ments defined and decisions made during analysis. High-level design consists of developing
an architectural structure for the software components, databases, user interface, and operat-
ing environment. Low-level design entails developing the detailed algorithms and data struc-
tures that are required for software development. Seven major activities must be completed
during the design phase:

• Design and integrate the network.
• Design the application architecture.
• Design the user interfaces.
• Design the system interfaces.
• Design and integrate the database.
• Prototype for design details.
• Design and integrate the system controls.

Design activities are closely interrelated and generally are all done with substantial overlap.
The network consists of the computer equipment, network, and operating system plat-

forms that will house the new information system. Many of today’s new systems are being
installed in network and client/server environments. Design includes configuring these

46 ♦ PART 1 THE SYSTEMS ANALYST

problem domain

the area of the user’s
business for which a
system is being
developed

design activities

the activities of the SDLC
during which the system
and programs are
designed

C6696_02_CTP.4c 1/28/08 8:21 AM Page 46

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 2 Approaches to System Development ♦ 47

network environments. Sometimes the design is already complete based on an existing oper-
ating environment and strategic IT plans. At other times, substantial work must be done to
develop an operating environment to provide the level of service the new system requires.

The application is the portion of the new information system that satisfies user needs
with regard to the problem domain. In other words, the application provides the processing
functions for the business requirements. Designing the appropriate computer programs for
the application consists of using the diagrams showing the system’s requirements that were
developed during analysis.

The user interface is a critical component of any new system. During the analysis activi-
ties, prototyping may have defined some elements of the user interface. During design, these
elements are all combined to yield an integrated user interface consisting of forms, reports,
screens, and sequences of interactions.

Most new information systems must also communicate with other, existing systems, so
the design of the method and details of these communication links must also be precisely
defined. These are called system interfaces.

Databases and information files are an integral part of information systems for business.
The diagrams of the new system’s data storage requirements, developed during analysis, are
used to design the database that will support the application portion of the new system. At
times, the database for the specific system must also be integrated with information databases
of other systems already in use.

During design, it is often necessary to verify the correctness or workability of the proposed
design. Again, one important verification method is to build working prototypes of parts of
the system to ensure that it will function correctly in the operating environment. In addition,
analysts can test and verify alternative design strategies by building prototypes of the new sys-
tem. Sometimes, if the prototypes are built correctly, they can be saved and used as part of the
final system.

Finally, every system must have sufficient controls to protect the integrity of the database
and the application program. Because of the highly competitive nature of the global econ-
omy and the risks associated with technology and security, every new system must include
adequate mechanisms to protect the information and assets of the organization. These con-
trols should be integrated into the new system while it is being designed, not after it has been
constructed.

IMPLEMENTATION ACTIVITIES

Implementation activities result in the final system being built, tested, and installed. The
objective is not only to produce a reliable, fully functional information system, but also to
ensure that the users are all trained and that the organization is ready to benefit as expected
from use of the system. All the prior activities must come together to culminate in an opera-
tional system. Five major activities make up the implementation phase:

• Construct software components.
• Verify and test.
• Convert data.
• Train users and document the system.
• Install the system.

The software can be constructed through various techniques. The conventional approach
is to write computer programs using a language such as Visual Basic, C#, or Java. Other tech-
niques, based on development tools and existing components, are becoming popular today.
The software must also be tested, and the first kind of testing verifies that the system actually
works. Additional testing is also required to make sure that the new system meets the needs
of the system’s users.

implementation

activities

the activities of the SDLC
during which the new
system is programmed
and installed

application

the portion of the new
information system that
satisfies the user’s needs
in the problem domain

C6696_02_CTP.4c 1/28/08 8:21 AM Page 47

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

During implementation, the analysts may also build additional prototypes. These proto-
types are used to verify different implementation strategies and to ensure that the system can
handle the volumes of transactions that will exist after it is placed in production.

Almost every new system replaces an existing system, either a completely manual system
or an earlier automated system. Normally, the existing information is important and needs to
be converted to the format required in the new system. The activity to convert the data often
becomes a small project of its own, with analysis, design, and implementation of procedures
to clean and convert the data to the new system.

No system is successful unless the users understand it and can use it appropriately. A criti-
cal activity during implementation is to train the users on the new system so that they will be
productive as soon as possible.

Finally, the actual changeover is the culminating activity. The new equipment must be in
place and functioning, the new computer programs must be installed and working, and the
database must be populated and available. The individual pieces of the new system must be
up and running before the system can be used for its intended purpose. In today’s widely dis-
persed organizations, the system must frequently be installed in many locations and inte-
grated throughout the organization.

SUPPORT ACTIVITIES

The objective of the support activities is to keep the system running productively during the
years following its initial installation. The support activities begin only after the new system
has been installed and put into production, and it lasts throughout the productive life of the
system. The expectation for most business systems is that the system will last for years. During
support, upgrades or enhancements may be carried out to expand the system’s capabilities,
and they will require their own development projects. Three major activities occur during
support:

• Maintain the system.
• Enhance the system.
• Support the users.

Every system, especially a new one, contains components that do not function correctly.
Software development is complex and difficult, so it is never error-free. Of course, the objec-
tive of a well-organized and carefully executed project is to deliver a system that is robust and
complete and that gives correct results. However, because of the complexity of software and
the impossibility of testing every possible combination of processing requirements, there will
always be conditions that have not been fully tested and thus are subject to errors. In addi-
tion, business needs and user requirements change over time. Key tasks in maintaining the
system include both fixing the errors (also known as fixing bugs) and making minor adjust-
ments to processing requirements. Usually a system support team is assigned responsibility
for maintaining the system.

Most newly hired programmer analysts begin their careers working on system mainte-
nance projects. Tasks typically completed include changing the information provided in a
report, adding an attribute to a table in a database, or changing the design of Windows or
browser forms. These changes are requested and approved before the work is assigned, so a
change request approval process is always part of the system support phase.

During the productive life of a system, it is also common to make major modifications. At
times, government regulations require new data to be maintained or information to be pro-
vided. Also, changes in the business environment—new market opportunities, new competi-
tion, or new system infrastructure—necessitate major changes to the system. To implement
these major system enhancements, the company must approve and initiate an upgrade devel-
opment project. An upgrade project often results in a new version of the system. During your
career, you may have the opportunity to participate in several upgrade projects.

48 ♦ PART 1 THE SYSTEMS ANALYST

support activities

the activities of the SDLC
whose objective is to keep
the system running
productively after it is
installed

C6696_02_CTP.4c 1/28/08 8:21 AM Page 48

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 2 Approaches to System Development ♦ 49

The other major activity during support is to provide assistance to the system users. A help
desk, consisting of knowledgeable technicians, is a popular method to answer users’ ques-
tions quickly and help increase their productivity. Training new users and maintaining cur-
rent documentation are important elements of this activity. As a new systems analyst, you
may have the opportunity to conduct training or to staff the help desk to gain experience with
user problems and needs. Many newly hired programmer analysts start their careers working
at a help desk for part of their workweek.

METHODOLOGIES, MODELS, TOOLS, AND TECHNIQUES

Systems analysts have a variety of aids at their disposal to help them complete activities and
tasks in the SDLC. Among them are methodologies, models, tools, and techniques. The fol-
lowing sections discuss each of these aids.

METHODOLOGIES

A system development methodology provides guidelines to follow for completing every
activity in the systems development life cycle, including specific models, tools, and tech-
niques (see Figure 2-8). Some methodologies are homegrown, developed by systems profes-
sionals in the company based on their experience. Some methodologies are purchased from
consulting firms or other vendors.

Techniques Models

Tools

Methodology

Figure 2-8

Relationships among

components of a

methodology

Some methodologies (whether homegrown or purchased) contain written documentation
that can fill a bookcase. The documentation defines everything the developers might need to
produce at any point in the project, including how documentation should look and what
reports to management should contain. Other methodologies are much more informal—one
document will contain general descriptions of what should be done. Sometimes the method-
ology that a company adopts is “just follow some sort of methodology,” but such freedom of
choice is becoming rare. Most people want the methodology to be flexible, though, so that it
can be adapted to many different types of projects and systems. The methodology used by the
organization determines how prescriptive or adaptive the approach to a system development
project should be.

Because a methodology contains instructions about how to use models, tools, and tech-
niques, you must understand what models, tools, and techniques are.

help desk

the availability of support
staff to assist users with
any technical or
processing problem
associated with an
information system

system

development

methodology

comprehensive guidelines
to follow for completing
every activity in the systems
development life cycle,
including specific models,
tools, and techniques

C6696_02_CTP.4c 1/28/08 8:21 AM Page 49

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

MODELS

Anytime people need to record or communicate information, in any context, it is very useful
to create a model—and a model in information systems development has the same purpose as
any other model. A model is a representation of an important aspect of the real world.
Sometimes the term abstraction is used because we abstract (separate out) an aspect of particu-
lar importance to us. Consider a model of an airplane. To talk about the aerodynamics of the
airplane, it is useful to have a small model that shows the plane’s overall shape in three dimen-
sions. Sometimes a drawing showing the cross-sectional details of the wing of the plane is what
is needed. In other cases, a list of mathematical characteristics of the plane might be necessary
to understand how the plane will behave. All of these are models of the same plane.

Some models are physically similar to the real product. Some models are graphical repre-
sentations of important details. Some models are abstract mathematical notations. Each
emphasizes a different type of information. In airplane design, aerospace engineers use lots
of different models. Learning to be an aerospace engineer involves learning how to create and
use all of the models. It is the same for an information system developer, although models
for information systems are not yet as standardized or precise as aerospace models. But sys-
tem developers are making progress. First, it is important to recognize that the field is very
young, and many senior analysts were self-taught. More importantly, though, an information
system is much less tangible than an airplane—you can’t really see, hold, or touch it.
Therefore, the models of the information system can seem much less tangible, too.

What sort of models do developers make of aspects of an information system? Models
used in system development include representations of inputs, outputs, processes, data,
objects, object interactions, locations, networks, and devices, among other things. Most of the
models are graphical models, which are drawn representations that employ agreed-upon sym-
bols and conventions. These are often called diagrams and charts. You have probably drawn
models showing program logic using flowcharts. Much of this text describes how to read and
create a variety of models that represent an information system.

Another kind of model important to develop and use is a project-planning model, such
as Gantt charts, which are shown in Chapter 3. These models represent the system develop-
ment project itself, highlighting its tasks and task completion dates. Another model related to
project management is a chart showing all of the people assigned to the project. Figure 2-9
lists some models used in system development.

50 ♦ PART 1 THE SYSTEMS ANALYST

Some models of system components

Flowchart
Data flow diagram (DFD)
Entity-relationship diagram (ERD)
Structure chart
Use case diagram
Class diagram
Sequence diagram

Some models used to manage the development process

Gantt chart
Organizational hierarchy chart
Financial analysis models – NPV, ROI

Figure 2-9

Some models used in

system development

model

a representation of an
important aspect of the
real world

C6696_02_CTP.4c 1/28/08 8:21 AM Page 50

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 2 Approaches to System Development ♦ 51

TOOLS

A tool in the context of system development is software support that helps create models or
other components required in the project. Tools might be simple drawing programs for creat-
ing diagrams. They might include a database application that stores information about the
project, such as data flow definitions or written descriptions of processes. A project manage-
ment software tool, such as Microsoft Project (described in Chapter 3), is another example of
a tool used to create models. The project management tool creates a model of the project
tasks and task dependencies.

Tools have been specifically designed to help system developers. Programmers should be
familiar with integrated development environments (IDEs) that include many tools to help
with programming tasks—smart editors, context-sensitive help, and debugging tools. Some
tools can generate program code for the developer. Some tools reverse-engineer old pro-
grams—generating a model from the code so that the developer can determine what the pro-
gram does, in case the documentation is missing (or was never done). Visual modeling tools
are available to systems analysts to help them create and verify important system models,
often generating program code. Visual modeling tools are described in more detail later in
this chapter. Figure 2-10 lists types of tools used in system development.

Project management application
Drawing/graphics application
Word processor/text editor
Visual modeling tool
Integrated development environment (IDE)
Database management application
Reverse-engineering tool
Code generator tool

Figure 2-10

Some tools used in

system development

TECHNIQUES

A technique in system development is a collection of guidelines that help an analyst com-
plete a system development activity or task. A technique often includes step-by-step instruc-
tions for creating a model, or it might include more general advice for collecting information
from system users. Some examples include data-modeling techniques, software-testing tech-
niques, user-interviewing techniques, and relational database design techniques.

Sometimes a technique applies to an entire life cycle phase and helps you create several
models and other documents. The modern structured analysis technique (discussed later) is
an example. Even the strategic system planning techniques discussed in Chapter 1 and project
management techniques discussed in Chapter 3 fit this definition. Figure 2-11 lists some tech-
niques commonly used in system development.

tool

software support that
helps create models or
other components
required in the project

integrated

development

environments

(IDE)

tools that help program-
mers with a variety of
programming tasks

visual modeling

tools

tools that help the analyst
create and verify
important system
models, often generating
program code

technique

a collection of guidelines
that help an analyst
complete a system
development activity
or task

C6696_02_CTP.4c 1/28/08 8:21 AM Page 51

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

How do all these components fit together? A methodology includes a collection of
techniques that are used to complete activities within each phase of the systems development
life cycle. The activities include completion of a variety of models as well as other documents
and deliverables. Like any other professionals, system developers use software tools to help
them complete their activities.

As part of her responsibility as project manager for the new customer support system for
Rocky Mountain Outfitters, Barbara Halifax has to make decisions about the methodology to
use to develop the system (see Barbara’s memo).

52 ♦ PART 1 THE SYSTEMS ANALYST

Strategic planning techniques
Project management techniques
User interviewing techniques
Data-modeling techniques
Relational database design techniques
Structured analysis technique
Structured design technique
Structured programming technique
Software-testing techniques
Object-oriented analysis and design techniques

Figure 2-11

Some techniques used in

system development

C6696_02_CTP.4c 1/28/08 8:21 AM Page 52

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 2 Approaches to System Development ♦ 53

TWO APPROACHES TO SYSTEM DEVELOPMENT

System development is done in many different ways. This diversity can confuse new employ-
ees when they go to work as system developers. Sometimes it seems every company that
develops information systems has its own methodology. Sometimes different development
groups within the same company use different methodologies, and each person in the com-
pany might have his own way of developing systems.

Yet, as you have already seen in the opening case, there are many common concepts. In
virtually all development groups, some variation of the systems development life cycle is
used, with phases for project planning, analysis, design, implementation, and support. In
addition, virtually every development group uses models, tools, and techniques that make up
an overall system development methodology.

All system developers should be familiar with two very general approaches to system
development, because they form the basis of virtually all methodologies: the traditional
approach and the object-oriented approach. This section reviews the major characteristics of both
approaches and provides a bit of history.

THE TRADITIONAL APPROACH

The traditional approach includes many variations based on techniques used to develop
information systems with structured and modular programming. This approach is often
referred to as structured system development. A refinement to structured development, called
information engineering (IE), is a popular variation.

Structured System Development

Structured analysis, structured design, and structured programming are the three techniques
that make up the structured approach. Sometimes these techniques are collectively referred
to as the structured analysis and design technique (SADT). The structured programming tech-
nique, developed in the 1960s, was the first attempt to provide guidelines to improve the
quality of computer programs. You certainly learned the basic principles of structured pro-
gramming in your first programming course. The structured design technique was developed
in the 1970s to make it possible to combine separate programs into more complex informa-
tion systems. The structured analysis technique evolved in the early 1980s to help clarify
requirements for a computer system before developers designed the programs.

Structured Programming High-quality programs not only produce the correct outputs
each time the program runs, they make it easy for other programmers to read and modify the
program later. And programs need to be modified all the time. A structured program is one
that has one beginning and one ending, and each step in the program execution consists of
one of three programming constructs:

• A sequence of program statements
• A decision where one set of statements or another set of statements executes
• A repetition of a set of statements

Figure 2-12 shows these three structured programming constructs.

structured

approach

system development
using structured
analysis, structured
design, and structured
programming techniques

structured

program

a program or program
module that has one
beginning and one
ending, and for which
each step in the program
execution consists of
sequence, decision, or
repetition constructs

C6696_02_CTP.4c 1/28/08 8:21 AM Page 53

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Module 1
begin
do 1
do 2
do 3

return control to Boss

Module 2
begin
do x
do y
do z

return control to Boss

Module 3
begin

if x then y
else z
do abc

return control to Boss

Boss or control module
start

call module 1
call module 2
call module 3

stop

Figure 2-13

Top-down, or modular,

programming

Stop

Sequence Decision Repetition

No

Yes Yes

No

Stand up

Walk to the

window

Turn right Wear sunscreen

Look outside

Take an umbrella

Is it raining?

Take a step

Are you

at your

destination?

Figure 2-12

Three structured

programming constructs

Before these rules were developed, programmers made up programming techniques as they
went along, which resulted in some very convoluted programs. Most programmers were happy if
the programs ran at all, and they were even happier if the programs produced the right outputs.
But following these simple rules made it much easier to read and interpret what a program does.

Another concept related to structured programming is top-down programming. Top-down
programming divides more complex programs into a hierarchy of program modules (see
Figure 2-13). One module at the top of the hierarchy controls program execution by “calling”
lower-level modules as required. Sometimes the modules are part of the same program. For
example, in COBOL, one main paragraph calls another paragraph using the Perform keyword.
In Visual Basic, a statement in an event procedure can call a general procedure. The program-
mer writes each program module (paragraph or procedure) using the rules of structured pro-
gramming (one beginning, one end, and sequence, decision, and repetition constructs).

54 ♦ PART 1 THE SYSTEMS ANALYST

top-down

programming

dividing more complex
programs into a
hierarchy of program
modules

C6696_02_CTP.4c 1/28/08 8:21 AM Page 54

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 2 Approaches to System Development ♦ 55

Sometimes separate programs are produced that work together as one “system.” Each of
these programs follows top-down programming and structured programming rules, but the
programs themselves are organized into a hierarchy, as with top-down programming. One
program calls other programs. When the hierarchy involves multiple programs, such an
arrangement is sometimes called modular programming.

Structured Design As information systems continued to become increasingly complex
through the 1970s, each system involved many different functions. Each function performed
by the system might be made up of dozens of separate programs. The structured design tech-
nique was developed to provide some guidelines for deciding what the set of programs
should be, what each program should accomplish, and how the programs should be orga-
nized into a hierarchy. The modules and the arrangement of modules are shown graphically
using a model called a structure chart (see Figure 2-14).

Calculate amounts

Get employee
pay rates

Payroll System

Calculate pay
amounts

Output payrollEnter time cards

Rates
Employee

pay/tax rates

Payroll
amounts

Payroll
information

Validated
time card

Payroll
amounts

Validated
time card

information

Figure 2-14

A structure chart created

using the structured

design technique

Two main principles of structured design are that program modules should be designed
so they are (1) loosely coupled and (2) highly cohesive. Loosely coupled means each module is
as independent of the other modules as possible, which allows each module to be designed
and later modified without interfering with the performance of the other modules. Highly
cohesive means that each module accomplishes one clear task. That way, it is easier to under-
stand what each module does and to ensure that if changes to the module are required, none
will accidentally affect other modules.

The structured design technique defines different degrees of coupling and cohesion and
provides a way of evaluating the quality of the design before the programs are actually writ-
ten. As with structured programming, quality is defined in terms of how easily the design can
be understood and modified later when the need arises.

structured design

a technique providing
guidelines for deciding
what the set of programs
should be, what each
program should
accomplish, and how the
programs should be
organized into a
hierarchy

structure chart

a graphical model
showing the hierarchy of
program modules
produced by the
structured design
technique

C6696_02_CTP.4c 1/28/08 8:21 AM Page 55

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Offered course Enroll
student

2

Schedule
course

1

Course enrollment

Student
Produce
class list

3

Student

Schedule

Enrollment
request

Class list

Offered courseAcademic
department

Faculty
member

Structured design assumes the designer knows what the system needs to do—what the
main system functions are, what the required data are, and what the needed outputs are.
Designing the system is obviously much more than designing the organization of the pro-
gram modules. Therefore, it is important to realize that the structured design technique helps
the designer complete part of but not the entire design life cycle phase.

By the 1980s, file and database design techniques were developed to be used along with
structured design. Newer versions of structured design assume database management systems
are used in the system, and program modules are designed to interact with the database. In
addition, because more nontechnical people were becoming involved with information sys-
tems, user-interface design techniques were developed. For example, menus in an interactive
system determine which program in the hierarchy gets called. Therefore, a key aspect of user-
interface design is done in conjunction with structured design.

Modern Structured Analysis Because the structured design technique requires the
designer to know what the system should do, techniques for defining system requirements were
developed. System requirements define what the system must do in great detail, but without
committing to one specific technology. By deferring decisions about technology, the developers
can sharply focus their efforts on what is needed, not on how to do it. If these requirements are
not fully and clearly worked out in advance, the designers cannot possibly know what to design.

The structured analysis technique helps the developer define what the system needs to
do (the processing requirements), what data the system needs to store and use (data require-
ments), what inputs and outputs are needed, and how the functions work together as a whole
to accomplish tasks. The key graphical model of the system requirements used with structured
analysis is called the data flow diagram (DFD), and it shows inputs, processes, storage, and
outputs, and the way they function together (see Figure 2-15).

Figure 2-15

A data flow diagram

(DFD) created using the

structured analysis

technique

56 ♦ PART 1 THE SYSTEMS ANALYST

structured

analysis

a technique used to
define what processing
the system needs to do,
what data it needs to
store and use, and what
inputs and outputs are
needed

data flow diagram

(DFD)

a structured analysis
model showing the
inputs, processes,
storage, and outputs of a
system

C6696_02_CTP.4c 1/28/08 8:21 AM Page 56

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 2 Approaches to System Development ♦ 57

Figure 2-16

An entity-relationship

diagram (ERD) created

using the structured

analysis technique

Customer

Cust number*
Name

Bill address
Home phone
Office phone

Order

Order ID*
Order date

Amount

Order Item

Item ID*
Quantity

Price

Entity-relationship diagram

Modern
structured analysis

Events
Data flow diagrams

Entity-relationship diagram

Structured design

Structure charts
(one for each event)

that define program modules
based on the data flow diagrams

Structured programming

Program each module using
structured programming

constructs

entity-relationship

diagram (ERD)

a structured analysis and
information engineering
model of the data needed
by a system

The most recent variation of structured analysis defines systems processing requirements
by identifying all of the events that will cause the system to react in some way. For example,
in an order-entry system, if a customer orders an item, the system must process a new order
(a major system activity). Each event leads to a different system activity. The analyst takes each
of these activities and creates a data flow diagram showing the processing details, including
inputs and outputs.

A model of the needed data is also created based on the types of things about which the
system needs to store information (data entities). For example, to process a new order, the sys-
tem needs to know about the customer, the items wanted, and the details about the order. This
model is called an entity-relationship diagram (ERD). The data entities from the entity-
relationship diagram correspond to the data storage shown on data flow diagrams. Figure 2-16
shows an example of an entity-relationship diagram. Figure 2-17 illustrates the sequence fol-
lowed when developing a system using structured analysis, structured design, and structured
programming.

Figure 2-17

How structured analysis

leads to structured

design and to structured

programming

C6696_02_CTP.4c 1/28/08 8:21 AM Page 57

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Weaknesses of the Structured Approach Because the structured approach to system
development evolved over time, many variations can be found in practice. Some people are
still following the original versions of structured analysis and structured design they learned
years ago, ignoring many improvements. Others picked up bits and pieces of the techniques
on the job and never formally studied the details.

Many people have considered the structured approach to be weak because the techniques
address only some, but not all, of the activities of analysis and design. Critics desired a more
comprehensive and rigorous set of techniques to make system development more like an
engineering discipline and less like an art. In addition, many people thought the transition
from the data flow diagram (in structured analysis) to the structure chart (in structured
design) did not work well in practice. Others thought that data modeling and the entity-
relationship diagram were much more important than modeling processes with the data flow
diagram. The structured approach, despite its inclusion of data modeling and database
design, still made processes rather than data the central focus of the system.

Finally, many people thought that to ensure that systems are comprehensive and coordi-
nated, the development of a system should begin only after the organization completed an
overall strategic system planning effort. Therefore, they wanted the approach to development
to include a strategic system planning technique, both to determine which systems should be
built and to provide some initial requirements models that ensured all systems would
be compatible. Because of these goals, some developers turned to a refinement of structured
development: information engineering.

Information Engineering

Information engineering is a refinement to structured development that begins with overall
strategic planning to define all of the information systems that the organization needs to con-
duct its business (the application architecture plan). The plan also includes a definition of
the business functions and activities that the systems need to support, the data entities about
which the systems need to store information, and the technological infrastructure that the
organization plans to use to support the information systems.

Each new system project begins by using the defined activities and data entities created during
strategic systems planning. Then the activities and data are refined as the project progresses. At each
step, the project team creates models of the processes, the data, and the ways they are integrated.

The type of data needed to conduct the business changes very little over time, but the
processes followed to collect data change frequently. Therefore, the information engineering
approach focuses much more on data than the structured approach. Just as the structured
approach includes data requirements, information engineering includes processes, too. The pro-
cessing model of information engineering—the process dependency diagram—is similar to a
data flow diagram, but it focuses more on which processes are dependent on other processes and
less on data inputs and outputs. Events trigger the processes, as with modern structured analysis.

A final major difference with information engineering is the more complete life cycle sup-
port it provides through the use of an integrated tool. The tool helps automate as much of
the work as possible. It also forces the analyst to follow the information engineering approach
faithfully, sometimes at the expense of flexibility.

Information engineering is mainly credited to James Martin, who wrote several books on
information engineering and developed tools to support it. By the late 1980s, information
engineering was very popular for large, mainframe systems. But because they lacked flexibil-
ity, the tools that supported information engineering were less useful with smaller desktop
applications and client/server applications. By the 1990s, fewer companies were using infor-
mation engineering exclusively, although many of the concepts and techniques continue to
be used, particularly the approach to planning and the emphasis on data modeling.

The information engineering approach refines many of the concepts of the structured
approach into a rigorous and comprehensive methodology. Both approaches define informa-
tion systems requirements, design information systems, and construct information systems

58 ♦ PART 1 THE SYSTEMS ANALYST

information

engineering

a traditional system
development
methodology thought to
be more rigorous and
complete than the
structured approach,
because of its focus on
strategic planning, data
modeling, and
automated tools

C6696_02_CTP.4c 1/28/08 8:21 AM Page 58

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 2 Approaches to System Development ♦ 59

by looking at processes, data, and the interaction of the two. This text merges key concepts
from these two approaches into one, which we will refer to hereafter as the traditional
approach. The traditional approach, in one version or another, is still widely used for informa-
tion system development, although many information systems projects are now using object-
oriented technology—which requires a completely different approach.

THE OBJECT-ORIENTED APPROACH

An entirely different approach to information systems, the object-oriented approach, views
an information system as a collection of interacting objects that work together to accomplish
tasks (see Figure 2-18). Conceptually, there are no processes or programs; there are no data
entities or files. The system consists of objects. An object is a thing in the computer system
that is capable of responding to messages. This radically different view of a computer sys-
tem requires a different approach to systems analysis, systems design, and programming.

The object-oriented approach began with the development of the Simula programming
language in Norway in the 1960s. Simula was used to create computer simulations involving
“objects” such as ships, buoys, and tides in fjords. It is very difficult to write procedural pro-
grams that simulate ship movement, but a new way of programming simplified the problem.
In the 1970s, the Smalltalk language was developed to solve the problem of creating graphical
user interfaces (GUIs) that involved “objects” such as pull-down menus, buttons, check boxes,
and dialog boxes. More recent object-oriented languages include C++, Java, and C#. These lan-
guages focus on writing definitions of the types of objects needed in a system, and as a result,
all parts of a system can be thought of as objects, not just the graphical user interface.

“Create an order for
Susan Franks for an
executive desk and a

very comfortable chair”

“Executive desk
#19874, add

yourself to this
order”

“OK, here are the
details of new
order 134....”

“Very comfortable
chair # 76532, add

yourself to this
order”

“Customer Susan
Franks, add yourself
as the customer for

this order”

“OK, will do”

A product object:
executive desk

serial number 19874

A new order object
order number 134

dated 4/23/10

A customer object: Susan
Franks,

customer number 386,
Seattle, WA

“OK, will do”

A product object: very
comfortable chair

serial number 76532

“OK, will do”

Figure 2-18

The object-oriented

approach to systems

(read clockwise starting

with user)

object-oriented

approach

an approach to system
development that views
an information system as
a collection of interacting
objects that work
together to
accomplish tasks

object

a thing in the computer
system that can respond
to messages

C6696_02_CTP.4c 1/28/08 8:21 AM Page 59

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Because the object-oriented approach views information systems as collections of inter-
acting objects, object-oriented analysis (OOA) defines all of the types of objects that do the
work in the system and shows what user interactions, called use cases, are required to com-
plete tasks. Object-oriented design (OOD) defines all of the additional types of objects nec-
essary to communicate with people and devices in the system, shows how the objects interact
to complete tasks, and refines the definition of each type of object so it can be implemented
with a specific language or environment. Object-oriented programming (OOP) consists of
writing statements in a programming language to define what each type of object does.

An object is a type of thing—a customer or an employee, as well as a button or a menu.
Identifying types of objects means classifying things. Some things, such as customers, exist
both outside the system (the real customer) and separately inside the system (a computer rep-
resentation of a customer). A classification or “class” represents a collection of similar objects;
therefore, object-oriented development uses a class diagram to show all of the classes of
objects in the system (see Figure 2-19). For every class, there may be more specialized sub-
classes. For example, a savings account and a checking account are two special types of
accounts (two subclasses of the class Account). Similarly, a pull-down menu and a pop-up
menu are two special types of menus. Subclasses exhibit or “inherit” characteristics of the
class above them.

The object-oriented approach yields several key benefits, among them naturalness and
reuse. The approach is natural—or intuitive—for people, because they tend to think about
the world in terms of tangible objects. It is less natural to think about complex procedures
found in procedural programming languages. Also, because the object-oriented approach
involves classes of objects, and many systems in the organization use the same objects, these
classes can be used over and over again whenever they are needed. For example, almost all
systems use menus, dialog boxes, windows, and buttons, but many systems within the same
company also use customer, product, and invoice classes that can be reused. There is less need
to “reinvent the wheel” to create an object.

Clearly, the object-oriented approach is quite different from the traditional approach. But
in other ways, quite a few traditional concepts are simply repackaged in the object-oriented
approach. For this reason, some people find the OO approach difficult to understand at first.
Parts 2 and 3 of this book discuss the similarities and differences in detail to help clarify each
approach’s strengths.

60 ♦ PART 1 THE SYSTEMS ANALYST

name
address
phone

Customer

accountNumber
balance
dateOpened

Account

makeDeposit()
makeWithdrawal()

0..*1

interestRate

SavingsAccount

checkStyle
minimumBalance

CheckingAccount

calculateInterest()

Figure 2-19

A class diagram created

during object-oriented

development

object-oriented

analysis (OOA)

defining all of the types of
objects that do the work
in the system and
showing what use cases
are required to
complete tasks

object-oriented

design (OOD)

defining all of the types of
objects necessary to
communicate with people
and devices in the
system, showing how
objects interact to
complete tasks, and
refining the definition of
each type of object so it
can be implemented with
a specific language or
environment

object-oriented

programming

(OOP)

writing statements in a
programming language
to define what each type
of object does, including
the messages that the
objects send to
each other

class diagram

a graphical model used in
the object-oriented
approach to show classes
of objects in the system

C6696_02_CTP.4c 1/28/08 8:21 AM Page 60

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 2 Approaches to System Development ♦ 61

Many systems being developed today combine both traditional and object-oriented technol-
ogy. Some integrated development environments (IDEs) also combine traditional and object-
oriented technology in the same tool—for example, object-oriented programming is used for the
user interface, and procedural programming for the rest. Many system projects are also exclusively
traditional in analysis and design, and others are exclusively object-oriented, even within the same
information systems department. These are some of the reasons that it is important to cover both
traditional approaches and newer object-oriented approaches in this text. Everyone should know
the basic concepts of each, but your coursework might emphasize one approach over the other.

CURRENT TRENDS IN DEVELOPMENT

One thing that never changes in the information systems field is that things are always chang-
ing. New tools and techniques are always appearing—sometimes with much publicity and
anticipation—and system developers are always looking for new and better ways to work. The
techniques and life cycles discussed previously are examples of ongoing changes to system
development methodologies. A few important current trends in system development are dis-
cussed in this section. Any one of these trends could become common and even dominate
system development in the future. Or, as discussed previously, system developers might adapt
key concepts or techniques from each of these trends and use them when appropriate.

THE UNIFIED PROCESS (UP)

You learned that some companies obtain complete system development methodologies from
consulting firms, either by purchasing rights to the methodology or by contracting for exten-
sive training services from the consulting firm to learn the methodology. The Unified Process
(UP) is an object-oriented system development methodology offered by IBM’s Rational
Software, originated by the three proponents of the Unified Modeling Language (UML): Grady
Booch, James Rumbaugh, and Ivar Jacobson. The UP is their attempt to define a complete
methodology that, in addition to providing several unique features, uses UML for system mod-
els. In the UP, the term development process is synonymous with development methodology. The
UP is an example of an SDLC that is in the middle of the predictive versus adaptive scale.

Although you will learn much about UML because it is a standard modeling notation for the
object-oriented (OO) approach, the UP is not a standard OO development methodology. UML
models described in this text can be used in a variety of ways with any OO development methodol-
ogy, but because of the stature of Booch, Rumbaugh, and Jacobson, the UP is gaining a lot of atten-
tion. Certainly the UP includes many useful and innovative techniques. Booch, Rumbaugh, and
Jacobson have written several books about the UP and have endorsed other books about it written
by colleagues, so it is possible to learn and to use the UP without purchasing services from Rational.

The UP is designed to reinforce six “best practices” of system development that are com-
mon to many system development methodologies:

• Develop iteratively.
• Define and manage system requirements.
• Use component architectures.
• Create visual models.
• Verify quality.
• Control changes.

The UP defines four life cycle phases: inception, elaboration, construction, and transition.
The UP life cycle is shown in Figure 2-20. The inception phase defines the scope of the project
by specifying use cases as with any development approach. You will learn how to identify use
cases and create use case diagrams in Chapters 5 and 7 of this text. The project team also com-
pletes a feasibility study to determine whether resources should be invested in the project.

Unified

Process (UP)

an object-oriented
system development
methodology offered by
IBM’s Rational Software

C6696_02_CTP.4c 1/28/08 8:21 AM Page 61

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The elaboration phase focuses on several iterations that take part of the system and define
the requirements, design the solution, and implement the solution. The team defines the
requirements and the design by creating use case diagrams, class diagrams, sequence dia-
grams, and other UML diagrams. Final cost and benefit estimates are also completed by the
end of the elaboration phase.

During the construction phase, you continue to build the system using additional itera-
tions that also include design, implementation, and testing, possibly creating multiple
releases of the system. During the transition phase, you turn the system over to the end users
and focus on end-user training, installation, and initial support.

The four UP phases are different from the traditional SDLC because they do not define
generic analysis, design, and implementation phases. Instead, they define the project sequen-
tially by indicating the emphasis of the project team at any point in time. To make iterative
development manageable, the UP defines disciplines within each phase. They include busi-
ness modeling, requirements modeling, design, implementation, testing, deployment, con-
figuration and change management, and project management. Each iteration involves
activities from all disciplines. The UP also defines many roles played by developers and many
models created during the project. Typical roles include designer, use case specifier, systems
analyst, implementer, and architect.

As with any methodology, the UP includes very detailed information about what to do
and when to do it for every activity involved in system development. The techniques and
models presented in this book are consistent with many of the techniques and models
included in the UP, but this book does not focus on the UP exclusively. The UP is described
in more detail in Chapter 17.

62 ♦ PART 1 THE SYSTEMS ANALYST

UP disciplines

Business modeling

Requirements

Design

Implementation

Testing

Deployment

Configuration & change

management

Project management

Environment

UP phases

Unified Process life cycle model

Inception Elaboration Construction Transition

This is a seven-iteration project. Each iteration is a miniproject that

includes work in most disciplines and ends with a stable executable.

Figure 2-20

UP life cycle with phases,

iterations, and disciplines

C6696_02_CTP.4c 1/28/08 8:21 AM Page 62

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 2 Approaches to System Development ♦ 63

EXTREME PROGRAMMING (XP)

Extreme Programming (XP) is a system development approach recently popularized by Kent
Beck. XP adapts techniques from many sources and adds some new ideas. It is sometimes
referred to as a “lightweight” system development methodology, meaning it is kept simple
and focused on making the development process more efficient for the developer. It is an
example of a highly adaptive approach to the SDLC.

The developers begin planning the system project by having the users describe user stories,
which are similar to use cases. User stories are descriptions of the support the users need from
the system—in other words, the required system functionality. The developers document
these stories quickly with informal descriptive models. Along with providing the user stories,
users describe a set of acceptance tests that will demonstrate that the system provides the
required functionality once it is completed.

The developers then plan a series of releases for the project, with each release including a
working part of the final system, as with incremental development. The project proceeds with
work on the first release, which usually takes several iterations to complete. When the first
release is completed, the second release is started.

In many ways, XP is much like other iterative and incremental approaches. But XP con-
tains some additional features that make it popular. It requires continuous testing, continu-
ous integration, and heavy user involvement, for example. It also requires that all
programming be done by teams, with two programmers working together at one workstation
when writing and testing code. This and other features emphasize open and effective commu-
nication among team members. A final feature is the firm belief that developers should work
no more than 40 hours per week, to prevent burnout but also to demonstrate that system pro-
jects can be completed on schedule without overworking the staff if the XP techniques and
tools are used for the project. XP is described in more detail in Chapter 17.

SCRUM

Scrum is another new adaptive development methodology. The term Scrum refers to rugby’s
system for getting an out-of-play ball back into play. The name stuck due to many similarities
between the sport and the system development approach: both are quick, adaptive, and self-
organizing. The basic idea behind Scrum is to respond to a current situation as rapidly and
positively as possible.

The Scrum philosophy is responsive to a highly changing, dynamic environment in which
users may not know exactly what is needed and may also change priorities frequently. In this
type of environment, changes are so numerous that projects can bog down and never reach
completion. Scrum excels in these situations because it focuses primarily on the development
team and their work. It emphasizes individuals more than processes and describes how teams
of developers can work together to build software in a series of short miniprojects. Key to this
philosophy is the complete control a team exerts over its own organization and its work
processes. Software is developed incrementally, and controls are imposed by focusing on the
things that can be accomplished. Scrum is described in more detail in Chapter 17.

TOOLS TO SUPPORT SYSTEM DEVELOPMENT

No matter which methodology you use, it is important to use automated tools to improve the
speed and quality of system development work whenever possible. One type of tool discussed
earlier is a visual modeling tool. These tools are specifically designed to help systems analysts
complete system development tasks. Analysts use a visual modeling tool to create models of
the system, many of them graphical models. But a visual modeling tool is much more than a
drawing tool.

C6696_02_CTP.4c 1/28/08 8:21 AM Page 63

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Some visual modeling tools are designed to be as flexible as possible, allowing analysts to use
any development approach they desire. Other tools are designed for very specific methodologies.

Microsoft Visio is a drawing tool that analysts use to create just about any system model
they might need. Visio comes with a collection of drawing templates that include symbols
used in a variety of business and engineering applications. Software and system development
templates provide symbols for flowcharts, data flow diagrams, entity-relationship diagrams,

Visual modeling tools contain a database of information about the project, called a
repository. The repository stores information about the system, including models, descrip-
tions, and references that link the various models together. The tool can check the models to
make sure they are complete and follow the correct diagramming rules. The tool also can check
one model against another to make sure they are consistent. If you consider how much time
an analyst spends creating models, checking them, revising them, and then making sure they
all fit together, it is apparent how much help a visual modeling tool can provide. Figure 2-21
shows tool capabilities surrounding the repository. If system information is stored in a reposi-
tory, the development team can use the information in a variety of ways. Every time a team
member adds information about the system, it is immediately available for everyone else.

64 ♦ PART 1 THE SYSTEMS ANALYST

Use automated tools whenever possible, but remember that sketches on
napkins or envelopes are often enough for a small team on a small project.
Don’t let the tool create more problems than it solves.

BEST PRACTICE

Diagram

generator

Design

generator

Code

generator

Database

generator

Prototyping

tool

Query tool and

report generator

Security and

version control

Error-checking

tool

Reverse-

engineering tool

Drawing tool

Project
repository

Figure 2-21

A visual modeling tool

repository contains all

information about the

system

repository

a database that stores
information about the
system in a visual
modeling tool, including
models, descriptions, and
references that link the
various models together

C6696_02_CTP.4c 1/28/08 8:21 AM Page 64

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 2 Approaches to System Development ♦ 65

all of the UML diagrams, and others found throughout this text. The templates provide a lim-
ited repository for storing definitions and descriptions of diagram elements, but Visio does
not provide a complete repository for a system development project. Many system developers
prefer the flexibility that Visio offers for drawing any diagram needed, however.

Figure 2-22 shows Visio displaying several UML diagrams used with the OO approach—a
class diagram, a use case diagram, a sequence diagram, and a package diagram. Symbols for
these diagrams are selected from the templates listed at the left. Note also that the items
shown in the diagrams are listed and defined at the left.

Figure 2-22

Visio for drawing a variety

of diagrams and charts

Figure 2-23 shows a flexible tool called Visible Analyst from Visible Systems Corporation
(www.visible.com). This tool makes it easy to draw typical traditional models, such as data flow
diagrams and entity-relationship diagrams, and it also supports object-oriented UML models.
The wide variety of diagrams available is shown on the screen by the boxes forming a view of
the project. Visible Analyst includes a repository for defining system components and pro-
vides error-checking and consistency-checking support. Figure 2-24 shows IBM’s Rational
Software Development platform. This tool is designed to support the Unified Process
methodology with UML diagrams and code generation.

C6696_02_CTP.4c 1/28/08 8:21 AM Page 65

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

http://www.visible.com

66 ♦ PART 1 THE SYSTEMS ANALYST

Figure 2-23

Visible Analyst showing

the variety of diagrams

available to system

developers

Figure 2-24

IBM’s Rational Software

Development Platform

showing the design of a

use case using a

sequence diagram

C6696_02_CTP.4c 1/28/08 8:21 AM Page 66

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

SUMMARY
System development projects are organized around the systems development life cycle (SDLC), and phases of
the SDLC include activities that must be completed for any system development project. The traditional SDLC
phases are project planning, analysis, design, implementation, and support. Some SDLCs are based on a more
predictive approach to the project, and other SDLCs are based on a more adaptive approach. System develop-
ers learn the SDLC phases and activities sequentially, based on the waterfall model; in practice, however, the
phases overlap and projects contain many iterations of analysis, design, and implementation activities.

You can develop an information system in lots of ways. All development projects use the SDLC to manage
the project, plus models, techniques, and tools that make up a system development methodology. A system
development methodology provides guidelines to follow for completing every activity in the SDLC, and many
different methodologies are in use. Most methodologies are based on one of two approaches to information
systems development: the traditional approach or the object-oriented approach.

Some current trends in system development include the Unified Process (UP), Extreme Programming (XP),
and Scrum. These methodologies provide innovative insights into best practices in system development and
are becoming influential.

Visual modeling tools are special tools designed to help analysts complete development tasks, including
modeling and generating program statements directly from the models.

KEY TERMS

adaptive approach, p. 39

analysis activities, p. 45

application, p. 47

class diagram, p. 60

data flow diagram (DFD), p. 56

design activities, p. 46

entity-relationship diagram (ERD), p. 57

help desk, p. 49

implementation activities, p. 47

incremental development, p. 44

information engineering, p. 58

integrated development environment (IDE), p.51

iteration, p. 43

model, p. 50

object, p. 59

object-oriented analysis (OOA), p. 60

object-oriented approach, p. 59

object-oriented design (OOD), p. 60

object-oriented programming (OOP), p. 60

phases, p. 40

predictive approach, p. 39

problem domain, p. 46

project, p. 38

project planning, p. 45

prototype, p. 42

repository, p. 64

spiral model, p. 42

structure chart, p. 55

structured analysis, p. 56

structured approach, p. 53

structured design, p. 55

structured program, p. 53

support activities, p. 48

system development methodology, p. 49

systems development life cycle (SDLC), p. 38

technique, p. 51

tool, p. 51

top-down programming, p. 54

Unified Process (UP), p. 61

visual modeling tools, p. 51

waterfall model, p. 40

CHAPTER 2 Approaches to System Development ♦ 67

C6696_02_CTP.4c 1/28/08 8:21 AM Page 67

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

1. What are the five phases of the traditional SDLC?

2. What characteristics of a project call for a predictive

approach to the SDLC? What characteristics of a project

call for an adaptive approach to the SDLC?

3. How is the SDLC based on the problem-solving approach

described in Chapter 1?

4. What is the objective of each phase of the SDLC? Describe

briefly.

5. How is iteration used across phases?

6. What is the difference between a model and a tool?

7. What is the difference between a technique and a

methodology?

8. Which of the two approaches to system development was

the earliest?

9. Which of the two approaches to system development is

the most recent?

10. Which of the traditional approaches focuses on overall

strategic systems planning?

11. Which of the traditional approaches is a more complete

methodology?

12. What are the three constructs used in structured

programming?

13. What graphical model is used with the structured design

technique?

14. What graphical model is used with the modern structured

analysis technique?

15. What model is the central focus of the information engi-

neering approach?

16. Explain what is meant by a waterfall life cycle model.

17. What concept suggests repeating activities over and over

until you achieve your objective?

18. What concept suggests completing part of the system and

putting it into operation before continuing with the rest of

the system?

19. What are some of the features of the Unified Process (UP)?

20. What are some of the features of Extreme

Programming (XP)?

21. What are some of the features of Scrum?

22. What are visual modeling tools? Why are they used?

THINKING CRITICALLY

1. Write a one-page paper that distinguishes among the fun-

damental purposes of the analysis phase, the design

phase, and the implementation phase.

2. Describe a system project that might have three subsys-

tems. Discuss how three iterations might be used for the

project.

3. Why might it make sense to teach analysis and design

phases and activities sequentially, like a waterfall, even

though in practice iterations are used in nearly all develop-

ment projects?

4. List some of the models that architects create to show dif-

ferent aspects of a house they are designing. Explain why

several models are needed.

5. What models might an automotive designer use to show

different aspects of a car?

6. Sketch the layout of your room at home. Now write a

description of the layout of your room. Are these both

models of your room? Which is more accurate? More

detailed? Easier to follow for someone unfamiliar with

your room?

7. Describe a “technique” you use to help you complete the

activity “Get to class on time.” What are some “tools” you

use with the technique?

8. Describe a “technique” you use to make sure you get

assignments done on time. What are some “tools” you use

with the technique?

9. What are some other techniques you use to help you com-

plete activities in your life?

10. There are at least two approaches to system development, a

variety of life cycles, and a long list of techniques and mod-

els that are used in some approaches but not in others.

Consider why this is so. Discuss these possible reasons, indi-

cating which are the most important: The field is so young;

the technology changes so fast; different organizations have

such different needs; there are so many different types of

systems; and people with widely different backgrounds are

developing systems.

REVIEW QUESTIONS

68 ♦ PART 1 THE SYSTEMS ANALYST

C6696_02_CTP.4c 1/28/08 8:21 AM Page 68

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 2 Approaches to System Development ♦ 69

EXPERIENTIAL EXERCISES

1. Go to the campus placement office and gather some infor-

mation on companies that recruit information systems

graduates on your campus. Try to find any information

about the approach they use to develop systems. Is their

SDLC described? Do any mention an IDE or a visual model-

ing tool? Visit the company Web sites and see whether you

can find any more information.

2. Visit the Web sites for a few leading information systems

consulting firms. Try to find information about the

approach they use to develop systems. Are their SDLCs

described? Do their sites mention any tools?

CASE STUDIES
A “COLLEGE EDUCATION COMPLETION” METHODOLOGY

Like many readers of this book, you are probably a college student

working on a degree. Think of completing college as a project—a

big project, lasting many years and costing more than you might

want to admit. Some students do a better job managing the college

completion project than others. Many fail entirely (certainly not

you), and most students probably complete college late and way

over budget (again, certainly not you).

As with any other project, to be successful, you should follow

some sort of “college education completion” methodology. That is,

you should follow a comprehensive set of guidelines for completing

activities and tasks from the beginning of planning for college

through to the successful completion.

1. What might be the phases of your personal college educa-

tion completion life cycle?

2. What are some of the activities of each phase?

3. What are some techniques you use to help complete the

activities? What models might you create during the

process of completing college? Differentiate models you

create that get you through college from those that help

you plan and control the process of completing college.

4. What are some of the tools you use to help you complete

the models?

FACTORY SYSTEM DEVELOPMENT PROJECT

Sally Jones is assigned to manage a new system development pro-

ject that will automate some of the work being done in her com-

pany’s factory. It is fairly clear what is needed: to automate the

tracking of the work in progress and the finished goods inventory.

What is less clear is the impact of any automated system on the fac-

tory workers. Sally has several concerns: How might a new system

affect the workers? Will they need a lot of training? Will working

with a new system slow down their work or interfere with the way

they now work? How receptive will the workers be to the changes

the new system will surely bring to the shop floor?

At the same time, Sally recognizes that the factory workers

themselves might have some good ideas about what will work and

what won’t, especially concerning (1) which technology is more

likely to survive in the factory environment and (2) what sort of user

interface will work best for the workers. Sally doesn’t know much

about factory operations, although she does understand inventory

accounting.

1. Is the proposed system an accounting system? A factory

operations system? Or both?

2. Which life cycle variations might be appropriate for Sally to

consider using?

3. Which activities of analysis and of design discussed in this

chapter should involve factory workers as well as factory

management?

RETHINKING ROCKY MOUNTAIN OUTFITTERS

Barbara Halifax wrote her boss that she was still

considering many potential approaches to the cus-

tomer support system development project. She is

still completing the project planning phase, so not

much time has passed at this point. Consider the training required

for the development staff if RMO decides to use an object-oriented

approach for the project. How extensive would the training needs

be for the RMO staff? What type of training would be required? Is

it just about new programming languages, or is it broader than

that? How far can the project progress before the decision is made?

Barbara mentions that either approach can be used and that,

even though some Web development is involved, the team does not

have to use an OO approach. Do you think she is correct? Why or

why not? Do some types of projects require an OO approach?

Barbara also mentions that she plans to use some iteration and

to involve users extensively throughout the project. What life cycle

variations are under consideration? What else might she do to

speed up the development process? What else might she consider

adapting from the United Process, from Extreme Programming, or

from Scrum?

C6696_02_CTP.4c 1/28/08 8:21 AM Page 69

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

70 ♦ PART 1 THE SYSTEMS ANALYST

FOCUSING ON RELIABLE PHARMACEUTICAL SERVICE

In Chapter 1, you generated some ideas related

to Reliable Pharmaceutical Service’s five-year

information systems plan. Management has

placed a high priority on developing a Web-based application to

connect client facilities with Reliable. Before the Web component

can be implemented, though, Reliable must automate more of the

basic information it handles about patients, health-care facilities,

and prescriptions.

Next, Reliable must develop an initial informational Web site,

which will ultimately evolve into an extranet through which Reliable

will share information and link its processes closely with its clients

and suppliers. One significant requirement of the extranet is com-

pliance with the Health Insurance Portability and Accountability Act

of 1996, better known as HIPAA. HIPAA requires health-care

providers and their contractors to protect patient data from unau-

thorized disclosure. Ensuring compliance with HIPAA will require

careful attention to extranet security.

After basic processes are automated and the extranet Web site

is in place, the system will enable clients to add patient information

and place orders through the Web. The system should streamline

processes for both Reliable and its clients. It should also provide use-

ful query and patient management capabilities to distinguish

Reliable’s services from those of its competitors, possibly including

drug interaction and overdose warnings, automated validation of

prescriptions with insurance reimbursement policies, and drug and

patient cost data and summaries.

1. One approach to system development that Reliable might

take is to start one large project that uses a waterfall

model to the SDLC to thoroughly plan the project, analyze

all requirements in detail, design every component, and

then implement the entire system, with all phases com-

pleted sequentially. What are some of the risks of taking

this approach? What planning and management difficul-

ties would this approach entail?

2. Another approach to system development might be to

start with the first required component and get it working.

Later, other projects could be undertaken to work on the

other identified capabilities. What are some of the risks of

taking this approach? What planning and management

difficulties would this approach entail?

3. A third approach to system development might be to

define one large project that will use an iterative approach

to the SDLC. Briefly describe what you would include in

each iteration. Describe how incremental development

might apply to this project. How would an iterative

approach decrease project risks compared with the first

approach? How might it decrease risks compared with the

second approach? What are some risks the iterative

approach might add to the project?

C6696_02_CTP.4c 1/28/08 8:21 AM Page 70

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 2 Approaches to System Development ♦ 71

FURTHER RESOURCES

Some classic and more recent texts include the following:

Scott W. Ambler, Agile Modeling: Effective Practices for Extreme

Programming and the Unified Process. Wiley Computer

Publishing, 2002.

D. E. Avison and G. Fitzgerald, Information Systems

Development: Methodologies, Techniques and Tools (3rd ed.).

Maidenhead, McGraw-Hill, 2003.

Kent Beck, Extreme Programming Explained: Embrace Change.

Addison-Wesley Publishing Company, 2000.

Tom DeMarco, Structured Analysis and System Specification.

Prentice Hall, 1978.

C. Gane and T. Sarson, Structured Systems Analysis: Tools and

Techniques. Prentice Hall, 1979.

Ivar Jacobson et al., Object-Oriented Software Engineering: A

Use Case Driven Approach. Addison-Wesley, 1992.

Ivar Jacobson, Grady Booch, and James Rumbaugh, The

Rational Unified Process. Addison-Wesley, 1999.

James Martin, Information Engineering: A Trilogy (books 1, 2,

and 3). Prentice Hall, 1990.

Steve McConnell, Rapid Development. Microsoft Press, 1996.

Meilir Page-Jones, The Practical Guide to Structured System

Design (2nd ed.). Prentice Hall, 1988.

John Satzinger, Robert Jackson, and Stephen Burd, Object-

Oriented Analysis and Design with the Unified Process. Course

Technology, 2005.

John Satzinger and Tore Orvik, The Object-Oriented Approach:

Concepts, System Development, and Modeling with UML (2nd ed.).

Course Technology, 2001.

Ed Yourdon, Modern Structured Analysis. Prentice Hall, 1989.

C6696_02_CTP.4c 1/28/08 8:21 AM Page 71

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

72

THE ANALYST AS A PROJECT
MANAGER3
L E A R N I N G O B J E C T I V E S

After reading this chapter, you should be able to:

■ Explain the elements of project management and the responsibilities of a

project manager

■ Explain project initiation and the project planning activities of the SDLC

■ Describe how the scope of the new system is determined

■ Develop a project schedule using Gantt charts

■ Develop a cost/benefit analysis and assess the feasibility of a proposed project

■ Discuss how to staff and launch a project

CHAPTER

C H A P T E R O U T L I N E

Project Management

Project Initiation and Project Planning

Defining the Problem

Producing the Project Schedule

Identifying Project Risks and Confirming Project Feasibility

Staffing and Launching the Project

Recap of Project Planning for RMO

C6696_03_CTP.4c 2/6/08 1:26 PM Page 72

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 3 The Analyst as a Project Manager ♦ 73

“I feel pretty good about the final decision for the development methodology in this new pro-
ject. At first I was concerned that we were biting off more than we could chew. But I think the
approach we have chosen will work okay, and I think I will be able to adjust to the new tech-
niques. It will be exciting to try out some of these newer “Agile” techniques I’ve been reading
about.” Gary Johnson, project manager at Bestway Fuel Systems Inc., was talking to his boss,
Sam Brown, Director of Systems Development.

“Yes, I agree. Although our current development methodology has worked pretty well for
us over the years, it’s time to move into the twenty-first century. I’m glad you’re willing to give
it a try. This new project, Tracking Employee Profit Sharing (TEPS), is just about the right size
to use as a pilot project.”

“Although this project does not have all the typical characteristics of an adaptive
approach, it is still going to be a good fit. It will be especially good to use as a learning pro-
ject for us. Here is what I have in mind. I would like to use an iterative, adaptive approach for
this project as the basic development method, while at the same time begin to use and to
learn these newer Agile techniques. My only concern is that maybe it’s too much to try to
learn in one project.” Although a little apprehensive, Gary’s excitement was evident.

“Well, I will assign a couple of our senior developers to work with you on this. Then why
don’t you see if you can find a good training course for the three of you to attend. I think we
can squeeze money out of the budget for you to travel offsite if necessary. I really want this to
be successful, and so I don’t want you to jump into this project without the necessary support.
If this project is successful, then I will depend on you three to help train the rest of our group. I
really think it’s important that we upgrade our development methodology, so this is an impor-
tant first step for us.” Sam’s support was evident. It also appeared that he had already talked to
senior executives in the company, and they also were behind this new direction. Strategic direc-
tions for Bestway required several new mission-critical systems to be developed over the next
five years. So this small (six-month) project was an important pilot for the systems group.

Gary spent a couple of hours that afternoon researching what kind of training he thought
would be best for himself and his two teammates. None of the three had much experience with
Agile methods. The other two developers were senior employees. Even though he was the man-
ager for the project, the other two developers also functioned as project leaders within the
group. He decided it would be good for all of them to have the same training, including train-
ing both in Agile concepts and project management techniques for iterative projects.

By the end of the day, he had formulated a rough training plan. First, he found what
appeared to be some excellent books. They would be good to have in the library for references
and for self-study. He found a couple of online courses to help review project management
concepts. He decided that he and his two teammates should attend an Agile development
course. He felt good about what he had found out. His next task, first thing in the morning,
would be to put together a schedule for the next month, one that included training mixed
with planning for the new project. He went home pleased with the progress of the day.

OVERVIEW

Chapter 1 described the business environment, with its insatiable need for information sys-
tems in today’s competitive and rapidly paced global economy. That chapter also discussed
the job duties of systems analysts, including their role in information technology (IT) and IT
strategic planning. You also learned about the various types of information systems the ana-
lyst might develop and support. Chapter 2 introduced the systems development life cycle
(SDLC); the methodologies, models, tools, and techniques used to develop systems; and sev-
eral approaches to system development that are used generally.

BESTWAY FUEL SYSTEMS: MOVING TO AN ADAPTIVE SDLC

C6696_03_CTP.4c 2/6/08 1:26 PM Page 73

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

74 ♦ PART 1 THE SYSTEMS ANALYST

This chapter begins to narrow the focus to teach the specifics of how an information sys-
tem is developed within a company. The Rocky Mountain Outfitters (RMO) customer sup-
port system project is used as the specific example, and this chapter discusses the project
planning activities of the SDLC for RMO. Because of their importance in information systems
development and project planning, the principles of project management are introduced in
this chapter. Project management encompasses the skills and techniques that are necessary to
succeed in planning and managing the development of a new system. As a knowledgeable
worker and problem solver, you will need both technical and management skills to be a con-
tributing member of a system development team. This chapter provides you with the funda-
mentals of project management, and later chapters elaborate on key management principles
associated with the various phases of the project.

The second section of the chapter discusses how information systems projects are initi-
ated. Projects are started for two primary reasons. First, a project to develop a new informa-
tion system may be started because the new system is part of an overall strategic plan, as
discussed for RMO in Chapter 1. The second reason that new information system projects are
started is to respond to an immediate business need. Such a need usually arises from some
unforeseen information or processing problem within the company.

An important objective of the chapter is also to describe the major project planning activ-
ities of the SDLC, which were listed in Chapter 2. The techniques that are taught in the chap-
ter can be used either for predictive or adaptive SDLC approaches. Examples of both are
provided within the chapter. The planning process for a new project entails several important
steps, such as defining the scope of the project, comparing the estimated costs and anticipated
benefits of the new system, and developing a project schedule. The final sections explain these
specific steps and the skills associated with the steps. Because project management, analyzing
costs and benefits, and project scheduling are all very large topics, additional information
about each of these topics is included in appendices on the book’s Web site. You are encour-
aged to review the appendices for more information on these topics.

PROJECT MANAGEMENT

Many of you may have experience building a Web page with HTML or writing a computer
program for yourself or a friend. In those cases, where it was just you working, you were not
too concerned about how to organize your work or how to manage the project. However, as
soon as two or more developers are working together, the work must be partitioned and orga-
nized with specific assignments for each developer. This is true whether the project uses a pre-
dictive approach or an adaptive approach. Failing to organize usually causes wasted time and
effort, confusion, and it even may cause the project to end in failure.

Even though every project team designates one person as the project manager who has pri-
mary responsibility for the functioning of the team, all experienced members contribute to the
management of the team. The project manager for the RMO customer support system project
is Barbara Halifax, but she has one senior systems analyst helping her every step of the way. As
the project proceeds, all team members are involved in aspects of managing the project.

The development of a new software system, the enhancement or upgrade of an existing sys-
tem, and even the integration and deployment of a software package into an existing system are
all accomplished during a development project. As we discussed in Chapter 2, a project is a
planned undertaking with a beginning and an end that produces a predetermined result and is
usually constrained by a schedule and resources. Information systems projects fit this definition.
In addition, they are usually quite complex, with many people and tasks that must be organized
and coordinated. Whatever its objective, each project is unique; no two are exactly alike. Different
products are produced, different activities are required with varying schedules, and different
resources are used. Their uniqueness makes information systems projects difficult to control—
each involves new activities that have never been done exactly the same way before.

C6696_03_CTP.4c 2/6/08 1:26 PM Page 74

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 3 The Analyst as a Project Manager ♦ 75

PROJECT SUCCESS FACTORS

How important is project management for the success of a system development project? In
1994, the Standish Group began studying the success and failure rates of system development
projects. The surprising initial results indicated that almost 32 percent of all development
projects were canceled before they were completed. In addition, more than half of computer
system projects cost almost double the original budget. Less than half (about 42 percent) had
the same scope and functionality as originally proposed. In fact, many systems were imple-
mented with only a portion of the original requirements satisfied. Depending on company
size, completely successful projects (on time, on budget, with full functionality) ranged from
only 9 percent to about 16 percent. As of 2000, the percentage of successful system develop-
ment projects was still a dismal 28 percent, with 72 percent canceled or completed late, over
budget, or with limited functionality. Clearly, system development is a difficult activity requir-
ing very careful planning, control, and execution.

It is interesting to look at the reasons that projects do not fulfill the desired objectives.
Some primary reasons that projects fail, or are only partially successful, include the following:

• Incomplete or changing system requirements
• Limited user involvement
• Lack of executive support
• Lack of technical support
• Poor project planning (including inadequate risk assessment)
• Unclear objectives (including unreasonable expectations)
• Lack of required resources

Additional studies of successful projects help to highlight some reasons that projects succeed:

• Clear system requirement definitions
• Substantial user involvement
• Support from upper management
• Thorough and detailed project plans
• Realistic work schedules and milestones

The success factors are, in most cases, just the reverse of those for failures. Note that rea-
sons such as “the technology is too complex” do not appear in the lists. This omission indi-
cates that projects fail most frequently because project management has failed. Successful
projects result from strong project management that ensures the preceding success character-
istics are an integral part of the project.

The obvious question, then, is “How can we improve the project success rate?” Companies
that have achieved greater success have attacked the problem from three different perspectives.
First, they incorporate good principles of project management into their projects. They identify
best practices in project management, and they train their project managers to use those prac-
tices. In this chapter and throughout the book, you will learn many principles of good project
management. Second, they adopt a system development methodology. Current trends indicate
that iterative, adaptive approaches often help to improve a project’s success. Chapter 2 introduced
you to the development methodologies that are commonly adopted. All of those methodologies
are based on the concepts and techniques covered in this book. Third, successful companies pay
particular attention to the factors that influence project success. The organization becomes
focused on instituting characteristics of successful projects, and all team members and stakehold-
ers work to incorporate best practices.

THE ROLE OF THE PROJECT MANAGER

Project management is organizing and directing other people to achieve a planned result
within a predetermined schedule and budget. At the beginning of a project, a plan is devel-
oped that specifies the activities that must take place, the deliverables that must be produced,

project

management

organizing and directing
other people to achieve a
planned result within a
predetermined schedule
and budget

C6696_03_CTP.4c 2/6/08 1:26 PM Page 75

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

76 ♦ PART 1 THE SYSTEMS ANALYST

and the resources that are needed. So, project management can also be defined as the
processes used to plan the project and then to monitor and control it.

One of the most exciting careers for IT-oriented people is in project management. As projects
become more complex because of shorter time frames, distributed project teams (including off-
shore and cross-cultural teams), rapidly changing technology, and more sophisticated require-
ments, highly qualified project managers are sought after and well paid. Many universities are
adding project management courses to their curricula to respond to the needs of industry.

Many career paths lead to project management. In some companies, the project coordina-
tion role is performed by recent college graduates. Other companies recognize the value of a
person with strong organizational and people skills, who understands the technology but
does not want a highly technical career. Those companies provide opportunities for employ-
ees to gain experience in management and business skills and to advance to project manage-
ment through experience as a coordinator of smaller projects. Other companies take a “lead
engineer” approach to project management, in which a person must thoroughly understand
the technology to manage a project. Management at these companies believes that project
management requires someone with strong development skills to understand the technical
issues and to manage other developers.

The project manager defines and executes project management tasks. The success or fail-
ure of a given project is directly related to the skills and abilities of the project manager. The
project success factors listed earlier—clear requirement definitions, substantial user involve-
ment, upper management support, thorough planning, and realistic schedules and mile-
stones—are the responsibility of the project manager, and he or she must ensure that
sufficient attention is given to those details. In fact, a project manager must be an expert in
two areas. First, she must be a good manager of people and resources, which is referred to as
internal responsibilities. Second, she must have strong communication and public relations
skills, or what may be called externally oriented talents.

From the internal team perspective, the project manager serves as the director and locus
of control for the project team and all of their activities. The project manager establishes the
team’s structure so that work can be accomplished. The following list identifies a few of these
internal responsibilities:

• Identify project tasks and build a work breakdown structure.
• Develop the project schedule.
• Recruit and train team members.
• Assign team members to tasks.
• Coordinate activities of team members and subteams.
• Assess project risks.
• Monitor and control project deliverables and milestones.
• Verify the quality of project deliverables.

From an external organizational perspective, the project manager is the focal point or
main contact for the project. He or she must represent the team to the outside world and
communicate team member needs. Some of the major external responsibilities include the
following:

• Report the project’s status and progress.
• Establish good working relationships with those who identify the needed system require-

ments (that is, the people who will use the system).
• Work directly with the client (the project’s sponsor) and other stakeholders.
• Identify resource needs and obtain resources.

A project manager works with several groups of people. From the external perspective, the
client will be paying for the development of the new system—in other words, the customer.
So, when we speak of project approval and release of funds, we mean they come from the

client

the person or group that
funds the project

C6696_03_CTP.4c 2/6/08 1:26 PM Page 76

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 3 The Analyst as a Project Manager ♦ 77

client. For in-house development, the client can be an executive committee or a vice presi-
dent who is funding the project. For large, mission-critical projects, an oversight committee
(sometimes called the steering committee) may be formed. This committee consists of clients
and other key executives who have a vision of the organization’s strategic direction and a
strong interest in the project’s success. Experience in directing large development projects is
helpful but not a prerequisite for a committee member. The users, on the other hand, are the
people who will actually use the new system. In some cases, the client and user are the same
person. Often, however, they are not. The user typically provides information about the
detailed functions and operations needed in the new system. The client also provides input
on the business framework and strategy, which are important factors that influence the scope
and design of a system. In addition, the client approves and oversees the project, along with
its funding.

Communication with the client and oversight committee is an important part of the pro-
ject manager’s external responsibilities. Similarly, working with the team leader, team mem-
bers, and any subcontractors is a normal part of a project manager’s internal responsibilities.
Some users are very active in the project and can be considered part of the project team. Other
users have only part-time involvement. In any event, the project manager must ensure that all
internal and external communication is flowing properly. Figure 3-1 depicts the various
groups of people involved in a development project.

Obviously, the project manager does not always perform all the tasks involved with these
responsibilities; other team members assist the manager. However, the primary responsibility
for the project rests with the project manager.

Project manager

Client

Subcontractor

External
Stakeholders

User User

Oversight committee

Internal
Stakeholders

Team leader

Member Member Member Member Member

Team leader

Figure 3-1

Participants in a system

development project

oversight

committee

clients and key managers
who review and direct the
project

user

the person or group of
people who will use the
new system

C6696_03_CTP.4c 2/6/08 1:26 PM Page 77

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

In looking at organizations around the world and the way that development projects are han-

dled, we can see that the role of the project manager and careers in project management vary

tremendously. Figure 3-2 lists some of the different positions project managers hold. In some com-

panies, the project manager functions as a coordinator and does not have direct “line” (reporting)

authority. At the other end of the spectrum, for big development projects, the project manager may

be a very experienced developer with both management skills and a solid understanding of a full

range of technical issues. In those situations, the role of the project manager is very much a “line”

position with responsibility and authority for other staff members.

78 ♦ PART 1 THE SYSTEMS ANALYST

Title Power/authority Organization structure Description of duties

Project coordinator or project Limited Projects may be run within the Develops the plans.
leader departments, or projects may Coordinates activities.

have a strong “lead developer” Keeps people informed of status and
who controls the development progress.
of the end product. Does not have “line” authority on the

project deliverables.

Project manager, project officer, Moderate Projects are run within an IT May have both project management
or team leader department, but other business duties and some technical duties.

functions are independent. Manages projects that are generally
medium sized.
May share project responsibility with
clients.

Project manager or program High to almost total Project organization is a prime, Usually has extensive experience in
manager high-profile part of the technical issues as well as project

company. management.
Company is organized around Involved in both management
projects, or there is a large and decisions and technical issues.
powerful IT department. Frequently has support staff to do

paperwork.
Manages projects that can be big.

Figure 3-2

Various roles of project

managers

PROJECT MANAGEMENT THROUGHOUT THE SDLC

In Chapter 2, you learned about two types of systems development life cycles—a predictive
life cycle and an adaptive life cycle. A predictive approach to a project requires much more
detailed planning, along with a detailed project schedule, at the start of a project. Projects that
use a predictive model of organization are assumed to be similar to engineering or construc-
tion projects, where the work to be done is well defined in detail. Executives are used to these
types of projects because detailed plans, estimates, schedules, and budgets are developed at
the beginning of the project. Obviously, all kinds of projects can have overruns in schedules
and budgets. However, successful engineering and construction companies become proficient
at planning and executing projects on time and within budget. The most important factor for
success in these projects is the ability to understand and predict almost every contingency that
may occur. This approach can work for the development or modification of software for well-
understood business processes. These types of projects put a heavy load on the project man-
ager at the beginning of the project.

In today’s fast-paced world of new business opportunities with new technologies, many
projects are delving into unknown waters. For those kinds of projects, an adaptive SDLC
model is more appropriate. Sometimes we like to think of an adaptive, iterative approach as
an “organic” approach—the system grows much like a plant grows. It starts small, and as it
grows, it adapts to fit into its new environment. As a plant is often beautiful and useful even
while it is immature, homegrown systems often begin to provide benefits to the organization
even before they are fully grown. Adaptive approaches are all based on iterations within the
project, as was explained in Chapter 2.

C6696_03_CTP.4c 2/6/08 1:26 PM Page 78

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 3 The Analyst as a Project Manager ♦ 79

However, the negative aspects of growing plants can also occur in adaptive projects. At the
beginning, companies do not know which way the project will grow, how long it will take to
be fully grown, or even how to know when it is fully grown. Many adaptive projects cause
problems for upper management because the total budget is hard to predict. At times the
scope of the project is also undefined at the start. Other adaptive projects never seem to end.
Our point is that even though adaptive approaches have some strong advantages to software
development, they also must be carefully monitored and managed to be successful. Thus, a
project manager for an adaptive project must be just as skilled and proficient as in a predic-
tive project. The tasks are slightly different, but the need to plan, monitor, and control is just
as important.

It is important to understand the difference between project management tasks and pro-
ject development tasks. The definition of project management includes the concept that the
manager directs other people to achieve a planned result, while project development tasks are
“hands-on” tasks directly related to the new system. To better understand the distinction, we
can compare project management in a software development project with supervisory tasks
on a construction project. The construction manager of a building works with the architect,
reads the plans, checks the schedule, and assigns work to the team members according to the
schedule. Those tasks are supervisory tasks and are different from the hands-on activities of
pouring concrete or laying bricks. Usually, a construction manager does not actually pour
concrete or lay bricks. He or she is too busy coordinating the project by assigning work, check-
ing progress, and resolving problems. Software projects, unless they are very small, also
require a full-time commitment to project management tasks.

Figure 3-3 is an adaptation of Figure 2-5, which distinguishes between management activ-
ities and development activities and which shows the overlap of the various phases in a pre-
dictive development project. Notice that in Figure 3-3, project planning involves both project
management and SDLC tasks. The overlap occurs because planning for a project requires par-
ticipation by both the key team members and the project manager. The complexity of soft-
ware development projects requires team members to be actively involved in identifying
activities, estimating work requirements, and building the project schedule. After the detailed
plans have been developed, the team members focus their energies on the SDLC tasks and
the project manager focuses on management tasks.

As indicated by the figure, three major project management processes overlap the SDLC
processes: executing, controlling, and closing the project out. Execution includes tasks that
are concerned with following the project schedule, assigning and coordinating the work of
project teams, and communicating with all project stakeholders. Control tasks involve deter-
mining progress and taking corrective action when necessary, assessing whether requests for
scope changes are necessary, maintaining an outstanding issues list, and resolving problems.
Project closeout includes tasks targeted to a smooth shutdown of the project, such as releas-
ing team members for other assignments, finalizing the budget and its expenditures, and
reviewing or auditing the results of the project. An important point illustrated in the figure is
that these project management tasks last throughout a project and happen concurrently with
the SDLC activities associated with analysis, design, and implementation.

C6696_03_CTP.4c 2/6/08 1:26 PM Page 79

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 3-4 illustrates how project management tasks are applied in an adaptive project. In
the figure, we have taken the spiral life cycle concepts (shown earlier in Figure 2-6) and
depicted two iterations in a linear fashion (similar to the iterations shown in Figure 2-7).
Even though there are many variations of adaptive approaches, Figure 3-4 represents the key
ideas that are common to all of them. A project always starts with a major planning effort.
However, in adaptive approaches, there is a dual focus to planning: The first objective is to
define the scope of the project in broad terms, and the second is to identify the iterations, or
cycles. Planning the project at this point is less detailed; it determines the major steps but
leaves the details for later.

After the major planning phase is finished, the detailed iterations—the cycles—proceed.
In some adaptive approaches, the major planning phase is also considered to be an iteration.
Each cycle requires detailed planning, execution management, control management, and
cycle closeout. Each cycle also requires SDLC activities for analysis, design, and implementa-
tion. Of course, the exact nature of the SDLC tasks depends on what type of deliverable the
client wants from the iteration.

Comparing the predictive and adaptive approaches, we can see that in an adaptive proj-
ect, planning tasks are more distributed across the entire lifetime of the project. However, the
same set of project management skills is required. The only difference is in how and when
the planning, executing, and controlling tasks are carried out.

In the next section, we discuss the major areas of knowledge entailed in being a good proj-
ect manager. As you saw in Chapter 2, project planning is called a “phase” in the waterfall
model. In an adaptive, iterative project, however, project management, which includes plan-
ning, is often done as part of the first iteration. Hence, project management or project plan-
ning activities apply both to predictive projects and adaptive projects. The remainder of the
chapter details the specific project planning skills that you will need—whether you are a proj-
ect manager or a senior systems analyst on a project team.

PROJECT MANAGEMENT AND THE LEVEL OF FORMALITY

Another dimension that has a heavy impact on project management is the level of formality
required for a given project. Some projects, particularly small ones, are conducted with a very
low level of formality. Status meetings occur in the hallway or around the water cooler.
Written documentation, formal specifications, and detailed models are kept to a minimum.
Developers and users usually work closely together on a daily basis to define requirements
and develop the system. Other projects, usually larger, more complex ones, are executed with

80 ♦ PART 1 THE SYSTEMS ANALYST

Overall
project

planning

Project control management

Project execution management

Project
management tasks

SDLC tasks

Analysis More analysis activities

Design More design activities

Implementation

Deliverable

Project
closeout

Figure 3-3

Project management and

SDLC tasks for a

predictive project

C6696_03_CTP.4c 2/6/08 1:26 PM Page 80

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 3 The Analyst as a Project Manager ♦ 81

a high level of formality. Status meetings are held on a predefined schedule with specific par-
ticipants, agendas, minutes, and follow-through. Specifications are formally documented
with an abundance of diagrams and documentation. Specifications are frequently verified
through formal review meetings between developers and users (see Chapter 4 on Structured
Walkthrough).

A project’s level of formality is a dimension that is superimposed above whether the proj-
ect approach is predictive or adaptive. Historically, large predictive projects were also quite
formal, with lots of meetings and documentation. Unfortunately, the extensive documenta-
tion tended to increase the length of the project and sometimes contributed to cost overruns.
Techniques were developed to help manage large predictive projects with less formality. One
technique, called Rapid Application Development (RAD), was based on holding intensive
meetings with all critical stakeholders (for example, both developers and users), where speci-
fications were hammered out. Running prototypes were built during the meetings to capture
the requirements and even begin the design and implementation of the new system. This
approach required less documentation and fewer status and review meetings. Even though
there was less formality, the skills required of the project manager were just as important. Of
course, small predictive projects also could often be managed in a less formal manner.

Adaptive projects can also be either more or less formal in the way they are managed. The
Unified Process presented in the previous chapter is an adaptive approach, but in its pristine
form it is also quite formal. Each phase is precisely defined with specific outcomes, including
specifications, diagrams, prototypes, and deliverables defined for each phase and iteration.
However, adaptive, iterative approaches also lend themselves easily to being managed with
much less formality. The inherent characteristics of an iterative approach with its “just in
time” project plans easily adjust to less documentation, fewer diagrams for specifications, and
less formal status reporting.

In the mid-1990s and early 2000s, various groups of professionals in the field of software
development began creating a set of techniques and methods with the objective of managing
projects successfully, but with much less overhead. Originally these techniques were called
“lightweight methods,” but more recently they have been called “agile methods.” Today, Agile
Software Development is a major movement in software development. It shares many of the
same objectives as an adaptive approach, and thus is most often used with adaptive projects.
In fact, the terms are often used interchangeably. However, Agile Development does have

Cycle
execution

management Cycle
close-

outCycle
control

management
Overall
project

planning

Project
management

tasks

SDLC
tasks

Cycle 1

Cycle
close-

outCycle
control

management

Cycle
execution

management

Cycle 2

Analysis

Design

Implementation

Deliverable

Detailed
cycle
plan

Detailed
cycle
plan

Analysis

Design

Implementation

Deliverable

Figure 3-4

Project management and

SDLC tasks for an

adaptive project

Agile Software

Development

a philosophy of software
development that
embraces flexibility and
agility

C6696_03_CTP.4c 2/6/08 1:26 PM Page 81

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

82 ♦ PART 1 THE SYSTEMS ANALYST

additional characteristics than those identified for adaptiveness. Some of the elements
included in the Agile Manifesto include the following:

• Individuals and interactions over processes and tools; for example, don’t focus on formal
processes or sophisticated tools, but on the team and team interactions.

• Working software over comprehensive documentation; for example, don’t spend all your
time drawing diagrams and writing specifications. Use modeling to help solve the prob-
lem and then write software.

• Customer collaboration over contract negotiation; for example, work closely with the
users and clients so that the solution is the “right” solution.

• Responding to change over following a plan; for example, be flexible and accept changes
in the business and in the users’ requirements, even late in the project. Don’t be so tied to
the plan that you lose the flexibility to solve users’ problems.
Sometimes developers mistakenly interpret the manifesto to mean you don’t need to cre-

ate plans or specification models. But that is incorrect. Agile Development means you create a
plan and build models as effective means to the end, but not as the end results themselves.
Use specifications and plans as tools.

The opening case of this chapter presented Bestway Fuel Systems and their initial foray
into both an adaptive and agile methodology. Many newer methods, such as Agile Unified
Process (AUP), SCRUM, XP, Adaptive Software Development (ASD), Crystal Clear, and
Dynamic Systems Development Method (DSDM), are inherently both adaptive and agile. The
important point to learn in this discussion, however, is that all of these approaches require
project management skills to ensure a successful project. In the next section, we identify some
of the project management competencies required of all good project managers.

PROJECT MANAGEMENT KNOWLEDGE AREAS

The Project Management Institute (PMI) is a professional organization that promotes project
management, primarily within the United States but also throughout the world. In addition,
professional organizations in other countries promote project management. If you are inter-
ested in strengthening your project management skills, you should consider joining one of
these organizations, obtaining their materials, and participating in training. The PMI has a
well-respected and rigorous certification program. In fact, many corporations encourage pro-
ject managers to become certified, and industry articles frequently indicate that project man-
agement is one of the most important skills today.

As part of its mission, the PMI has defined a body of knowledge (BOK) for project man-
agement. This body of knowledge, referred to as the PMBOK, is a widely accepted founda-
tion of information that every project manager should know. The PMBOK has been
organized into nine different knowledge areas. Although these nine areas do not represent all
there is to know about project management, they provide an excellent foundation.

• Project Scope Management. Defining and controlling the functions that are to be
included in the system, as well as the scope of the work to be done by the project team

• Project Time Management. Building a detailed schedule of all project tasks and then
monitoring the progress of the project against defined milestones

• Project Cost Management. Calculating the initial cost/benefit analysis and its later
updates and monitoring expenditures as the project progresses

• Project Quality Management. Establishing a comprehensive plan for ensuring quality,
which includes quality-control activities for every phase of the project

• Project Human Resource Management. Recruiting and hiring project team members;
training, motivating, and team building; and implementing related activities to ensure a
happy, productive team

• Project Communications Management. Identifying all stakeholders and the key commu-
nications to each; also establishing all communications mechanisms and schedules

C6696_03_CTP.4c 2/6/08 1:26 PM Page 82

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 3 The Analyst as a Project Manager ♦ 83

• Project Risk Management. Identifying and reviewing throughout the project all potential
risks for failure and developing plans to reduce these risks

• Project Procurement Management. Developing requests for proposals, evaluating bids,
writing contracts, and then monitoring vendor performance

• Project Integration Management. Integrating all the other knowledge areas into one
seamless whole

Additional details of each of these knowledge areas are provided in Appendix A on the
book’s Web site. Other textbooks that focus exclusively on project management, several of
which are listed in the “Further Resources” section at the end of the chapter, also provide
in-depth discussion and specific techniques that apply to each knowledge area.

As you progress in your career, you would be wise to keep a record of project management
skills you observe in others, as well as those you learn by your own experience. One place to
start is with the set of skills for a systems analyst described in Chapter 1. A good project man-
ager knows how to develop a plan, execute it, anticipate problems, and make adjustments.
Project management skills can be learned. Those who aspire to managing projects are proac-
tive in self-improvement and learn the necessary skills. Build on what you learn in this text-
book and continue to practice and hone your project management skills.

PROJECT INITIATION AND PROJECT PLANNING

Information system development projects are initiated for various reasons. Three general
driving forces are as follows: (1) to respond to an opportunity, (2) to resolve a problem, and
(3) to conform to a directive.

Most companies are continually looking for ways to increase their market share or to open
up new markets. One way they create opportunities is through strategic plans, both short term
and long term. In many ways, planning is an optimal way to identify new projects. The benefit of
this approach is that it provides a more stable and consistent environment in which to develop
new systems. As the strategic plans are developed, projects are identified, prioritized, and sched-
uled. Projects initiated through strategic planning are sometimes described as top-down projects.

To prioritize these projects, companies use a technique called weighted scoring. First, the IT
strategic planning committee identifies a set of criteria to judge the importance of new projects.
Examples of criteria are “opens a new market” or “provides a high net present value.” These
criteria are weighted for their importance, and each potential project is rated according to the
set of criteria. Projects with the highest scores are given priority for initiation.

Projects are also initiated to solve an immediate business problem. These projects attempt
to close the gap between what information processing is required to run the business correctly
and what is currently in operation. They can be initiated as part of a strategic plan but more
commonly are requested by middle managers to resolve some difficulty in company opera-
tions. Obviously, senior executives are also aware of internal problems and can initiate projects
to solve them. Sometimes these needs are so critical that they are brought to the attention of
the strategic planning committee and integrated into the overall business strategy. At other
times, an immediate need cannot wait, such as a new sales commission schedule or a new
report needed to assess productivity. In these cases, managers of business functions will
request the initiation of individual development projects.

Finally, projects are initiated to respond to outside directives. One common outside pres-
sure is legislative changes that require new information-gathering and external reporting
requirements, such as changes in tax laws and labor laws. For example, regulations in the Health
Insurance Portability and Accountability Act (HIPAA) are intended to safeguard patients’ med-
ical information. This act affected Reliable Pharmaceutical Service, as discussed in the case at the
end of Chapter 2. Legislative changes can also expand or contract the range of services and prod-
ucts that an organization can offer in a market. New regulations and laws can affect the strategic

weighted scoring

a method to prioritize
projects based on criteria
with unequal weights

C6696_03_CTP.4c 2/6/08 1:26 PM Page 83

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

84 ♦ PART 1 THE SYSTEMS ANALYST

plan, resulting in an expedited need for new systems. We have seen many regulatory changes in
the telecommunications industry, with cable TV and telephone companies vying for opportuni-
ties to provide cellular services, Internet access, and personalized entertainment.

Several steps normally occur with the initiation of a new project. A project charter is typi-
cally identified, which describes the purpose of the new system, the potential start and com-
pletion dates, and, very importantly, the key stakeholders and sponsors of the new system.

Whatever the reason for project initiation, it usually requires an initial review to ensure
that the benefits outweigh the costs and risks of development. Thus, the first activities of
almost every project after it is approved are those that precisely define the business problem,
determine the scope of the project, and perform a feasibility analysis, including a cost/benefit
analysis. We group all of these initial planning activities together as part of the overall project
planning component of the SDLC.

Whatever the source of the new project, be sure to carefully evaluate its
feasibility before proceeding.

BEST PRACTICE

INITIATING THE CUSTOMER SUPPORT SYSTEM FOR ROCKY
MOUNTAIN OUTFITTERS

As described in Chapter 1, RMO senior executives, with help from an outside consulting firm,
have developed a well-considered information systems strategic plan. The plan includes both
a technology architecture component and an application architecture component.
Implementation of the plan had begun with the initiation of the supply chain management
(SCM) project. The company founders, John and Liz Blankens, understood clearly that to
maintain good customer relations, they need to have systems in place to support the fulfill-
ment of sales as they move to broader geographical and Internet-based sales. The company
will not realize the full benefit of the SCM system until the customer support system (CSS)
also comes online. The SCM system will provide several cost-reduction efficiencies, but RMO
expects the real business benefit to come from a dramatic increase in sales from the expanded
sales and marketing capabilities of the new CSS.

The supply chain management system was well under way. The project was to be imple-
mented in several increments because several of RMO’s suppliers would also have to upgrade
their systems. The first increment was on schedule, the requirements had been finalized, the
overall architectural design was firm, and the pieces of the new system were expected to be
ready early the next year. John Blankens was really excited about the progress and was anx-
ious to get started with the new customer support system. He called a special meeting of the
company’s executive committee to assess the progress of the current projects and to evaluate
the possibility of moving ahead with the new CSS. Prior to the meeting, he asked VP of
Finance and Systems JoAnn White to bring a detailed financial analysis of current system bud-
gets and projections of the financial impacts that RMO could expect from beginning the CSS
project in the near future. He also invited Chief Information Officer Mac Preston to evaluate
the workload of the system development staff and the availability of staff to begin. Several
other assignments were given to committee members to consider his proposal carefully.

After a long discussion, the executive committee decided that it was not only feasible to
begin the project now, but critical to do so. Other retailers had proven that Internet sales and
marketing, if planned and executed correctly, could provide tremendous benefits to a com-
pany. Even though there had been several jerks and sputters, e-commerce was here to stay. It
was imperative for future viability that RMO, like other brick-and-mortar retailers, also have a
strong presence on the Internet.

As a result of the meeting, the committee directed Mac to start the project. First, he met
with Director of System Development John MacMurty and asked him to finalize his plans for

C6696_03_CTP.4c 2/6/08 1:26 PM Page 84

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 3 The Analyst as a Project Manager ♦ 85

a project manager and another experienced systems analyst to get the project started. He also
asked John to produce a project charter to confirm the decisions made by the executive com-
mittee. John began contacting executives to elicit their participation as members of the over-
sight committee. He understood well that if he could get strong commitment from senior
executives in the company, he would ensure good user involvement in the project. One of the
key elements of successful projects is to get broad involvement from the users. After a couple
of days of discussion with executives throughout the company, the oversight committee was
complete. Vice president of marketing and sales William McDougal, who had requested to be
the project sponsor because it supported his area directly, was the committee chair. Other
members were Robert Schneider, director of catalog sales, Brian Haddock from operations,
and, of course, John Blankens and Mac Preston.

The project began with the assignment of Barbara Halifax as the full-time project manager, as
indicated in the RMO memo in Chapter 1. Barbara has been with RMO for several years. Prior to
joining RMO, she worked for the information systems consulting division of one of the large
accounting firms. Her experience in consulting gave her broad exposure to many different compa-
nies and systems. Senior management in RMO had complete confidence in her abilities to man-
age the CSS project. Steven Deerfield, a senior systems analyst, was also assigned to the project.
Deerfield and Halifax had worked together before and had very compatible work styles. Because
this project was a critical component of RMO’s long-range strategic plan, two of the very best
systems analysts in the company were assigned. Figure 3-5 illustrates the project charter, which
documents the preliminary activities to get the project initiated.

, order tracking, shipping,

Project Name: Customer Support System

Project Purpose: To provide increased level of customer support. Should include all
customer-related functions from order entry to arrival of the shipment,
including customer inquiries/catalog, order entry
back order, returns, and sales analysis.

Anticipated Completion: Within 10 months of project initiation

Approved Budget: Up to $1,500,000

Key Participants:

Participant Position Primary responsibilities
Barbara Halifax Project manager Manage the entire project

John MacMurty Director Supervise project manager
Check status weekly
Serve on oversight committee

Mac Preston Chief information officer (CIO) Serve on oversight committee

William McDougal Senior VP marketing/sales Direct project sponsor
Approve budget, schedule
Serve on oversight committee

Robert Schneider Director of catalog sales Serve on oversight committee
Provide user support/resources

Brian Haddock Director of operations Serve on oversight committee
Provide user support/resources

Manager of shippingJason Nadold Provide user support/resources

Figure 3-5

RMO project charter

As described in Chapter 1, the primary objective of the system is to support RMO’s goal of
building customer loyalty and of providing all the necessary tools for customer relationship
management. The system is to further this objective by supporting all types of customer
services—including ordering, returns, and online catalogs—for the ongoing telephone sales
and a new capability with Internet sales. Customers not only must have access to the online
catalog of RMO products either via a telephone sales representative or the Internet, but must
also be able to see their past purchasing history. Managers at RMO would like the system to
include several “bells and whistles” to support their vision of RMO customer service.

C6696_03_CTP.4c 2/6/08 1:26 PM Page 85

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

These activities are all project management activities. Initial project planning activities are
usually staffed with only two or three highly experienced systems analysts, one of whom serves
as the project manager. The other systems analysts assigned to the team are experienced devel-
opers with strong analytical skills, as well as experience in managing and controlling projects.
The first team members that are assigned frequently become the core team leaders around
which the rest of the team is built. At the successful conclusion of this phase, the project will
have begun with resources, schedules, and a budget.

To help you learn about the activities of project planning, the following sections each
describe a project planning activity and then show how it applies to RMO. Figure 3-7 lists
each activity with the key question the project team tries to answer when completing the
activity. For example, at the end of project planning, the key question to answer for the Launch
the project activity becomes: Are we ready to start the project?

86 ♦ PART 1 THE SYSTEMS ANALYST

The following section describes the project planning activities, using examples from the
RMO project. As explained previously, these activities are exclusively project management activi-
ties, which are used to plan, organize, schedule, and finally obtain approval for the project. Note
that even though this project seems to have tacit approval from senior management, it must
meet the rigorous evaluation criteria of all RMO projects. Even though only two members of the
team have been assigned at this point, Barbara and Steve have extensive experience and excel-
lent project management skills.

PROJECT PLANNING ACTIVITIES

From Figures 3-3 and 3-4, we see that both predictive and adaptive projects begin with over-
all project planning. The major difference in planning between the two types of projects is
the level of detail provided. Predictive project members attempt to plan the entire project,
including the schedule, at a fairly detailed level. Adaptive project members plan the overall
project, but leave much of the detail to be developed during iteration planning. The remain-
der of the chapter explains project management techniques that are used for all project man-
agement tasks, whether at the beginning of the project or during the iterations. The project
planning activities of the SDLC, as depicted in Figure 3-6, consist of the activities required to
get the project organized and started. As discussed in Chapter 2, project management activi-
ties are as follows:

• Define the problem.
• Produce the project schedule.
• Confirm project feasibility.
• Staff the project.
• Launch the project.

Define the problem
Produce the project schedule
Confirm project feasibilty
Staff the project
Launch the project

Analysis
activities

Project planning activities

Design
activities Implementation

activities Support
activities

Figure 3-6

Activities required for

project planning

C6696_03_CTP.4c 2/6/08 1:26 PM Page 86

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 3 The Analyst as a Project Manager ♦ 87

DEFINING THE PROBLEM

Carefully defining the problem is one of the most important activities of the project. The
objective is to define precisely the business problem to be solved and thereby determine the
scope of the new system. This activity defines the target that you want to hit. If the target is ill
defined, then all subsequent activities will lack focus. As pointed out earlier, one of the pri-
mary causes of project failure is an unclear objective.

The first task within this activity is to review the business needs that originally initiated
the project. As with RMO, if the project was initiated as part of the strategic plan, then the
planning documents are reviewed. If the project originated from departmental needs, then
key users are consulted to help the project team understand the business need. As the needs
are identified, the team also develops a detailed list of the expected benefits. We define those
as the business benefits. The list of business benefits contains the results that the organiza-
tion anticipates it will accrue from a new system. Business benefits are normally described in
terms of the influences that can change the financial statements, either by decreasing costs or
increasing revenues.

The second task in this activity is to identify, at a high level, the expected capabilities of
the new system. The objective is to define the scope of the problem in terms of the require-
ments of the information system that can solve the problem. Although at first defining the
expected capabilities may not appear to be defining the problem, it is necessary to understand
the scope of the new system and hence the project’s scope.

Members of the development team combine these three components—the problem descrip-
tion, the business benefits, and the system capabilities—to get a system scope document. These
members (for example, the systems analysts) work with the users and the client to develop this
document. Sometimes this document is combined with the project charter; in other cases, it is
independent. Figure 3-8 is an example of the system scope document for RMO. Note the differ-
ences between the business benefits and the system capabilities. The business benefits focus on
the financial benefit to the company. The system capabilities focus on the system itself. The ben-
efits are achieved through the capabilities provided by the system.

At times, especially when the new system is an attempt to push the state of the art, it may
be necessary to build a preliminary prototype as a proof of the concept. New solutions, partic-
ularly those based on new technology, may not be well accepted or well understood. In that
situation, the project team can build a proof of concept prototype to illustrate that a solution
is possible and feasible. When a proof of concept is necessary, the project scope document will
refer to the results of the initial prototype’s construction, test, and fitness for purpose. For
example, RMO senior management may want the system to automatically suggest complemen-
tary accessories for Web customers who purchase items over the Internet. The project team may
need to build some prototypes to verify that the request is technologically feasible.

Frequently the project team also develops a diagram to describe the scope of the system in
terms of information flowing into and out of the system. This diagram, which is called the
context diagram, shows the primary users of the system and the information that is

Project planning activities Key questions

Define the problem Do we understand what we are supposed to be working on?

Produce the project schedule Can the project be completed on time given the available
resources?

Confirm project feasibility Is it still feasible to begin working on this project?

Staff the project Are the resources available, trained, and ready to start
the project?

Launch the project Are we ready to start the project?

Figure 3-7

Project planning

activities and their key

questions

business benefits

the benefits that accrue
to the organization; often
measured in monetary
terms

system scope

document

a document—containing
problem description,
business benefits, and
system capabilities—to
help define the scope of a
new system

proof of concept

prototype

a very preliminary
prototype built to
illustrate that a solution
to a business need is
feasible

context diagram

a data flow diagram
(DFD) showing the scope
of a system

C6696_03_CTP.4c 2/6/08 1:26 PM Page 87

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

88 ♦ PART 1 THE SYSTEMS ANALYST

exchanged between them and the system. Figure 3-9 is an example of a simplified data flow
diagram (DFD) called the context diagram for the RMO customer support system. Because, at
this point, the project team is only documenting the scope of the new system, the diagram
includes only major information requirements. In fact, the diagram focuses primarily on out-
put information from the system. Chapter 6 provides a more detailed explanation and exam-
ple of the RMO context diagram. Chapter 7 explains an object-oriented system overview
diagram, called a use case diagram.

The box with rounded corners in the middle of the diagram represents the customer sup-
port system itself. The boxes around the oval are the entities that provide information to the
system or that receive information from the system. The lines with arrowheads are the major
inputs to and outputs from the system. This diagram identifies only the major information
flows into and out of the system. The objective is to get an overview of a proposed solution
and not get involved in the details.

Note that the context diagram is also used during the analysis phase. During project plan-
ning, the diagram helps define the scope of the problem. This diagram becomes a starting
point for the more detailed investigation done during analysis.

Defining the scope carefully is important for establishing an estimate of the amount of
effort required to complete the project. The size or scope of the system determines the
amount of effort, which then determines the time and cost of the project. Several techniques
can be used to measure the size or scope of a proposed system, although accurate estimates

Problem Description

Catalog sales began in Rocky Mountain Outfitters as a small experiment that soon developed into a rapidly growing division
of the company. Support was initially provided by manual procedures with some simple off-the-shelf programs to assist in
order taking and fulfillment. By 2006, the growth of catalog sales, including Internet sales, was stretching the capabilities of
the current system. As a result of a long-term strategic plan, RMO decided to initiate two major system development projects.
 The first, the supply chain management (SCM) system, was started in 2006 and is progressing on schedule. The second
identified system is a customer support system (CSS) to provide sales, marketing, and a full range of customer support
functionality. This project is an integral part of the total long-term strategic plan of RMO to continue to grow and maintain its
leadership position in the sportswear industry.

Anticipated Business Benefits

The primary business benefit to be obtained from the new system is for RMO to maintain its leadership position in the sportswear
industry. More immediate benefits include the following:

Reduce errors caused by manual processing of orders.
Expedite order fulfillment due to more rapid order processing.
Maintain or reduce staffing levels in mail-order and phone-order processing.
Dramatically increase Internet sales through a highly interactive Web site.
Increase turnover by tracking sales of popular items and slow movers.
Increase level of customer loyalty through extensive customer support and information.

System Capabilities

To obtain the business benefits listed previously, the customer support subsystem shall include the following capabilities:

Be a high-support system with online customer, order, back-order, and returns information.
Support traditional telephone and mail catalog sales with rapid-entry screens.
Include Internet customer and catalog sale capability, including purchase and order tracking.
Maintain adequate database and history information to support market analysis.
Provide a history of customer transactions for customer query.
Be able to handle substantial increases in volume (300 percent or more) without degradation.
Support 24-hour shipment of new orders.
Coordinate order shipment from multiple warehouses.
Maintain history to support analysis of sales and forecasting of market demand.

System Scope Document
Customer Support System

Figure 3-8

System scope document

for the RMO customer

support system

C6696_03_CTP.4c 2/6/08 1:26 PM Page 88

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 3 The Analyst as a Project Manager ♦ 89

are difficult to achieve. Most approaches count the number of activities or use cases the sys-
tem is required to support. Chapter 5 discusses activities and use cases and presents tech-
niques for identifying them. In addition, data entities and classes that are in the problem
domain of the system can be counted to estimate the scope. Chapter 5 also presents these
identification techniques. Some approaches count the number of function points that can be
identified. One technique, called the COnstructive COst MOdel (COCOMO), attempts to
count function points as the number of inputs and outputs, the number of files maintained,
the number of updates required, and so on.

The key question to be answered when completing the problem definition activity is: Do
we understand what we are supposed to be working on?

DEFINING THE PROBLEM AT RMO

Barbara and Steve, the CSS project team, developed the lists for the system scope document
after talking to William McDougal, vice president of marketing and sales, and his assistants.
Chapter 4 explains more about interviewing users and eliciting important information. It is
essential to obtain information from the people who will use the system and to involve the
people who will benefit most from it. They provide valuable insights to ensure that the sys-
tem satisfies the business needs. As noted previously, the most critical element in the success
of a system development project is user involvement.

One additional task is required to complete the problem definition activity. The project
team conducts a preliminary investigation of alternative solutions to reassess the assumptions
the team made when the project was initiated. Because the schedule and budget for the
remainder of the project inherently assume a particular approach to developing the system, it
is critical to make those implicit assumptions explicit so that all participants understand the
constraints on the project schedule and the team can perform an accurate feasibility analysis.

For example, if an “off-the-shelf” program is identified as a possible solution, part of the
schedule during the analysis phase must include tasks to evaluate the program against the
needs being researched. If the most viable solution appears to be a new system developed
completely in-house, detailed analysis tasks are planned and scheduled.

Prospective customer info

New order

Back order notice

Item return info

Customer change notice

Shipment bill of lading

Deposit information

Sales reports

Performance reports

Fulfillment reports

Sales reports

Activity reports

Order details

Marketing

Customer

Bank Shipping

Management

Merchandising
(sales)

0

Customer
support
system

Figure 3-9

Context diagram for the

customer support

system

C6696_03_CTP.4c 2/6/08 1:26 PM Page 89

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

90 ♦ PART 1 THE SYSTEMS ANALYST

While Barbara was finishing the problem definition statement, Steve did some prelimi-
nary investigation of possible solutions. He researched the trade magazines, the Internet, and
other resources to determine whether sales and customer support systems could be bought
and installed rapidly. Although he found several, none seemed to have the exact match of
capabilities that RMO needed. He and Barbara, along with William McDougal, had several
discussions about how best to proceed. They decided that the best approach was to proceed
with the analysis phase of the project before making any final decision about solutions. They
would revisit this decision, in much more detail, after the analysis phase activities were com-
pleted. For now, Barbara and Steve began developing a schedule, budget, and feasibility state-
ment for the new system.

PRODUCING THE PROJECT SCHEDULE

Before discussing the details of a project schedule, let’s clarify two terms: task and activity.
Fundamentally, an activity is made up of a group of related tasks or other smaller activities. A
task, then, is the smallest piece of work that is identified and scheduled. Activities are also
identified, named, and scheduled. For example, suppose that you are scheduling the design
phase for a waterfall-type project. Within the design phase, you identify activities such as
Design the user interface, Design and integrate the database, and Complete the application design.
Within the Design the user interface activity, you might identify individual tasks such as Design
the customer entry form and Design the order-entry form. The waterfall methodologies group
activities together into phases, such as analysis phase or design phase. Iterative, adaptive
methodologies group activities together into iterations. You will be able to see the differences
in the example schedules provided later in this chapter.

During project planning, it may not be possible to schedule every task in the entire proj-
ect because it is too early to know all of the tasks that will be necessary. However, one of the
requirements of project planning is to provide estimates of the time to complete the project
and the total cost of the project. Because one of the major factors in project cost is payment
of salaries to the project team, the estimate of the time and labor to complete the project
becomes critical. The activity of developing the project schedule is one of the most difficult
endeavors of project planning, yet it is one of the most important. The development of a proj-
ect schedule is divided into three main steps:

• Develop a work breakdown structure.
• Build a schedule using a Gantt chart.
• Develop resource requirements and the staffing plan.

DEVELOPING A WORK BREAKDOWN STRUCTURE

The first step in building a project schedule is to identify all of the activities and tasks that
need to be scheduled. A work breakdown structure (WBS) is simply a list of all the required
individual activities and tasks for the project. Figure 3-10 is one example of a work breakdown
structure that shows the activities and tasks for the overall project planning phase of the RMO
project.

The primary activities in this WBS are precisely the activities that were identified earlier as
the key activities for project planning. Each activity is further divided into individual tasks to
be completed. The WBS identifies a hierarchy, much like an outline for a paper. The project
requires a WBS for each phase of the SDLC, and the project planning WBS is shown here
because we discuss these activities in detail in this chapter. Obviously, the analysis, design,
and implementation phase WBSs would be even more important to define because project
planning attempts to schedule the entire project.

There are two general approaches for building a WBS: (1) by deliverable and (2) by a
sequential timeline. The first approach identifies every deliverable, both intermediate and

work breakdown

structure (WBS)

the hierarchy of phases,
activities, and tasks of a
project; one method to
estimate and schedule
the tasks of a project

C6696_03_CTP.4c 2/6/08 1:26 PM Page 90

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 3 The Analyst as a Project Manager ♦ 91

final, that must be developed. Then the WBS identifies every task that is necessary to create that
deliverable. For example, if the project is to build a house, one of the intermediate deliverables
would be to install the electrical wiring. The tasks for that deliverable relate to hiring an electri-
cal contractor, drilling holes, running wires, connecting junction boxes, connecting fixtures,
and so forth. The second approach—the sequential timeline approach—works through the
normal sequence of activities that are required for the final deliverable. For our example of
building a house, the sequential timeline approach relates to tasks such as surveying the prop-
erty, digging the foundation, pouring the foundation, framing the walls, and so forth.

The four most effective techniques for identifying the tasks of the WBS are:

• Top-down: Identifying major activities first and then listing internal tasks
• Bottom-up: Listing all the tasks you can think of and organizing them later
• Template: Using a standard template of tasks for projects that are fairly standard
• Analogy: Finding a similar, or analogous, project that is finished and copying its tasks

Figure 3-10

Work breakdown

structure for planning

activities of the RMO

project

C6696_03_CTP.4c 2/6/08 1:26 PM Page 91

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

92 ♦ PART 1 THE SYSTEMS ANALYST

When it is possible, teams try to use the template or analogy approach. Otherwise, a com-
bination of the top-down and bottom-up approaches can be used to brainstorm a good list
of tasks. After the team members identify the major activities, they might brainstorm in a bot-
tom-up fashion to try to identify any other tasks that might have to be done. Often, teams
will brainstorm using a blank wall and Post-it notes so they can move tasks around and reor-
ganize them. Figure 3-11 is an example of a work breakdown structure in a more graphical,
hierarchical format. The figure also shows a project that is using an adaptive, iterative
approach, so it encompasses the first iteration, which is planning.

The left side of the figure shows several levels of the WBS. The top level is the overall iteration.
Because this WBS is based on the deliverables for the iteration, the second level lists the major
deliverables. The third level denotes major activities and the fourth level contains the individual
tasks. It is not necessary to take all the branches to the same level of detail. Some deliverables may
only require a single activity, while others may need to be expanded to several more layers.

When developing a WBS, new analysts frequently ask, “How detailed should the individ-
ual tasks be?” A few guidelines can help answer that question:

1. There should be a way to recognize when the task is complete.
2. The definition of the task should be clear enough so that someone can estimate the

amount of effort required to complete it.
3. As a general rule for software projects, the effort should take 2 to 10 working days.

DEVELOPING THE SCHEDULE

A project schedule lists all project activities and tasks and the order in which they must be com-
pleted. To build the schedule, the project team must identify dependencies between the tasks
on the WBS and estimate the effort that each task will require. The first step is to identify the
dependencies between the tasks—the lowest-level items on each vertical branch. Dependencies
identify which tasks must be completed first or must precede other tasks. The terms used for
this relationship are predecessor and successor tasks. For example, before the team can test a sys-
tem component, obviously it must be programmed or at least partially programmed.

Figure 3-11

Work breakdown

structure for the first

iteration for an adaptive

project for RMO

C6696_03_CTP.4c 2/6/08 1:26 PM Page 92

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 3 The Analyst as a Project Manager ♦ 93

The most common way to relate tasks is to consider the order in which they are completed—
that is, as one task finishes, the next one starts. This is called a finish-start relationship. Other ways
to relate tasks include start-start relationships, which means that tasks start at the same time, and
finish-finish relationships, which means they must finish at the same time. Any of these relation-
ships can be adjusted to include a time span (number of days) of lead or lag times. For example,
an analyst may decide that task B starts two days after task A starts. This is a start-start relationship
with a two-day lag.

The second step is to estimate the effort required for each task. At this point in the process
of building the schedule, we want to estimate the actual employee effort required. The effort
can be in hours or days or weeks, but it should be the actual amount of work required to com-
plete the task.

Both the dependencies and the effort are estimated on the lowest-level tasks. The higher-
level activities are merely summations of the low-level task times. Trying to estimate at both
levels causes inconsistencies. Some developers prefer to estimate the effort before defining
the dependencies; however, we recommend that the dependencies be developed first.
Estimates of effort are usually more accurate if they are considered in the context of the task
dependencies.

Once the tasks have been identified, the relationships determined, and the effort estimated,
you can begin building the schedule. Today, we use a project scheduling tool such as Microsoft
Project to build schedules. You can use MS Project to help document your work as you define
the relationships and effort. We distinguish between the first three tasks of creating the WBS,
determining dependencies and estimating effort, and building the schedule because the first
three are “human brain” tasks that must be done by the project planner. The tool can be used
to build the schedule itself.

Entering the WBS into MS Project

This section provides a brief introduction to MS Project. For more detailed instructions, refer
to Appendix E on the book’s Web site, which contains a learning guide to MS Project
(www.course.com/mis/sad5). Two types of charts are used to develop a project schedule: a
PERT/CPM chart (MS Project calls it a Network Diagram) and a Gantt chart. Both charts
show essentially the same information, but in different formats. Each chart also has its own
strengths and weaknesses. We will use the Gantt chart format, but we recommend that you
view the Network diagram in MS Project.

To begin entering your project into MS Project, you create a new project. Click File|New
and then enter the date you want the project to start. The first view is the Gantt Chart data-
entry view. Normally, the page has three panes open: an icon menu pane on the left, the task
data-entry pane in the middle, and a calendar bar chart pane on the right. In the middle
panel, we begin by entering the name of each task in the Task Name column. The easiest way
to enter tasks is to go from top to bottom down each leg from left to right across the WBS dia-
gram. Enter all the activities and tasks, including the top-level activities. If your WBS reflects a
left-to-right sequence of tasks, the Gantt chart will also group the tasks by the order in which
they are executed. The only critical issue at this point is to make sure the lower-level tasks are
positioned directly below their higher-level activity.

After all of the tasks are entered, you should begin at the lowest level, in this case level 3,
and select all of the tasks listed below a given activity. Once they are selected, click the right
arrow, which is the second icon from the left on the formatting taskbar. This “demotes” all of
the selected tasks to subtasks of the activity. Continue this process for all lowest-level tasks.
Next, select all second- and third-level tasks that are associated with a single first-level activity.
Demote the entire group. Notice that the relationship between the lower levels remains.

Figure 3-12 illustrates this process. In the figure, you can see that the indentation scheme
has been completed for all sublevels beneath the activities of “Define the problem” and
“Produce the schedule.”

PERT/CPM chart

a technique for
scheduling a project
based on individual tasks
or activities

Gantt chart

a bar chart that
represents the tasks and
activities of the project
schedule

C6696_03_CTP.4c 2/6/08 1:26 PM Page 93

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

http://www.course.com/mis/sad5

94 ♦ PART 1 THE SYSTEMS ANALYST

Notice that each line in the schedule is assigned a number. This numbering is fixed by MS
Project, and you cannot change it. You can add WBS codes, as shown in Figure 3-11, using
“Tools>Options>Show outline numbers.” Also, notice that MS Project uses the word duration
instead of effort to measure the size of the task. Duration is the length of time the task takes,
and it is related to effort by the following equation:

Duration � Persons = Effort
The default duration is one day.

You should first enter your effort estimates in the Duration column. You may need to
modify them later, when you enter resources. Also notice the column that denotes predeces-
sor tasks. You enter the line number (task ID) for the predecessor task(s) in that column. As
you enter predecessors and durations, MS Project automatically builds the Gantt chart in the
right pane of the window. Notice that the defaults show all the tasks beginning on the first
day of the project, with a duration of one day.

After you have entered all the tasks and identified the correct hierarchy relationships, you
can enter the durations and the predecessors, but only for the lowest-level tasks. MS Project
will calculate the total duration, with beginning and ending dates, for all of the summary-level
activities. You can enter this information directly in the data-entry view, as shown in Figure 3-12.
You also can enter the information using the “Window>Split” Option. The lower half of the
screen splits and presents a form that you can use to enter effort, predecessor, resource, and
other information about each task. The task highlighted on the data-entry panel is the one
shown in the split window.

Figure 3-12

Entering the WBS into

MS Project

C6696_03_CTP.4c 2/6/08 1:26 PM Page 94

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 3 The Analyst as a Project Manager ♦ 95

After entering the desired information, click OK to apply the changes. You can also navi-
gate the task list using the Previous and Next buttons on the split window. Figure 3-13 shows
the Gantt chart with a split window. In this case, the split window shows a drop-down box of
all the tasks, which allows you to choose one or more as the predecessor task(s). You can
enter the task duration in a box at the top of the split window. After entering the information
for predecessors and duration, click OK to apply the update. After the update has been
applied, the OK and Cancel buttons change to Previous and Next to allow you to navigate to
other tasks.

As you enter the predecessor and duration information, MS Project updates the bars on
the Gantt chart to reflect the actual project schedule (see Figure 3-14). Of course, this is an
estimated schedule—in other words, it is the plan. The actual project will probably not
unfold in exactly this way. This figure shows the Tracking Gantt chart view. The Tracking Gantt
chart is normally used after the project has begun and the project team begins tracking
progress. We chose this view to illustrate more capabilities of MS Project, as explained below.

This figure shows the data-entry pane (on the left) and the bar chart pane (on the right).
In the data-entry pane, the indentation distinguishes the summary activities from the detailed
tasks. On the right, the summary bars also have a different bar representation, with a black
roof on the bar. The duration of the summary tasks is automatically derived from the sum of
the detailed tasks. The dates are also calculated automatically by MS Project.

Notice that some taskbars are shown in red and others are shown in blue. The red tasks
are on the critical path of the project. The critical path is the sequence of tasks that determine
the length of the project. The critical path indicates the earliest date that the project can be
completed. Another important characteristic of the critical path is that if any tasks on it are
delayed, or take longer than expected to finish, then the entire project is delayed. This fact is
important for a project manager; he or she should watch the tasks on the critical path care-
fully and take special steps to see that they are not delayed.

Figure 3-13

Using a split window to

enter duration and

predecessor information

critical path

a sequence of tasks that
cannot be delayed
without causing the
project to be
completed late

C6696_03_CTP.4c 2/6/08 1:26 PM Page 95

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

96 ♦ PART 1 THE SYSTEMS ANALYST

The tasks shown with the blue bars are not on the critical path. Each of those tasks has some
slack time. Slack time, or float, is the amount of time any task can be delayed without having a
negative impact on the project completion date. For example, task number 19, “Technical feasi-
bility,” completes on January 15, 2010, but task number 20, “Evaluate resource availability,”
does not begin until January 26, 2010. Hence, task 19 has 11 days of slack time. In other words,
if the task slipped by 11 days, it would still have no negative impact on the project.

Another important concept from this diagram is a milestone. A milestone is a precise
point on the project schedule that indicates a specific completion point. Often, a milestone is
accompanied by a deliverable or end product. Milestones provide checkpoints for project
managers to verify the progress of the project. Figure 3-14 contains one milestone, task 32,
indicating the completion of planning activities. In MS Project, milestones are created by
entering a duration value of zero days.

Developing the Resource Requirements and the Staffing Plan

Another important activity that planners must complete when developing the project’s sched-
ule is a resource and staffing plan. As the project manager and one or two other experienced
developers work to create the WBS and estimate the effort required for each task, they nor-
mally also try to identify the specific resources needed to complete the task. The core team
members usually carry out much of the activities during the planning, because most of the
tasks are project management activities.

There are several ways to enter resource information into MS Project. The first step is to iden-
tify the specific resources for the project by using the Resource Sheet view, as shown in Figure 3-15.
In this figure, we have indicated a project manager for 100 percent availability and have even
assigned him a rate for the project. We have also indicated that senior analysts will be part of the
project, and have noted that two are needed—for a total of 200 percent availability and a rate of
$50 per hour. (These rates may seem high, but we are accounting for benefits and perhaps even
“consulting rate” charges.) Resources can be identified by type, as we have done here, or even by
people’s names. Usually, though, it is better to identify types of resources needed.

Figure 3-14

Tracking Gantt chart of

RMO’s planning activities

slack time

the amount of time a
task can be delayed
without affecting the
project schedule (also
called float)

float

the amount of time a
task can be delayed
without affecting the
project schedule (also
called slack time)

milestone

a definite completion
point in a schedule that is
marked by a specific
deliverable or event

C6696_03_CTP.4c 2/6/08 1:26 PM Page 96

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 3 The Analyst as a Project Manager ♦ 97

The second step is to assign these resources to the tasks. We prefer to use the split window
approach, as explained earlier. You select a task, then use the drop-down box under the Resource
Name column. Select the resource and indicate how long it will be available for the selected
task. Figure 3-16 illustrates the entry of resources for the Develop Context Diagram task. Notice
that we have assigned one and one-half senior analysts to this task.

Figure 3-15

Resource sheet showing

two resources

Figure 3-16

Entering resources for

the scheduled tasks

Keep one caveat in mind when entering resources. Remember the equation “Duration �
Persons = Effort.” The first time you enter resources using the split window, MS Project
ignores the equation and leaves the duration as you originally estimated it. However, after the
first time, MS Project applies the equation every time you modify the resources. The Effort
driven check box in the split window indicates to MS Project that the effort should remain
constant. So, referring to the equation, if you change the number of resources or the avail-
ability of the resources, MS Project will change the task duration so that the effort remains a
constant. You can turn this feature off by unchecking the Effort driven check box.

This brief introduction to MS Project illustrates how to use a tool in the development of
the WBS and the project schedule. MS Project has many more features that you need to learn
if you want to use its full capabilities. Appendix E on the book’s Web site (www.course.com/
mis/sad5) provides a more detailed tutorial on using MS Project.

SCHEDULING THE ENTIRE SDLC

The examples shown in Figures 3-14 through 3-16 only detail the WBS for the project plan-
ning activities. Obviously, the other SDLC phases would also need to be scheduled. Each
activity within each phase is made up of a list of tasks. A template-based or analogy-based

C6696_03_CTP.4c 2/6/08 1:26 PM Page 97

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

http://www.course.com/mis/sad5
http://www.course.com/mis/sad5

98 ♦ PART 1 THE SYSTEMS ANALYST

WBS can be used to provide the detailed list of tasks for each analysis, design, and implemen-
tation phase activity. As you learn more about each phase and its activities in this book, you
will understand more about the required tasks that need to be scheduled.

If we assume that the project includes overlapping SDLC phases, a Gantt chart showing
the entire project at the phase and activity level of detail might look like Figure 3-17. Note
that the length of each activity does not imply that the team is working full-time on that activ-
ity from start to finish. Rather, the activity starts and continues with varying degrees of effort
for the duration. All team members get used to multitasking; that is, working on more than
one activity or task at the same time. Therefore, an overlapping view of the project is not use-
ful for calculating total labor cost, but it can show the completion of each phase and the
entire project. The elapsed time for the CSS development project is about nine months. After
that, the support phase begins.

Recall that for an adaptive approach, the project schedule will be based on iterations. For
planning and scheduling purposes, many project managers use project management software
and Gantt charts to plan and track the activities and tasks within each iteration of the project.
Each iteration includes analysis, design, and implementation activities that focus on a por-
tion of the system’s functionality. Some analysis activities will be included in every iteration;
other activities might only be included in a few. For example, each iteration might include
analysis activities Gather information and Define system requirement and design activities Design
the application architecture, Design the user interfaces, and Design and integrate the database.
Similarly, each iteration might include implementation activities Construct software components
and Verify and test. Other activities from each of these phases might be included in some but
not all iterations, depending on the project plan. A Gantt chart in Figure 3-18 shows how the
RMO project might be scheduled with three iterations.

More detailed information on these scheduling techniques—especially on how to build
schedules, including PERT/CPM and Gantt charts using Microsoft Project—is provided in
Appendix B on the book’s Web site. The key question to be answered when completing this
activity is: Can the project be completed on time given the available resources?

Figure 3-17

Gantt chart for the

complete customer

support system project

C6696_03_CTP.4c 2/6/08 1:26 PM Page 98

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 3 The Analyst as a Project Manager ♦ 99

IDENTIFYING PROJECT RISKS AND CONFIRMING PROJECT FEASIBILITY

Project feasibility analysis is an activity that verifies whether a project can be started and suc-
cessfully completed. Because, by definition, a project is a unique endeavor, every project has
unique challenges that affect its feasibility. As we learned early in the chapter, information
system projects do not have a very good track record. Even well-planned projects sometimes
go awry and get into trouble.

The objective in assessing feasibility is to determine whether a development project has a
reasonable chance of success. Feasibility analysis essentially identifies all the risks of failure.
First, the project team assesses the original assumptions and identifies other risks that could
jeopardize the project’s success. Then, if necessary, the team establishes plans and procedures
to ensure that those risks do not interfere with the success of the project. However, if the team
suspects that serious risks could jeopardize the project, members must discover and evaluate
them as soon as possible. Generally, the team performs the following activities when confirm-
ing a project’s feasibility:

• Assess the risk to the project (risk management).
• Determine the organizational and cultural feasibility.
• Evaluate the technological feasibility.
• Determine the schedule feasibility.
• Assess the resource feasibility.
• Determine the economic feasibility.

ASSESSING THE RISKS TO THE PROJECT (RISK MANAGEMENT)

Feasibility analysis also includes risk management. Risk management is the project manage-
ment area that is forward-looking, during which the team tries to identify potential trouble
spots that could jeopardize the success of the project. Sometimes project managers look at the
feasibility from various points of view but forget to identify specific risks. We believe that good
project management requires both: a careful look at the overall feasibility of the project and at
the individual risks. We first present a simple technique for identifying and assessing risks. Then
we explain various areas that should be considered for project feasibility and risk management.

Figure 3-18

Gantt chart for an

iterative approach to the

customer support

system

risk management

the project management
area in which the team
tries to identify potential
trouble spots that could
jeopardize the success of
the project

C6696_03_CTP.4c 2/6/08 1:26 PM Page 99

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Risk management is done throughout the life of the project. During a project’s initiation,
the primary activity of risk management is to identify potential risks and assess their negative
impact. There are no quick and easy ways to identify all of the risks that a project might face.
We have found that the best way to identify risks is simply to have a brainstorming session.
The core team members should be the primary participants in this session, but selected stake-
holders might also participate. The best people to include in the sessions are those who are
experienced and have worked on previous projects. As with any brainstorming session, partic-
ipants should let the ideas flow freely before judging and eliminating the bad ones.

100 ♦ PART 1 THE SYSTEMS ANALYST

Brainstorming sessions that include key project members and stakeholders
are a good way to identify risks.

BEST PRACTICE

After the potential risks have been identified, the team can use a simple matrix to analyze
the potential for harm to the project. Figure 3-19 is an example of a simple table that illus-
trates the technique. The left column is the list of identified risks. The second column, titled
“Potential impact on project,” provides an assessment of how badly the project will be
affected if the risk materializes. The team makes a subjective judgment of three possible val-
ues: high, medium, or low. The next column indicates how likely it is that the negative event
will really happen. Instead of calculating complex probabilities, again the team just estimates
whether the likelihood is high, medium, or low.

Risk description Potential impact Likelihood of Difficulty of timely Overall threat
on project (high, occurrence (high, anticipation (hard, (high, medium,
medium, low) medium, low) medium, easy) low)

Critical team member (expert) High Medium Medium High
not available

Changing legal requirements High Low Hard Low

Organization employees not Medium Medium Easy Medium
computer savvy

Figure 3-19

Simplified risk analysis

The next column records the evaluation of how hard or easy it is to predict that the nega-
tive event will happen and whether that prediction can be made in time to take corrective
action. For example, the first risk is that a critical expert will not be available to the team. If
the project manager finds out on the day the team member is supposed to start work that he
or she is not available, that risk is obviously hard to predict and can have a very negative
impact on the project. If the project manager expects to have a month’s warning that the
resource will not be available, the negative event is easy to predict, and some other contin-
gency can be arranged. The team evaluates the risks in this column as hard, medium, or easy.

Finally, given the values in the middle three columns, the team assigns an overall evalua-
tion of each risk. The project manager uses this information to watch and track the potential
risks and is often able either to prevent the negative event from happening or to have a
backup plan ready when it does occur.

ORGANIZATIONAL AND CULTURAL FEASIBILITY

As discussed in Chapter 1, each company has its own culture, and any new system must be
accommodated within that culture. There is always the risk that a new system departs so dra-
matically from existing norms that it cannot be successfully deployed. The analysts involved

C6696_03_CTP.4c 2/6/08 1:26 PM Page 100

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 3 The Analyst as a Project Manager ♦ 101

with feasibility analysis should evaluate organizational and cultural issues to identify poten-
tial risks for the new system. Such issues might include the following:

• A current low level of computer competency
• Substantial computer phobia
• A perceived loss of control by staff or management
• Potential shifting of political and organizational power due to the new system
• Fear of change of job responsibilities
• Fear of loss of employment due to increased automation
• Reversal of long-standing work procedures

It is not possible to enumerate all the potential organizational and cultural risks that exist.
The project management team needs to be very sensitive to reluctance within the organiza-
tion to identify and resolve these risks. The question to ask for operational feasibility is: What
items might prevent the effective use of the new system and the resulting loss of business benefits?

After identifying the risks, the project management team can take positive steps to counter
them. For example, the team can hold additional training sessions to teach new procedures
and provide increased computer skills. Higher levels of user involvement in developing the
new system will tend to increase user enthusiasm and commitment.

TECHNOLOGICAL FEASIBILITY

Generally, a new system brings new technology into the company. At times the new system
stretches the state of the art of the technology. Other projects use existing technology but
combine it into new, untested configurations. Also, even existing technology can pose the
same challenges as new technology if there is a lack of expertise within the company. If an
outside vendor is providing a capability in a certain area, the client organization usually
assumes the vendor is expert in that area. However, even an outside vendor is subject to the
risk that the requested level of technology is too complicated.

The project management team needs to assess carefully the proposed technological
requirements and available expertise. When these risks are identified, the solutions are usu-
ally straightforward. The solutions to technological risks include providing additional train-
ing, hiring consultants, or hiring more experienced employees. In some cases, the scope and
approach of the project may need to be changed to ameliorate technological risk. The impor-
tant point is that a realistic assessment will identify technological risks early, making it possi-
ble to implement corrective measures.

SCHEDULE FEASIBILITY

The development of a project schedule always involves high risk. Every schedule requires
many assumptions and estimates without adequate information. For example, the needs, and
hence the scope, of the new system are not well known, the time needed to research and final-
ize requirements must be estimated, and the availability and capability of team members are
not completely known.

Another frequent risk in developing the schedule occurs when upper management decides
that the new system must be deployed within a certain time. Sometimes there is an important
business requirement for defining a fixed deadline, such as RMO’s need to complete the CSS
in time for online ordering over the holidays. Similarly, universities require the completion of
new systems before key dates in the university schedule. For example, if a new admissions sys-
tem is not completed before the admissions season, then it might as well wait another full year.
In cases like these, schedule feasibility can be the most important feasibility factor to consider.

If the deadline appears arbitrary, the tendency is to build the schedule to show that it can
be done. Unfortunately, this practice usually spells disaster. The project team should build
the schedule without any preconceived notion of required completion dates. After the sched-
ule is completed, comparisons can be done to see whether timetables coincide. If not, the

C6696_03_CTP.4c 2/6/08 1:26 PM Page 101

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

102 ♦ PART 1 THE SYSTEMS ANALYST

team can take corrective measures, such as reducing the scope of the project, to increase the
probability of the project’s on-time completion.

One objective of defining milestones during the project schedule is to permit the project
manager to assess the ongoing risk of schedule slippage. If the team begins to miss mile-
stones, the manager can possibly implement corrective measures early. Contingency plans
can be developed and carried out to reduce the risk of further slippage.

Allocating adequate personnel with the right experience and expertise is always a problem
in a project. Any complex project may incur overruns and schedule extensions. It may be dif-
ficult to identify the sources of these risks, but a conscious effort to identify them will at least
highlight areas of weakness. Long projects are especially subject to difficulties with resource
allocation and schedule slippage. Solutions can involve contingency plans in case in-house
resources are not available.

RESOURCE FEASIBILITY

The project management team must also assess the availability of resources for the project.
The primary resource consists of team members. Development projects require the involve-
ment of systems analysts, system technicians, and users. Required people may not be avail-
able to the team at the necessary times. An additional risk is that people assigned to the team
may not have the necessary skills for the project. After the team is functioning, members may
have to leave the team. This threat can come either from staff who are transferred within the
organization if other special projects arise, or from qualified team members who are hired
away by other organizations. Although the project manager usually does not like to think
about these possibilities, skilled people are in short supply and sometimes do leave projects.

The other resources required for a successful project include adequate computer resources,
physical facilities, and support staff. Generally, these resources can be made available, but the
schedule can be affected by delays in the availability of these resources.

ECONOMIC FEASIBILITY

Economic feasibility consists of two tests: (1) Is the anticipated value of the benefits greater
than projected costs of development? and (2) Does the organization have adequate cash flow
to fund the project during the development period? Even though the project may have
received initial approval based on the need or strategic plan, final approval usually requires a
thorough analysis of the development costs and the anticipated financial benefits. Obviously,
the justification for developing a new system is that it will increase income, either through
cost savings or by increased revenues. A determination of the economic feasibility of the pro-
ject always requires a thorough cost/benefit analysis.

Developing a cost/benefit analysis is a three-step process. The first step is to estimate the
anticipated development and operational costs. Development costs are those that are
incurred during the development of the new system. Operational costs are those that will be
incurred after the system is put into production. The second step is to estimate the anticipated
financial benefits. Financial benefits are the expected annual savings or increases in revenue
derived from the installation of the new system. The third step, the cost/benefit analysis step,
is calculated from the detailed estimates of costs and benefits. The most frequent error that
inexperienced analysts make during cost/benefit analysis is to try to do the calculations before
thoroughly defining costs and benefits. A cost/benefit analysis that does not have thorough
and complete supporting detail is valueless.

Development Costs

Although the project manager has final responsibility for estimating the costs of develop-
ment, senior-level analysts always assist with the calculations. Generally, project costs come
in the following categories:

• Salaries and wages
• Equipment and installation

cost/benefit

analysis

the analysis to compare
costs and benefits to see
whether investing in the
development of a new
system will be beneficial

C6696_03_CTP.4c 2/6/08 1:26 PM Page 102

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 3 The Analyst as a Project Manager ♦ 103

• Software and licenses
• Consulting fees and payments to third parties
• Training
• Facilities
• Utilities and tools
• Support staff
• Travel and miscellaneous

Salaries and wages are calculated based on the staffing requirements for the project. As the
project schedule and staffing plans are developed, the estimated cost for salaries and wages can
be determined. Figure 3-20 is an example of the estimated cost for salaries for the RMO customer
support system. The numbers in this table were calculated by identifying personnel who are
needed for the project and the length of time they are to be assigned to the project. As discussed
previously, it is not easy to estimate the amount of time a person will be assigned to the project.
Some team members work full-time on the project; others work on several projects concurrently.
If the WBS is detailed and accurate, the salary and wage costs can be more accurately specified.

Each of the other categories of costs requires detailed calculations to determine the esti-
mated costs. The project manager can make detailed cost estimates of equipment, software
licenses, training, and so forth. These details are then combined to provide an estimate of the
total costs of development. Figure 3-21 is a summary table of all of the costs. Again, each line
in the summary table must be supported with details such as those shown in Figure 3-20.

Supporting detail for salaries and wages for RMO customer support system project

Team member Salary/wage for project

Project leader $101,340.00

Senior systems analyst $90,080.00

Systems analyst $84,980.00

Programmer analysts $112,240.00

Programmers $58,075.00

Systems programmers $49,285.00

Total salaries and wages $496,000.00

Figure 3-20

Supporting detail for

salaries and wages for

RMO customer support

system project

Summary of development costs for RMO customer support system project

Expense category Amount

Salaries/wages $496,000.00

Equipment/installation $385,000.00

Training $78,000.00

Facilities $57,000.00

Utilities $152,000.00

Support staff $38,000.00

Travel/miscellaneous $112,000.00

Licenses $18,000.00

Total $1,336,000.00

Figure 3-21

Summary of development

costs for RMO customer

support system project

C6696_03_CTP.4c 2/6/08 1:26 PM Page 103

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

104 ♦ PART 1 THE SYSTEMS ANALYST

Sources of Ongoing Costs of Operations

After the new system is up and running, normal operating costs are incurred every year. The
calculation of the cost and benefit of the new system must also account for these annual oper-
ating costs. Generally, analysts do not include the normal costs of running the business in
this cost. Only the costs that are directly related to the new system and its maintenance are
included. The following list identifies the major categories of costs that might be allocated to
the operation of the new system:

• Connectivity
• Equipment maintenance
• Costs to upgrade software licenses
• Computer operations
• Programming support
• Amortization of equipment
• Training and ongoing assistance (the help desk)
• Supplies

Summary of estimated annual operating costs for RMO customer support system

Recurring expense Amount

Connectivity $60,000.00

Equipment maintenance $40,000.00

Programming $65,000.00

Help desk $28,000.00

Amortization $48,000.00

Total recurring costs $241,000.00

Figure 3-22

Summary of estimated

annual operating costs

for RMO customer

support system

Figure 3-22 is a summary of the estimated annual operating costs for the RMO customer
support system. As with the development costs, each entry in the table should be supported
with detailed calculations. This figure represents only those costs that are anticipated for the
RMO system. Other organizations may have a different set of operating costs.

Sources of Benefits

The project manager and members of the project team can determine most of the develop-
ment and operational costs. However, the user and the client receive the benefits of the sys-
tem. Consequently, the client and the user must determine the value of the anticipated
benefits. Members of the project team can and do assist, but they should never attempt to
determine the value of benefits by themselves.

Benefits usually come from two major sources: decreased costs or increased revenues. Cost
savings or decreases in expenses come from increased efficiency in company operations. Areas
in which to look for reduced costs include the following:

• Reducing staff by automating manual functions or increasing efficiency
• Maintaining constant staff with increasing volumes of work
• Decreasing operating expenses such as shipping charges for “emergency shipments”
• Reducing error rates through automated editing or validation
• Achieving quicker processing and turnaround of documents or transactions
• Capturing lost discounts on money management
• Reducing bad accounts or bad credit losses
• Reducing inventory or merchandise losses through tighter controls
• Collecting receivables (accounts receivable) more rapidly

C6696_03_CTP.4c 2/6/08 1:26 PM Page 104

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 3 The Analyst as a Project Manager ♦ 105

• Capturing lost income due to “stock-outs” by implementing better inventory management
• Reducing cost of goods through volume discounts and purchases
• Reducing paperwork costs by implementing electronic data interchange and other

automation

This list is just a sampling of the myriad benefits that can accrue. Unlike development
costs, there are no “standard” benefits. Each project is different, and the anticipated benefits
are different. Figure 3-23 is an example of the benefits that RMO expects from implementing
the new customer support system.

Sample benefits for RMO

Benefit/cost saving Amount Comments

Increased efficiency in mail-order department $125,000.00 5 people @ $25,000

Increased efficiency in phone-order department $25,000.00 1 person @ $25,000

Increased efficiency in warehouse/shipping $87,000.00

Increased earnings due to Web presence $500,000.00 Increasing at 50%/year

Other savings (inventory, supplies, and so on) $152,000.00

Total annual benefits $889,000.00

Figure 3-23

Sample benefits for RMO

Financial Calculations

Companies use a combination of methods to measure the overall benefit of the new system.
One popular approach is to determine the net present value (NPV) of the new system. The
two concepts behind net present value are (1) that all benefits and costs are calculated in
terms of today’s dollars (present value) and (2) that benefits and costs are combined to give a
net value. The future stream of benefits and costs are netted together and then discounted by
a factor for each year in the future. The discount factor is like an interest rate, except it is used
to bring future values back to current values. Appendix C on the book’s Web site provides
detailed instructions on how to calculate economic feasibility. You should read Appendix C
to ensure that you understand the details.

Figure 3-24 shows a copy of the RMO net present value calculation done in Appendix C
on the book’s Web site (Figure C-1). In this case, the new system gives an NPV of $3,873,334
over a five-year period using a discount rate of 10 percent.

Another method that organizations use to determine whether an investment will be ben-
eficial is the payback period. The payback period, sometimes called the breakeven point, is
the point in time at which the increased cash flow (benefits) exactly pays off the costs of
development and operation. Appendix C on the book’s Web site provides the detailed equa-
tions necessary for this calculation. Figure 3-24 illustrates the calculations for the payback
period. A running accumulated net value is calculated year by year. The year when this value
becomes positive is the year in which payback occurs. In the RMO example, this payback hap-
pens within the third year.

The return on investment (ROI) is another evaluation method used by organizations.
The objective of the NPV is to determine a specific value based on a predetermined discount
rate. The objective of the ROI is to calculate a percentage return (like an interest rate) so that
the costs and the benefits are exactly equal over the specified time period. Figure 3-24 shows
an ROI calculation for RMO, as developed in Appendix C. The time period can be the
expected life of the investment (such as the productive life of the system), or it can be an arbi-
trary time period.

For RMO, assuming a five-year benefit period, the ROI is 172.18 percent. In other words,
the investment in the development costs returned 172.18 percent on the investment for a

net present value

(NPV)

the present value of
dollar benefits and costs
for an investment such
as a new system

payback period

the time period in which
the dollar benefits have
offset the dollar costs

breakeven point

the point in time at which
the dollar benefits have
offset the dollar costs

return on

investment (ROI)

a measure of the
percentage gain from an
investment such as a
new system

C6696_03_CTP.4c 2/6/08 1:26 PM Page 105

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

106 ♦ PART 1 THE SYSTEMS ANALYST

period of five years. Because the system is generating benefits at that point in time, if you
assumed that the lifetime was longer, such as 10 years, you would get a much higher ROI.

Intangibles

As indicated in the best practice, many projects are initiated solely for their intangible bene-
fits. Never discount the importance of ascertaining the “behind the scenes” reasons for a proj-
ect. There may be political reasons for or against the project that override all other feasibility
analyses. The previous cost/benefit calculation is dependent on an organization’s ability to
quantify the costs and the benefits. However, in many instances, an organization cannot mea-
sure some costs and benefits and determine a value. If it can estimate a dollar value for a ben-
efit or a cost, the organization treats the value as a tangible benefit or cost. If there is no
reliable method of estimating or measuring the value, it is considered an intangible benefit.
In some instances, the importance of the intangible benefits far exceed the tangible costs, at
least in the opinion of the client, and the client proceeds to develop the system even though
the dollar numbers do not indicate a good investment.

Examples of intangible benefits include the following:

• Increased levels of service (in ways that cannot be measured in dollars)
• Increased customer satisfaction (not measurable in dollars)
• Survival (a standard capability common in the industry, or common to many competitors)
• Need to develop in-house expertise (such as with a pilot program with new technology)

Examples of intangible costs include the following:

• Reduced employee morale
• Lost productivity (the organization may not be able to estimate it)
• Lost customers or sales (during some unknown period of time)

Only tangible benefits and costs are used when calculating NPV, payback, and ROI. Even
though the intangibles do not enter into the calculations, they should be considered. In fact,
they may be the deciding factor in whether the project proceeds or not.

RMO Year 0 Year 1 Year 2 Year 3 Year 4 Year 5 Total
cost/benefit
analysis

1 Value of benefits $ - $ 889,000 $ 1,139,000 $ 1,514,000 $ 2,077,000 $ 2,927,000

2 Discount 1 0.9091 0.8264 0.7513 0.6830 0.6209
factor (10%)

3 Present value $ - $ 808,190 $ 941,270 $ 1,137,468 $ 1,418,591 $ 1,817,374 $6,122,893
of benefits

4 Development $(1,336,000) $(1,336,000)
costs

5 Ongoing costs $ (241,000) $ (241,000) $ (241,000) $ (241,000) $ (241,000)

6 Discount 1 0.9091 0.8264 0.7513 0.6830 0.6209
factor (10%)

7 Present value $ - $ (219,093) $ (199,162) $ (181,063) $ (164,603) $ (149,637) $(913,559)
of ongoing costs

8 PV of net of $(1,336,000) $ 589,097 $ 742,107 $ 956,405 $ 1,253,988 $ 1,667,737
benefits and costs

9 Cumulative NPV $(1,336,000) $(746,903) $ (4,769) $951,609 $2,205,597 $ 3,873,334

10 Payback period 2 years + 4796 / (4796 + 951,609) = 2 + .005 or 2 years and 2 days

11 5-year return (6,122,893 - (1,336,000 + 913,559)) / (1,336,000 + 913,559) = 172.18%
on investment

Figure 3-24

Net present value,

payback period, and

return on investment

for RMO

tangible benefits

benefits that can be
measured or estimated
in terms of dollars and
that accrue to the
organization

intangible

benefits

benefits that accrue to
the organization but that
cannot be measured
quantitatively or
estimated accurately

C6696_03_CTP.4c 2/6/08 1:26 PM Page 106

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 3 The Analyst as a Project Manager ♦ 107

Sources of Funds

As we explained earlier, the project team performs the cost/benefit analysis in conjunction
with the development of the project budget. The two components of economic feasibility are
concerned with a positive result from the cost/benefit analysis and the source of funds for sys-
tem development. Organizations can finance development projects in various ways.
Frequently, new information systems are financed using a combination of current cash flows
and long-term capital. The project team may not be involved in obtaining the financing for
the project. However, the results of the cost/benefit analysis will greatly influence the financ-
ing decisions.

COMPLETING THE FEASIBILITY ANALYSIS

Each of the preceding feasibility analyses has assumed that the RMO project is feasible. But,
not every project is feasible. For a project to be viable, it must pass all of the feasibility tests.
In other words, the team must examine each area of the project carefully and make a determi-
nation based on relevant data. If the project is not feasible in any one of the categories, they
must make adjustments. If adjustments cannot improve the situation, the project should not
be initiated. One viable alternative to starting a project that has high risk of failure is simply
to do nothing—for now. A project that is not feasible today—for example, due to technical
difficulties, high costs, or inadequate expertise—may become feasible in the future. Project
managers generally dislike concluding that the project is not feasible and should not be done.
The alternative, however, is to begin a project that is destined to fail, harming the company
and all involved.

An assessment of each of these six areas of feasibility is an important part of project plan-
ning. The key question to be answered when completing this activity is: Is it still feasible to
begin working on this project?

STAFFING AND LAUNCHING THE PROJECT

The responsibility for staffing the project team falls primarily on the project manager. Human
resource management, as explained in Appendix A on the book’s Web site, includes finding
the right people with the correct skills and then organizing and managing them throughout
the project. The staffing activity consists of five tasks:

• Develop a resource plan for the project.
• Identify and request specific technical staff.
• Identify and request specific user staff.
• Organize the project team into workgroups.
• Conduct preliminary training and team-building exercises.

Based on the tasks identified in the project schedule, the project manager can develop a
detailed resource plan. In fact, the schedule and the resource requirements are usually devel-
oped concurrently. If the project manager is using a tool such as Microsoft Project to build
the schedule, then the resources required for each task are part of the total schedule. In devel-
oping the plan, the project manager recognizes (1) that resources are usually not available as
soon as requested and (2) that a period of time is needed for a person to become acquainted
with the project.

Intangible benefits are not included in the cost/benefit analysis, but often
they are the most important reason for initiating a project. Be clear about
the objectives of management before making a recommendation.

BEST PRACTICE

C6696_03_CTP.4c 2/6/08 1:26 PM Page 107

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

108 ♦ PART 1 THE SYSTEMS ANALYST

After developing the plan, the project manager can then identify specific people and
request that they become part of the team. Generally, two sources exist for members of the
team: (1) technical staff and (2) user staff. Technical staff means the systems analysts, the pro-
grammer analysts, the network specialists, and other technicians. Technical staff expect to
move from project to project and find change normal. The project manager will meet with
the director or vice president of information systems to identify and schedule the necessary
resources. In some instances, it might be necessary to hire additional technical staff, so the
human resource department might need to become involved. Even though finding technical
people for the team is standard procedure, finding and assigning all of the required team
members can take some time.

The user staff are people from the user community who are assigned to the team.
Sometimes it is difficult to get users assigned to the team full-time. Being assigned to a proj-
ect team is not part of the normal job progression of someone in a user department or group.
However, projects do progress more smoothly if a few full-time team members can represent
the user community and act as liaisons. Referring back to causes of project failure, remember
that having users closely associated with the project team or assigned to it will enhance the
chances of success.

On small projects, members of the project team may all work together. However, a project
team that is larger than four or five members usually is divided into smaller working groups.
Each group will have a group leader who coordinates the tasks assigned to the group. The
responsibility for dividing the team into groups and assigning group leaders falls on the proj-
ect manager.

Finally, training and team-building exercises are conducted. Training may be done for the
project team as a whole when new technology such as a new database or a new programming
language is used. In other cases, new team members who are unfamiliar with the tools and
techniques being used may require individual training. The team should conduct appropriate
training for both technical people and users. Team-building exercises are especially important
when members have not worked together before. The integration of user members of the
team with technical people is an important consideration in developing effective teams and
workgroups.

The key question to be answered when completing the staffing activity is: Are the resources
available, trained, and ready to start the project?

After the previous project planning activities are complete, it is time to launch the project.
The scope of the new system is defined, the risks have been identified, the project has been
found feasible both economically and otherwise, a detailed schedule has been developed,
team members have been identified and are ready, and it is now time to start. Two final tasks
usually occur at this point. First, the membership of the oversight committee is finalized, and
it meets to give final go-ahead for the project, including releasing the necessary funds. Second,
the organization makes a formal announcement through its standard communication chan-
nels that gives credence to the project and solicits cooperation from all involved parties in the
organization. In other words, the project gets the blessing and visible support of the organi-
zation’s senior executives. No project should begin without these two events.

The key question to be answered when launching the project is: Are we ready to start the
project?

C6696_03_CTP.4c 2/6/08 1:26 PM Page 108

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 3 The Analyst as a Project Manager ♦ 109

RECAP OF PROJECT PLANNING FOR RMO

Barbara and Steve spent the entire month of February putting together the schedule and plans
for the CSS. Even though Barbara was the project manager, she and Steve worked together as
peers. As a team, they could brainstorm and double-check each other’s work. They had
worked together before and had an excellent relationship—one based on mutual respect and
trust. They could be candid and knew how to work through disagreements as well as how to
come to consensus on important issues. Barbara also knew that the work Steve produced was
always well thought out and very professionally done. He was a skilled systems analyst and
would help make sure that the work done in the planning phase was solid.

The success of the overall project depended heavily on the planning Barbara and Steve did
during this phase. The foundation for all other project activities is established during project
planning. As Barbara planned for the kickoff meeting to launch the project officially, she
reviewed the areas of project management to make sure that she had addressed all of the crit-
ical issues.

For project scope management, she developed a list of business benefits, a list of system
capabilities, and a context diagram. At this point in the project, the scope definition was still
very general. She would make sure the project’s scope was precisely defined during the infor-
mation-gathering activities of the analysis phase.

She and Steve had developed a detailed work breakdown structure and entered the infor-
mation into Microsoft Project. The schedule was very detailed for the analysis phase, but less
so for the design and implementation phases. She would add those details as decisions were
made about the implementation approach. She thought that her approach to project time
management had been established, and she would have the tools necessary to track the
schedule as the project progressed.

The costs and potential benefits had been estimated and used to develop an NPV estimate.
She would redo the NPV when she redid the schedule at the end of the analysis phase to
ensure that the costs and schedule were within the allowed budget. The other part of cost
management was to monitor the costs during the life of the project. Microsoft Project would
help her track the costs of each task.

Steve had done a lot of the work to identify and assess risks during the feasibility analysis.
Barbara knew that they would both continue to look for risks and assess potential problems
during the project. She asked Steve to take time each week to assess the risks and update the
list of the highest risks for the project. She felt confident that she would not be blindsided by
some unexpected problem.

For project communication and project quality, Barbara established procedures for the
project. She set up a central database to post the project’s status, decisions, and working doc-
uments to make sure that all the team members were kept well informed. She established a
routine and format for weekly status reports from the team leaders and a status report to the
oversight committee. An example of one of her status report memos to the oversight commit-
tee is shown. These status reports all follow a standard format. In addition to the formal sta-
tus memos, she would also write more informal memos to John MacMurty. For project
quality, internal procedures required that team members and RMO users review all work
products. Other quality procedures, such as the test plan, would be established as the project
progressed.

C6696_03_CTP.4c 2/6/08 1:26 PM Page 109

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

110 ♦ PART 1 THE SYSTEMS ANALYST

She and Steve had identified the other people they would like to have on the team. John
had been especially helpful in finding solid analysts who were available or who would be
available soon. In fact, Barbara had already interviewed all of the members who were coming
on board. Recognizing the importance of having a team whose members could work together,
she had scheduled several days for the team members to get to know each other, to refine
their internal working procedures, and to teach them about the tools and techniques that
would be used on the project.

All in all, it had been a very hectic but productive month. A lot of work had been done,
and a solid foundation had been established for a successful project.

C6696_03_CTP.4c 2/6/08 1:26 PM Page 110

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

SUMMARY
The focus of this chapter is on project management activities that form the basis of project planning activities
of the SDLC. The chapter covered three major themes: (1) project management, (2) information system pro-
ject initiation and project planning, and (3) techniques used by the project manager and analysts for complet-
ing the project planning activities of the SDLC.

The development of a new system requires an organized, step-by-step approach. We call this approach
the systems development life cycle (SDLC), as discussed in Chapter 2. The SDLC defines the phases, activities,
and tasks that require attention during the system development project. Project management tasks are
involved in project planning at the beginning of the project, but these tasks continue throughout the project
as well.

Project management is the organizing and directing of other people to achieve a planned result within a
predetermined schedule and budget. Project management can be divided into eight knowledge areas: scope,
time, cost, quality, human resources, communications, risk, and procurement.

Projects are initiated based on information system needs that are identified and prioritized in strategic
plans of the organization. They are also initiated on an ad hoc basis as problems or directives arise. After a
project is initiated, project planning activities are carried out primarily by the project manager and one or two
other senior analysts. Many of the responsibilities of the project manager are carried out via the activities of
project planning. Project planning consists of five activities: (1) defining the problem, (2) producing the pro-
ject schedule, (3) confirming project feasibility, (4) staffing the project, and (5) launching the project.

To define the problem, the project manager investigates the problem and the ideas originally defined for
a system solution. The scope of the project is established, and an initial system context diagram is used to
graphically model the major inputs and outputs. The project schedule is produced by creating a work break-
down structure of phases, activities, and tasks required to complete the project, based on the SDLC.
Scheduling is difficult because phases and activities often overlap and several iterations might be used for the
project. Scheduling techniques are used to investigate scheduling bottlenecks and risks. Ultimately, the pro-
ject schedule is used as the basis for calculating project labor costs, as labor is based on the amount of time
spent by project members on project tasks.

Confirming project feasibility requires evaluating risks related to the types of feasibility: risk, organizational
and cultural, technological, schedule, resource, and economic. Risk management addresses all sources of project risk. Economic feasibility is
confirmed using cost/benefit analyses to compare the costs of the project with the expected benefits. Net present value (NPV), payback period,
and return on investment (ROI) calculations are used to determine whether the cost/benefit analysis is favorable for the project, although intan-
gible benefits are often important reasons for moving forward with a project.

Project planning activities are completed by a small team, often just the project manager and one or two key analysts. When the project
moves on to the analysis phase, additional team members must be identified and assigned to the project. The staffing plan must address
team member needs months into the future as well. When the project is ready to be launched, key management personnel and executive
sponsors must be notified and involved to ensure project success.

KEY TERMS

Agile Software Development, p. 81

breakeven point, p. 105

business benefits, p. 87

client, p. 76

context diagram, p. 87

cost/benefit analysis, p. 102

critical path, p. 95

float, p. 96

Gantt chart, p. 93

intangible benefits, p. 106

milestone, p. 96

net present value (NPV), p. 105

oversight committee, p. 77

payback period, p. 105

PERT/CPM chart, p. 93

project management, p. 75

proof of concept prototype, p. 87

return on investment (ROI), p. 105

risk management, p. 99

slack time, p. 96

system scope document, p. 87

tangible benefits, p. 106

user, p. 77

weighted scoring, p. 83

work breakdown structure (WBS), p. 90

CHAPTER 3 The Analyst as a Project Manager ♦ 111

C6696_03_CTP.4c 2/6/08 1:26 PM Page 111

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

REVIEW QUESTIONS

1. List and explain the activities of project planning.

2. List the seven reasons projects fail.

3. List the five reasons projects are successful.

4. What are three reasons projects are initiated?

5. Define project management.

6. Explain what is meant by “Agile Software Development.”

7. Explain how information system project management is

similar to project management in general.

8. Explain how iterative development makes project schedul-

ing more complex.

9. Describe the six types of feasibility used to evaluate a project.

10. What is the purpose of the cost/benefit analysis used to

assess economic feasibility?

11. Explain the difference between tangible and intangible costs

and benefits. Which are ignored in cost/benefit analyses?

12. Explain how “just in time” project management is used for

adaptive projects.

13. List at least five possible sources of tangible benefits from

the installation of a new system.

14. List at least four sources of development costs.

15. What is meant by the critical path?

16. What is the purpose of a system context diagram?

17. Describe the eight knowledge areas of project management.

18. What activities in the planning phase are specifically focused

on project management?

THINKING CRITICALLY

1. Write a short paper that discusses how project manage-

ment techniques can overcome the reasons for project fail-

ure listed at the beginning of the chapter.

2. Given the following narrative, make a list of expected busi-

ness benefits:

Especially for You Jewelers is a small jewelry company in a

college town. Over the last couple of years, Especially for

You has experienced a tremendous increase in its business.

However, its financial performance has not kept pace with

its growth. The current system, which is partially manual

and partially automated, does not track accounts receiv-

ables sufficiently, and Especially for You is having difficulty

determining why the receivables are so high. In addition,

Especially for You runs frequent specials to attract cus-

tomers. It has no idea whether these specials are profitable

or whether the benefit, if there is one, comes from associ-

ated sales. Especially for You also wants to increase repeat

sales to existing customers, and thus needs to develop a

customer database. The jewelry company wants to install a

new direct sales and accounting system to help solve these

problems.

3. Given the following narrative, make a list of system capabilities:

The new direct sales and accounting system for Especially

for You Jewelers is an important element in the future

growth and success of the jewelry company. The direct

sales portion of the system needs to track every sale and be

able to link to the inventory system for cost data to provide

a daily profit and loss report. The customer database needs

to be able to produce purchase histories to assist manage-

ment in preparing special mailings and special sales to

existing customers. Detailed credit balances and aged

accounts for each customer would help solve the problem

with the high balance of accounts receivables. Special

notice letters and credit history reports would help man-

agement reduce accounts receivable.

4. Develop a project charter for Especially for You Jewelers

based on your work from problems 3 and 4.

5. Build a Gantt chart based on the following list of tasks and

dependencies to build and test a screen form for a new

system. Identify the critical path.

Task ID Description Duration (days) Predecessor

0 Start 0 —

1 Meet with user 2 0

2 Review existing forms 1 0

3 Identify and specify 3 1, 2

fields

4 Build initial prototype 2 3

5 Develop test data 4 3

(valid data)

6 Develop error 2 5

test data

7 Test prototype 3 4, 6

8 Make final 3 7

refinements

6. Suppose that you work in a dentist’s office and are asked

to develop a system to track patient appointments. How

would you start? What would you do first? What kinds of

things would you try to find out first? How does your

approach compare with what this chapter has described?

112 ♦ PART 1 THE SYSTEMS ANALYST

C6696_03_CTP.4c 2/6/08 1:26 PM Page 112

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

EXPERIENTIAL EXERCISES

1. Using Microsoft Project, build a project schedule based on the

following scenario. Print the Gantt chart. If required by your

teacher, also print the Network Diagram (i.e., a PERT chart).

In the table to the right is a list of tasks a student can per-

form to have an international experience by attending a

university abroad. You can build schedules for several ver-

sions of this set of tasks. For the first version, assume that

all predecessor tasks must finish before the succeeding

task can begin (the simplest version). For a second version,

identify several tasks that can begin a few days before the

end of the predecessor task. For a third version, modify the

second version so that some tasks can begin a few days

after the beginning of a predecessor task. Also, insert a

few overview tasks such as Application tasks, Preparation

tasks, Travel tasks, and Arrival tasks. Be sure to state your

assumptions for each version.

2. Build a project plan to show your progress through college.

Include the course prerequisite information. If you have

access to Microsoft Project or another tool, enter the infor-

mation in the project management tool.

3. Using information from your organizational behavior classes

or other sources, write a one-page paper on what kinds of

team-building and training activities might be appropriate

as the project team is expanded for the analysis phase.

4. Ask a systems analyst about the SDLC that his or her com-

pany uses. If possible, ask the analyst to show you a copy

of the project schedule. To what extent is iterative develop-

ment used?

5. Ask a project manager for his or her opinion on each of the

eight project management knowledge areas.

6. Go to the CompTIA Web site (www.compTIA.org) and find

the requirements for the project manager exam (CompTIA

Project+). Write a one-page summary of the expertise and

knowledge required to pass the exam.

Task ID Description Duration (days) Predecessor

1 Obtain forms 1 None

from the international

exchange office

2 Fill out and send 3 1

in the foreign

university application

3 Receive approval 21 2

from the foreign

university

4 Apply for scholarship 3 2

5 Receive notice of 30 4

approval for

scholarship

6 Arrange financing 5 3, 5

7 Arrange for housing 25 6

in dormitory

8 Obtain a passport 35 6

and the required visa

9 Send in preregistration 2 8

forms to the university

10 Make travel 1 7, 9

arrangements

11 Determine clothing 10 10

requirements and

go shopping

12 Pack and make final 3 11

arrangements to leave

13 Travel 1 12

14 Move into the 1 13

dormitory

15 Finalize registration 2 14

for classes and other

university paperwork

16 Begin classes 1 15

CUSTOM LOAD TRUCKING

It was time for Stewart Stockton’s annual performance review. As

Monica Gibbons, an assistant vice president of information systems,

prepared for the interview, she reviewed Stewart’s assignments over

the last year and his performance. Stewart was one of the “up and

coming” systems analysts in the company, and she wanted to be

sure to give him solid advice on how to advance his career. She

knew, for example, that he had a strong desire to become a project

manager and accept increasing levels of responsibility. His desire

was certainly in agreement with the needs of the company.

Custom Load Trucking (CLT) is a nationwide trucking firm that

specializes in the rapid movement of high-technology equipment.

With the rapid growth of the communications and computer indus-

tries, CLT was feeling more and more pressure from its clients to be

able to move its loads more rapidly and precisely. Several new infor-

mation systems were planned that would enable CLT to schedule and

track shipments and trucks almost to the minute. However, trucking

was not necessarily a high-interest industry for information systems

experts. With the shortage in the job market, CLT had decided not to

try to hire project managers for these new projects but to build strong

project managers from within the organization.

CASE STUDIES

CHAPTER 3 The Analyst as a Project Manager ♦ 113

C6696_03_CTP.4c 2/6/08 1:26 PM Page 113

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

http://www.compTIA.org

As Monica reviewed Stewart’s record, she found that he had

done an excellent job as a team leader on his last project. His last

assignment was as a combination team leader/systems analyst on a

four-person team. He had been involved in systems analysis, design,

and programming, and he also managed the work of the other three

team members. He had assisted in the development of the project

schedule and had been able to keep his team right on schedule. It

also appeared that the quality of his team’s work was as good as, if

not better than, other teams on the project. She wondered what

advice she should give him to help him advance his career. She was

also wondering if now was the time to give him his own project.

1. Do you think the decision by CLT to build its own project

managers from the existing employee base is a good one?

What advice would you give to CLT to make sure that it

has strong project management skills in the company?

2. What kind of criteria would you develop for Monica to use

to measure whether Stewart (or any other potential project

manager) is ready for project management responsibility?

3. How would you structure the job for new project man-

agers to ensure, or at least increase the possibility of, a

high level of success?

4. If you were Monica, what kind of advice would you give to

Stewart about managing his career and attaining his

immediate goal to become a project manager?

RETHINKING ROCKY MOUNTAIN OUTFITTERS

The chapter identified six areas of project feasibility

that need to be evaluated for any new project.

However, as indicated, each of these areas of feasi-

bility can also be considered an evaluation of the

potential risks of the project. Based on your under-

standing of Rocky Mountain Outfitters, both from this chapter and

the information provided in Chapter 1, build a table that summa-

rizes the risks faced by RMO for this new project. Include four

columns titled (1) Project risk, (2) Type of risk, (3) Probability of risk,

and (4) Steps to alleviate risk.

Identify as many risks to the project as you can. Type of risk

means the category or area of the project feasibility that is at risk. It

might help you think about risks in the different categories, for

example (1) risk management, (2) economic, (3) organizational and

cultural, (4) technological, (5) schedule, and (6) resources. The chap-

ter provided a few examples of risk in each of these areas. However,

many other risks can cause project failures. Think as broadly as pos-

sible and expand the list of potential risks in each area.

Obviously, other kinds of risks are associated with a project of

the magnitude of the customer support system. You might want to

consider some risks external to the company, such as economic,

marketplace, legal, environment, and so forth. Other types of inter-

nal risks might also be associated with components that are pur-

chased or outsourced, such as development tools, learning curves,

poor quality of purchased components, and failure of vendors.

A common risk management technique is to build a table and iden-

tify the top 10 risks to the project. Contingency plans can then be built

for the top 10 risks. Periodically, the project management team reevalu-

ates the risk list to determine the current top 10 risks. After you build the

table, identify which risks you would classify as the top 10 risks.

FOCUSING ON RELIABLE PHARMACEUTICAL SERVICE

Chapter 2 discussed Reliable Pharmaceutical

Service’s Web-based application to connect its

client nursing homes directly with a new pre-

scription and billing system. You considered both the risks of a

sequential, waterfall approach to the SDLC and the risks of an itera-

tive and incremental approach to the SDLC for its development.

1. Now consider the way the project was probably initiated.

To what extent is the project the result of (a) an opportu-

nity, (b) a problem, or (c) a directive?

2. Many of the system users (such as employees at health-care

facilities) are not Reliable employees. What risks of project

failure are associated with the mixed user community? What

would you, as a project manager, do to minimize those risks?

3. What are some of the tangible benefits to the project? What

are some of the intangible benefits? What are some of the tan-

gible and intangible costs? How would you handle the project’s

benefits and costs that will accrue to the health-care facilities—

would you include tangible benefits and costs to the nursing

homes in the cost/benefit analyses? Why or why not?

4. Overall, do you think the approach taken to the project

(sequential waterfall versus iterative and incremental)

would make a difference in the tangible and intangible

costs and benefits? Discuss.

5. Overall, do you think the approach taken to the project

would make a difference in minimizing the risks of project

failure? Discuss.

114 ♦ PART 1 THE SYSTEMS ANALYST

FURTHER RESOURCES

Scott W. Ambler, Agile Modeling: Effective Practices for XP and
the RUP. John Wiley and Sons, 2004.

Jim Highsmith, Agile Project Management: Creating Innovative
Products. John Wiley and Sons, 2004.

Gopal K. Kapur, Project Management for Information,
Technology, Business, and Certification. Prentice-Hall, 2005.

Jack R. Meredith and Samuel J. Mantel Jr., Project
Management: A Managerial Approach (6th ed.). John Wiley and
Sons, Inc., 2004.

Joseph Phillips, IT Project Management: On Track from Start to
Finish. McGraw-Hill, 2002.

Project Management Institute, A Guide to the Project Management
Body of Knowledge, 3rd edition. Project Management Institute, 2004.

Walker Royce, Software Project Management: A Unified
Framework. Addison-Wesley, 1998.

Kathy Schwalbe, Information Technology Project Management,
Fifth Edition. Course Technology, 2008.

C6696_03_CTP.4c 2/6/08 1:26 PM Page 114

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

115

SYSTEMS ANALYSIS
ACTIVITIES

C H A P T E R 4
Investigating System Requirements

C H A P T E R 5
Modeling System Requirements

C H A P T E R 6
The Traditional Approach to Requirements

C H A P T E R 7
The Object-Oriented Approach to Requirements

C H A P T E R 8
Evaluating Alternatives for Requirements, Environment, and Implementation

2
PART

C6696_04_CTP.4c 1/28/08 8:22 AM Page 115

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

116

INVESTIGATING SYSTEM
REQUIREMENTS4
L E A R N I N G O B J E C T I V E S

After reading this chapter, you should be able to:

■ Describe the activities of systems analysis

■ Explain the difference between functional and nonfunctional system requirements

■ Describe three types of models and reasons for creating models

■ Identify and understand the different types of users who will be involved in

investigating system requirements

■ Describe the kind of information that is required to model system requirements

■ Determine system requirements through review of documentation, interviews,

observation, prototypes, questionnaires, joint application design sessions, and

vendor research

■ Discuss the need for validation of system requirements to ensure accuracy and

completeness and the use of a structured walkthrough

CHAPTER

C H A P T E R O U T L I N E

Analysis Activities in More Detail

Functional and Nonfunctional System Requirements

Models and Modeling

Stakeholders—The Source of System Requirements

Techniques for Information Gathering

Validating the Requirements

C6696_04_CTP.4c 1/28/08 8:22 AM Page 116

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 4 Investigating System Requirements ♦ 117

Amanda Lamy, president and majority stockholder of Mountain States Motor Sports (MSMS),
is an avid motorcycle enthusiast and businesswoman. Headquartered in Denver, MSMS is a
retailer of motorized sporting vehicles, including boats, jet skis, all-terrain vehicles, and
motorcycles. The company has 47 stores located in nearly every state west of the Mississippi
and in two Canadian provinces.

Over the last decade, the market for motorcycles in general—and custom-built bikes in
particular—has boomed. Amanda owned three custom bikes herself and decided a year ago
that the time was ripe for MSMS to expand into that market. She began seeking business
acquisitions or partnerships with custom motorcycle manufacturers throughout the West.

Amanda finalized a partnership agreement with Abeyta’s Custom Choppers (ACC) in
Tucson just over a month ago. Other acquisitions and partnerships are planned in the near
future. The partnership gave MSMS exclusive rights to distribute ACC’s custom bikes and gave
ACC funds to enlarge and modernize its production facility and a percentage of all retail sales.
As part of the modernization, MSMS would build ACC a new information system and would
also use that system in other custom bike shops.

MSMS and ACC faced a significant dilemma in developing the new information system.
MSMS had no experience in manufacturing, and ACC’s current accounting and production-
control systems were a hodgepodge of manual procedures and automated support, primarily
through Microsoft Excel spreadsheets. The business experts had little computer knowledge or
experience, and the in-house computer experts at MSMS had no understanding of the busi-
ness for which they would be building a new system. Buying a system off the shelf was not an
option. The market was too small; no vendors served it.

After conferring with an experienced software development consulting firm, MSMS
decided to conduct a joint application development (JAD) session over a three-day period.
Participants in the session included the owner of ACC, an accountant and a salesperson from
ACC, Amanda, her chief information officer, her vice president for operations, and a handful
of MSMS programmers and developers. Participants from the consulting firm included the
session leader, a developer with experience in custom and small lot production-control sys-
tems, a technical support staff member, and an administrative assistant. The session was con-
ducted at the consulting company’s offices in a computerized meeting room with dedicated
servers for prototype development and deployment, and appropriate diagramming and soft-
ware development tools. All participants stayed in a nearby hotel to maximize available work-
ing hours.

The session got off to a rocky start. ACC’s representatives lacked computer experience, and
they were uncomfortable in the heavily automated meeting room and uncertain they could
accomplish the task at hand. Most of the first morning was spent acclimating ACC represen-
tatives and other participants to the process. Through the skills of the session leader, who
assigned an MSMS staff member to perform all “hands on” computer tasks for ACC person-
nel for the entire session, camaraderie developed among participants during the first morn-
ing and over an extended lunch.

After everyone was comfortable, work proceeded in earnest. On the first day, the partici-
pants specified the overall scope and major functions of the system and described the interac-
tion between ACC’s and MSMS’s accounting functions in detail. Graphical models of the
interactions were generated as simple block diagrams. On the second day, attention turned to
marketing and production. In the morning, the team created storyboards to describe how a
salesperson in an MSMS store would display options for custom bikes as a prelude for creat-
ing a detailed order. While most of the participants ate lunch, two MSMS developers scanned
pictures of customized bikes to mock up a user interface for an online design program.

MOUNTAIN STATES MOTOR SPORTS

C6696_04_CTP.4c 1/28/08 8:22 AM Page 117

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

In the afternoon, the mock-up was expanded into a more complete order-entry system,
which captured most of the details that ACC would need to schedule and complete produc-
tion. During the second evening, MSMS developers worked late into the night to flesh out the
prototype. On the third morning, participants evaluated the prototype and made suggestions
for further improvements. They devoted the remainder of the morning and most of the after-
noon to developing requirements and design criteria for a production management system
that encompassed scheduling, parts management, and accounting for time and materials. The
session concluded with a one-hour review of all the requirements that had been specified and
the design decisions that had been made, followed by development of an open items list and
a rough schedule and budget for the project.

The JAD session really helped provide a “running start” for the entire project. The partici-
pation of key stakeholders made information gathering, prototyping, and identifying key
requirements possible. Although some of the requirements defined in the JAD session were
modified later, many of the requirements were incorporated into the system with little change.

OVERVIEW

In the previous chapters, you learned that system development consists of four major sets of
activities: planning, analysis, design, and implementation. This chapter focuses on the activi-
ties of systems analysis and the skills and detailed tasks required. As discussed in Chapter 1, an
analyst uses many skills in system development. Two key skills that are needed to perform sys-
tems analysis are (1) fact-finding for the investigation of system requirements and (2) model-
ing of business processes based on the system requirements. Even though systems analysis
includes many other activities, these two skills are fundamental. In this chapter, you will
develop fact-finding and investigation skills. Later chapters cover modeling in greater detail.

During the fact-finding and investigation activities, you learn details of business processes
and daily operations. In fact, the objective during these activities is to try to become as knowl-
edgeable about how the business operates as the users you interview. Why become an expert?
Because only then can you ensure that the system meets the needs of the business. You bring
a fresh perspective to the problem and possess a unique set of skills that you can employ to
identify new and better ways to accomplish business objectives with information technology.
Many current users are so accustomed to the way they have been performing their tasks that
they cannot envision better, more advanced ways to achieve results. Your technical knowl-
edge, combined with your newly acquired problem domain knowledge, can bring unique
solutions to business processes—and make a difference in the organization.

An additional benefit to becoming an expert in the problem domain is that you build
credibility with the users. Your suggestions will carry more weight because they will meet
users’ specific needs. During the development of a new system, you will have many sugges-
tions and recommendations about daily business procedures, which usually require major
changes in user activities. If you can “walk the walk and talk the talk” of the users’ business
operations, they are much more likely to accept your recommendations. Otherwise, you may
be viewed as an outsider who really does not understand their problems.

The sections that follow first give an overview of the activities of systems analysis. They
define system requirements and explore the different types of requirements that analysts
encounter. They explain the importance of creating models. Then they explain several tech-
niques analysts use to learn about the business processes and to gather information using
both traditional and newer accelerated methods, such as the JAD sessions discussed in the
Mountain States Motor Sports case. The chapter ends with a discussion of validation tech-
niques for analysis models.

118 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

C6696_04_CTP.4c 1/28/08 8:22 AM Page 118

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 4 Investigating System Requirements ♦ 119

ANALYSIS ACTIVITIES IN MORE DETAIL

All of the system development approaches described and virtually all of the specific system
development methodologies you will encounter in organizations include similar activities in
analysis and design (see Figure 4-1). Naturally, different system development methodologies
recommend different techniques for completing these activities. In many cases, they just have
different names—the underlying tasks are essentially the same. In some cases, different mod-
els might be created to complete an activity. But the activities always involve answering the
same key questions.

Project
planning
activities Gather information

Define system requirements
Prioritize requirements
Prototype for feasibility and discovery
Generate and evaluate alternatives
Review recommendations with management

Design
activities Implementation

activities Support
activities

Analysis activities

Figure 4-1

Analysis activities

Analysis involves defining in great detail what the information system needs to accom-
plish to provide the organization with the desired benefits. Many alternative ideas should be
proposed and the best design solution should be selected from among them. Later, during
systems design, the selected alternative is designed in detail. Six activities must be completed
during analysis. These activities are complementary and are usually completed simultane-
ously. For example, the analyst gathers information continuously and defines requirements
based on that information.

GATHER INFORMATION

Analysis involves gathering a considerable amount of information. Systems analysts obtain
some information from people who will be using the system, either by interviewing them or
by watching them work. They obtain other information by reviewing planning documents
and policy statements. Documentation from the existing system should also be studied care-
fully. Analysts can obtain additional information by looking at what other companies (partic-
ularly vendors) have done when faced with a similar business need. In short, analysts need to
talk to nearly everyone who will use the new system or has used similar systems, and they
must read nearly everything available about the existing system.

Beginning analysts often underestimate how much there is to learn about the work the
user performs. The analyst must become an expert in the business area the system will sup-
port. For example, if you are implementing an order-entry system, you need to become an
expert on the way orders are processed (including accounting). If you are implementing a
loan-processing system, you need to become an expert on the rules used for approving credit.
If you work for a bank, you need to think of yourself as a banker. The most successful analysts
become very involved with their organization’s main business.

Analysts also need to collect technical information. They try to understand the existing
system by identifying and understanding activities of all current and future users, by identify-
ing all present and future locations where work occurs, and by identifying all system inter-
faces with other systems both inside and outside the organization. Beyond that, analysts need
to identify software packages that might be used to satisfy the system requirements. These
specifics are discussed later in the chapter.

C6696_04_CTP.4c 1/28/08 8:22 AM Page 119

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The key question to be answered when completing this activity is: Do we have all of the
information (and insight) we need to define what the system must do?

DEFINE SYSTEM REQUIREMENTS

As all of the necessary information is gathered, it is very important to record it. Some of this infor-
mation describes technical requirements (for example, facts about needed system performance or
expected number of transactions). Other information involves functional requirements—what
the system is required to do. Defining functional requirements is not just a matter of writing
down facts and figures. Instead, many different types of models are created to help record and
communicate what is required.

The modeling process is a learning process for an analyst. As the model is developed, the
analyst learns more and more about the system. Modeling continues while information is
gathered, and the analyst continually reviews the models with the end users to verify that each
model is complete and correct. In addition, the analyst studies each model, adds to it,
rearranges it, and then checks how well it fits with other models being created. Just when the
analyst is fairly sure the system requirements are fully specified, an additional piece of infor-
mation surfaces and requires yet more changes, and refinement begins again. Modeling can
continue for quite some time, and it does not always have a defined end. The uncertainty
involved makes some programmers uncomfortable, but it is unavoidable.

Two types of system models are developed. A requirements model (or collection of models)
is a logical model. A logical model shows what the system is required to do in great detail,
without committing to any one technology. By being neutral about technology, the develop-
ment team can focus its efforts first on what is needed, not what form it will take. For exam-
ple, a model might specify an output of the system as a list of data elements without
committing to either paper or on-screen formats. The focus of the model is what information
the users need. A physical model, on the other hand, shows how the system will actually be
implemented. A physical model of the output would include details about format.

The difference between logical and physical models is a key concept distinguishing sys-
tems analysis and systems design. Generally, systems analysis involves creating detailed logi-
cal models, and systems design involves detailed physical models.

The specific models created depend on the technique being used for systems analysis. The
modern structured analysis technique uses data flow diagrams (DFDs) and entity-relationship
diagrams (ERDs). Information engineering uses process dependency diagrams and entity-
relationship diagrams. Object-oriented techniques produce class diagrams and use case dia-
grams. Specific examples of these models are described in detail in Chapters 5, 6, and 7.

The key question to be answered when completing this activity is: What (in detail) do we
need the system to do?

PRIORITIZE REQUIREMENTS

After the system requirements are well understood and detailed models of the requirements
are completed, it is important to establish which of the functional and technical requirements
are most crucial for the system. Sometimes users suggest additional system functions that are
desirable but not essential. However, users and analysts need to ask themselves which func-
tions are truly important and which are fairly important but not absolutely required. Again,
an analyst who understands the organization and the work done by the users will have more
insight for answering these questions.

Why prioritize the functions requested by the users? Resources are always limited, and the
analyst must always be prepared to justify the scope of the system. Therefore, it is important to
know what is absolutely required. Unless the analyst carefully evaluates priorities, system require-
ments tend to expand as users make more suggestions (a phenomenon called scope creep).

The key question to be answered when completing this activity is: What are the most
important things the system must do?

120 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

logical model

any model that shows
what the system is
required to do without
committing to any one
technology

physical model

any model that shows
how the system will
actually be implemented

C6696_04_CTP.4c 1/28/08 8:22 AM Page 120

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 4 Investigating System Requirements ♦ 121

PROTOTYPE FOR FEASIBILITY AND DISCOVERY

Creating prototypes of parts of the new system can be very valuable during systems analysis.
The primary purpose of building prototypes during analysis—often called discovery prototypes—
is to better understand the users’ needs. Discovery prototypes are not built with the intent of
being fully functional but to check the feasibility of certain approaches to the business need.
In many cases, users are trying to improve their business processes or streamline procedures.
So, to facilitate the investigation of new business processes, analysts can build prototypes.
Using sample screens or reports, analysts discuss with users how the new system can support
new processes, and they can demonstrate new business procedures for the new system.
Prototypes such as these help users discover requirements they might not have thought about
otherwise and get them (and the analysts) thinking creatively “outside of the box.”

If the system involves new technology, it is also important early in the project to assess
whether the new technology will provide the capabilities to address the business need. Then,
the team can be sure that the technology is feasible. Prototypes can prove that the technology
will do what it is supposed to do. Also, if the system will include new or innovative technol-
ogy, the users may need help visualizing the possibilities available from the new technology
when defining what they require; prototypes can fill that need.

Prototyping helps answer two key questions: Have we proven that the technology proposed
can do what we think we need it to do? and equally important, Have we built some prototypes to
ensure the users fully understand the potential of what the new system can do?

GENERATE AND EVALUATE ALTERNATIVES

Many alternatives exist for the final design and implementation of a system. So, it is very
important to define carefully and then evaluate all of the possibilities. When requirements
are prioritized, the analyst can generate several alternatives by eliminating some of the less
important requirements. In addition, technology also raises several alternatives for the sys-
tem. Beyond those considerations, decisions such as whether to build the system using
in-house development staff or a consulting firm affect the outcome. Furthermore, one or
more off-the-shelf software packages could possibly satisfy all of the requirements.

Clearly, lots of alternatives are open to the project team, and each needs to be described
or modeled at a high (summary) level. Each alternative also has its own costs, benefits, and
other characteristics that must be carefully measured and evaluated (as in the feasibility study
described in Chapter 3). The best alternative is then chosen. Choosing an alternative is not as
easy as it sounds, because costs and benefits are very difficult to measure. And many design
details are still uncertain. The analyst evaluates project feasibility once as an early project
planning activity, and again later as an analysis activity.

The key question to be answered when completing this activity is: What is the best way to
create the system?

REVIEW RECOMMENDATIONS WITH MANAGEMENT

All of the preceding activities are done in parallel—gather information, define requirements,
prioritize requirements, prototype for feasibility and discovery, and generate and evaluate
alternatives. Reviewing recommendations with management is usually done when all of the
other analysis activities are complete or nearly complete. Management should be kept
informed of progress through regular project reporting. And the project manager must even-
tually recommend a solution and obtain a decision from management. Questions the analyst
must consider are the following: Should the project continue at all? If the project continues,
which alternative is the best choice? Given the recommended alternative, what are the revised
budget and schedule for completing the project?

Making a recommendation to senior executives is a major management checkpoint in the
project. Every alternative—including cancellation—should be explored. Even though quite a
bit of work might already have been invested in the project, it is still possible that the best

C6696_04_CTP.4c 1/28/08 8:22 AM Page 121

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

choice is to cancel the project. Perhaps the benefits are not as great as originally thought.
Perhaps the costs are much greater than originally thought. Or, because of the rapidly chang-
ing business environment, perhaps the organization’s objectives have changed since the proj-
ect was originally proposed, making it less important to the organization. For any of these
reasons, it might be best to recommend that the project be canceled.

If the project is worthwhile, the project team has detailed documentation of the system
requirements and a proposed design alternative, so the project manager should be able to
produce a more accurate estimate of the budget and schedule for the project. If top managers
understand the rationale for continuing the project, then they will probably provide the
requested resources. The key point to remember is that continuing on to design activities is
never automatic. Good project management techniques always require continual reassess-
ment of the feasibility of the project and formal management reviews.

The key question to be answered when completing this activity is: Should we continue with
the design and implement the system we propose?

Each of the six activities of analysis involves many stakeholders and tasks and involves
answering one or more key questions. The activities and key questions are summarized in
Figure 4-2.

122 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Analysis activities Key questions

Gather information Do we have all of the information (and insight) we
need to define what the system must do?

Define system requirements What (in detail) do we need the system to do?

Prioritize requirements What are the most important things the system
must do?

Prototype for feasibility and discovery Have we proven that the technology proposed
can do what we think we need it to do?
Have we built some prototypes to ensure the
users fully understand the potential of what the
new system can do?

Generate and evaluate alternatives What is the best way to create the system?

Review recommendations with management Should we continue with the design and imple-
ment the system we propose?

Figure 4-2

Analysis activities and

their key questions

SYSTEM REQUIREMENTS

System requirements are all of the capabilities and constraints that the new system must
meet. Generally analysts divide system requirements into two categories: functional and non-
functional requirements. Recall that identifying the system scope is a project planning activ-
ity. During that activity, the analyst identifies a set of system capabilities. During analysis, the
analyst then defines and describes those capabilities in greater detail. In other words, the ana-
lyst expands those high-level capabilities into detailed system requirements.

Functional requirements are the activities that the system must perform—that is, the busi-
ness uses to which the system will be applied. They derive directly from the capabilities identi-
fied during project planning. For example, if you are developing a payroll system, the required
business uses might include functions such as “write paychecks,” “calculate commission
amounts,” “calculate payroll taxes,” “maintain employee-dependent information,” and “report
year-end tax deductions to the IRS.” The new system must handle all of these functions.

system

requirements

specifications that define
the functions to be
provided by a system

functional

requirement

a system requirement
that describes an activity
or process that the
system must perform

C6696_04_CTP.4c 1/28/08 8:22 AM Page 122

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 4 Investigating System Requirements ♦ 123

Identifying and describing all of these business uses requires a substantial amount of time
and effort because the list of functions and their relationships can be very complex.

Functional requirements are based on the procedures and rules that the organization uses
to run its business. Sometimes they are well documented and easy to identify and describe.
An example might be, “All new employees must fill out a W-4 form to enter information
about their dependents in the payroll system.” Other business rules might be more obtuse or
difficult to find. An example from Rocky Mountain Outfitters might be that “an additional
2 percent commission rate is paid to order takers on telephone sales for ‘special promotions’
that are added to the order.” These special promotions are unadvertised specials that are sold
by the telephone order clerk—thus the special commission rate. Discovering rules such as this
is critical to the final design of the system. If this rule weren’t discovered, you might design a
system that allows only fixed commission rates and discover much later in the development
process that your design could not accommodate this rule.

Nonfunctional requirements are characteristics of the system other than activities it must
perform or support. There are many different types of nonfunctional requirements, including
the following:

• Technical requirements describe operational characteristics related to the environment,
hardware, and software of the organization. For example, the client components of a new
system might be required to operate on portable and desktop PCs running the Windows
operating system and using Internet Explorer. The server components might have to be
written in Java and communicate with one another using a component interaction stan-
dard such as CORBA (Common Object Request Broker Architecture) or SOAP (Simple
Object Access Protocol).

• Performance requirements describe operational characteristics related to measures of
workload, such as throughput and response time. For example, the client portion of a sys-
tem might be required to have one-half-second response time on all screens, and the
server components might need to support 100 simultaneous client sessions (with the
same response time).

• Usability requirements describe operational characteristics related to users, such as the
user interface, related work procedures, online help, and documentation. For example, a
Web-based interface might be required to follow organization-wide graphic design guide-
lines, such as menu placement and format, color schemes, use of the organization’s logo,
and required legal disclaimers.

• Reliability requirements describe the dependability of a system—how often a system
exhibits behaviors such as service outages and incorrect processing and how it detects and
recovers from those problems. Reliability requirements are sometimes considered a sub-
set of performance requirements.

• Security requirements describe which users can perform what system functions under
what conditions. For example, access to certain system outputs might be limited to man-
agers at a certain level or employees of a specific department. Some access might be autho-
rized from home and others only from within the organization’s local network. Security
requirements can also apply to areas such as network communications and data storage.
For example, an organization might require encryption of all data transmitted over the
Internet and control of all database server access through use of a username and password.

Both functional and nonfunctional system requirements are needed for a complete defin-
ition of a new system, and both are investigated and documented during systems analysis.
Functional requirements are most often documented in graphical and textual models, as
described in Chapters 5 through 7. Nonfunctional requirements are usually documented in
narrative descriptions that accompany the models.

nonfunctional

requirement

characteristics of the
system other than
activities it must perform
or support, such as
technology, performance,
usability, reliability, and
security

technical

requirement

a system requirement
that describes an
operational
characteristic related to
an organization’s
environment, hardware,
and software

performance

requirement

a system requirement
that describes an
operational
characteristic related to
workload measures,
such as throughput and
response time

usability

requirement

a system requirement
that describes an
operational
characteristic related to
users, such as the user
interface, work
procedures, online help,
and documentation

reliability

requirement

a system requirement
that describes the
dependability of a
system, such as how it
handles service outages,
incorrect processing, and
error detection and
recovery

security

requirement

a system requirement
that describes user
access to certain
functions and the
conditions under which
access is granted

C6696_04_CTP.4c 1/28/08 8:22 AM Page 123

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

MODELS AND MODELING

An analyst can best describe the requirements for an information system using a collection of
models, as we discussed in Chapter 2. Recall that a model is a representation of some aspect
of the system being built. Because a system is so complex, analysts create a variety of models
to encompass the detailed information they have collected and digested. Also, the analyst
uses many types of models to show the system at different levels of detail (or levels of abstrac-
tion), including a high-level overview as well as detailed views of certain aspects of the sys-
tem. Some models show different parts of the problem and solution; for example, one model
might show inputs, while another shows the data stored. Some models show the same prob-
lem and solution from different perspectives; one model might show how objects interact
from the perspective of outside actors, and another might show how objects interact in terms
of sequencing.

THE PURPOSE OF MODELS

Some developers think of a model as documentation produced after the analysis and design
work is done. But actually, the process of creating a model helps an analyst clarify and refine
the design. The analyst learns as he or she completes and then studies parts of the model.
Analysts also raise questions while creating a model and answer them as the modeling
process continues. New pieces are added; the consequences of changes are evaluated and
again questioned. In this respect, the modeling process itself provides direct benefits to the
analyst. The technique used to create the model is valuable in itself even if the analyst never
shows a particular model to anyone else. But usually models are shared with others as analy-
sis and design progresses.

Another key reason that modeling is important in system development is the complexity
of describing information systems. Information systems are very complex, and parts of the
systems are intangible. Models of the various parts help simplify the analyst’s efforts and
focus them on a few aspects of the system at a time. The reason that an analyst uses so many
different models is that each relates to different aspects of the system. In fact, some of the
models created by the analyst may serve only to integrate these aspects—showing how the
other models fit together.

Because of the amount of information gathered and digested and the length of time each
analyst spends on a project, analysts need to review the models frequently to help recall
details of work previously completed. People can retain only a limited amount of informa-
tion, so we all need memory aids. Models provide a way of storing information for later use
in a form that can be readily digested.

The support for communication is one of the most often cited reasons for creating the
models. Given that the analyst learns while working through the modeling process and that
the collection of models reduces the complexity of the information system, the models also
serve a critical role in supporting communication among project team members and with sys-
tem users. If one team member is working on models of inputs and outputs, and another
team member is working on models of the processes that convert the inputs to outputs, then
they need to communicate and coordinate to make sure these models fit together. The sec-
ond team member needs to see what outputs are desired before modeling the process that
creates them. At the same time, both team members need to know what data is stored (the
data model) so they know what inputs are needed and what processes are needed to access
the required data. Models support essential communication and teamwork among the proj-
ect team members.

Models also assist in communication with the system users and foster understanding.
Typically, an analyst reviews the models with a variety of users to get feedback on the analyst’s
understanding of the system requirements. Users need to see clear and complete models to
comprehend what the analyst is proposing. In addition, the analyst sometimes works with

124 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

C6696_04_CTP.4c 1/28/08 8:22 AM Page 124

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 4 Investigating System Requirements ♦ 125

users to develop the models, so the modeling process helps users better understand the possi-
bilities that the new system can offer. Users also need to communicate among themselves
using the models. And the analyst and the users together can use models to relate system
capabilities to managers who are responsible for approving the system.

Finally, the requirements models produced by the analyst are used as documentation for
future development teams when they maintain or enhance the system. Considering the amount
of resources invested in a new system, it is critical for the development team to leave behind a
clear record of what was created. An important activity during implementation is to package the
documentation accurately, completely, and in a form that future developers can use. Much of
the documentation consists of the models created throughout the project. Figure 4-3 summa-
rizes the reasons modeling is important to system development.

Learning from the modeling process

Reducing complexity by abstraction

Remembering all of the details

Communicating with other

development team members

Communicating with a variety of

users and stakeholders

Documenting what was done for

future maintenance/enhancement

Figure 4-3

Reasons for modeling

Although this book emphasizes models and techniques for creating models, remember
that system projects vary in the number of models required and in their formality. Smaller,
simpler system projects do not need models that show every system detail, particularly when
the project team has experience with the type of system being built. Sometimes the key mod-
els are created informally in a few hours. Although models are often created using powerful
visual modeling tools, as discussed in Chapter 2, useful and important models can be drawn
quickly over lunch on a paper napkin or in an airport waiting room on the back of an enve-
lope. As with any SDLC activity, an iterative approach is used for creating requirements and
design models. The first draft of a model has some but not all details worked out. The next
iteration might fill in more details or correct previous misconceptions.

TYPES OF MODELS

Analysts use many types of models when developing information systems. The type of model
used depends on the nature of the information being represented. Models can be categorized
into three general types: mathematical models, descriptive models, and graphical models.

Mathematical Models

A mathematical model is a series of formulas that describe technical aspects of a system.
Mathematical models are used to represent precise aspects of the system that can be best rep-
resented by using formulas or mathematical notation, such as equations that represent net-
work throughput requirements or a function expressing the response time required for a

mathematical

model

a series of formulas that
describe technical
aspects of a system

C6696_04_CTP.4c 1/28/08 8:22 AM Page 125

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

query. These models are examples of technical requirements. In addition, scientific and engineering
applications tend to compute results using elaborate mathematical algorithms. The mathemati-
cal notation is the most appropriate way to represent these functional requirements, and it is also
the most natural way for scientific and engineering users to express those requirements. An ana-
lyst working on scientific and engineering applications had better be comfortable with math.

But mathematical notation is also sometimes efficient for simpler requirements for busi-
ness systems. For example, in a payroll application, it is reasonable to model gross pay as reg-
ular pay plus overtime pay. A reorder point for inventory, a discount price for a product, or a
salary adjustment for a promotion might be modeled with a simple formula.

Descriptive Models

Not all requirements can be precisely defined with mathematics. For these requirements, ana-
lysts use descriptive models, which can be narrative memos, reports, or lists. Figure 4-4 pro-
vides examples of descriptive models for RMO’s customer support system. Initial interviews
with users might require the analyst to jot down notes in a narrative form, such as the descrip-
tion of the phone-order process obtained from phone-order representatives. Sometimes users
describe what they do in reports or memos to the analysts. The analyst might convert these nar-
rative descriptions to a graphical modeling notation while compiling all of the information.

Sometimes a narrative description is the best form to use for recording information. Use
case descriptions are often written out as one or two short paragraphs of text. More detailed
use case descriptions are lists of steps required in processing between the actor and the sys-
tem. Many useful models of information systems involve simple lists, such as lists of features,
inputs, outputs, events, or users. Lists are a form of descriptive or narrative models that are
concise, specific, and useful. Figure 4-4 contains a simple list of inputs to the customer sup-
port system.

A final example of a descriptive model involves writing a process or procedure in a very
precise way, referred to as structured English or pseudocode. Programmers are familiar with
structured English or pseudocode for modeling algorithms that, when followed, always
obtain the same result. Therefore, such algorithms are very precise models of processing.

Graphical Models

Probably the most useful models created by the analyst are graphical models. Graphical
models include diagrams and schematic representations of some aspect of a system.
Graphical models make it easy to understand complex relationships that are too difficult to
follow when described verbally. Recall the old saying that a picture is worth a thousand
words. In system development, a carefully constructed graphical model might be worth a mil-
lion words!

Some graphical models actually look similar to a real-world part of the system, such as a
screen design or a report layout design. But for most of the analyst’s work, the graphical mod-
els use symbols to represent more abstract things, such as external agents, processes, data,
objects, messages, and connections. The key graphical models used during systems analysis
tend to represent the more abstract aspects of a system, because the analysis focuses on fairly
abstract questions about system requirements without indicating the details of how they will
be implemented. The more concrete models of screen designs and report layouts are com-
pleted during systems design.

A variety of graphical models are used. Each model highlights (or abstracts) important
details of some aspect of the information system. Each type of model should ideally use
unique and standardized symbols to represent pieces of information. That way, whoever looks
at a model can understand it. However, the number of available symbols is limited—circle,

126 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

descriptive model

narrative memos,
reports, or lists that
describe some aspect of
a system

graphical model

diagrams and schematic
representations of some
aspect of a system

C6696_04_CTP.4c 1/28/08 8:22 AM Page 126

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 4 Investigating System Requirements ♦ 127

square, rectangle, line, and so on—so be careful when you are first learning the symbols of
each model. You will also find variations in the notation used for each type of model in prac-
tice. The Unified Modeling Language (UML) now provides diagramming standards for mod-
els used in the object-oriented approach. However, diagrams used in the traditional approach
are less standardized.

OVERVIEW OF MODELS USED IN ANALYSIS AND DESIGN

The analysis activity named Define system requirements involves creating a variety of models.
They are referred to as logical models because they define in great detail what is required
without committing to one specific technology. Analysts create many types of logical models
to define system requirements. Figure 4-5 lists some of the more commonly used models.
Barbara Halifax currently has her project team working to create requirements models for the
customer support system.

Many models are also created during systems design. Design models are physical models
because they show how some aspect of the system will be implemented with specific technol-
ogy. Some of these models are extensions of requirements models created during systems
analysis or derive directly from the requirements models. Some models (for example, a class
diagram) are used during analysis and during design. Chapters 5, 6, and 7 describe some of
the requirements models in detail.

A narrative description of processing requirements as verbalized by
an RMO phone-order representative:

“When customers call in, I first ask if they have ordered by phone with us
before, and I try to get them to tell me their customer ID number that they
can find on the mailing label on the catalog. Or, if they seem puzzled
about the customer number, I need to look them up by name and go
through a process of elimination, looking at all of the Smiths in Dayton,
for example, until I get the right one. Next, I ask what catalog they are look-
ing at, which sometimes is out of date. If that is the case, then I explain
that many items are still offered, but that the prices might be different.
Naturally, they point to a page number, which doesn’t help me because of
the different catalogs, but I get them to tell me the product ID somehow...”

List of inputs for the RMO customer support system:

Item inquiry
New order
Order change request
Order status inquiry
Order fulfillment notice
Back-order notice
Order return notice
Catalog request
Customer account update notice
Promotion package details
Customer charge adjustment
Catalog update details
Special promotion details
New catalog details

Figure 4-4

Some descriptive models

C6696_04_CTP.4c 1/28/08 8:22 AM Page 127

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

STAKEHOLDERS—THE SOURCE OF SYSTEM REQUIREMENTS

Your primary source of information for system requirements is the various stakeholders of the
new system. Stakeholders are all people who have an interest in the successful implementa-
tion of the system. Generally, we categorize stakeholders into one of three groups: (1) the
users, those who actually use the system on a daily basis; (2) the clients, those who pay for and
own the system; and (3) the technical staff, the people who must ensure that the system oper-
ates in the computing environment of the organization. Figure 4-6 illustrates the various kinds
of stakeholders who have an interest in a new system. We have discussed earlier the difference
between users and clients. During analysis, the analyst also needs to consider the technical staff
as well. One of the most important first steps in determining system requirements is to iden-
tify these various system stakeholders. In the past, problems have arisen with new systems
because only some of the stakeholders were included in the project and the system was built
exclusively for them. One of an analyst’s first tasks is to identify every type of stakeholder who

128 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

1 buy new car

2 sell car

3 get car serviced

4 make payment

5 trade in car

dataflow 1 =

element 1+

element 2+

element 3

element 1 =

description

data type

validation rules

do this
If ...
else ...
while x

do that
do the other

Event list Data flow

diagram (DFD)
Entity-relationship

diagram (ERD)

Data flow

definition

Data element

definition

Process description/

structured English/

action diagram

Location

diagram

Class diagram

Use case

diagram

Sequence

diagram
Communication

diagram

State machine

diagram

Figure 4-5

Models created during

analysis

stakeholders

all the people who have
an interest in the
success of a new system

C6696_04_CTP.4c 1/28/08 8:22 AM Page 128

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 4 Investigating System Requirements ♦ 129

has an interest in the new system. The second task is to ensure that critical people from each
stakeholder category are available to the project as the business experts.

USERS AS STAKEHOLDERS

User roles—that is, types of system users—should be identified in two dimensions: horizon-
tally and vertically. By horizontally, we mean that the analyst must look for information flow
across business departments or functions. For example, a new inventory system may affect
receiving, warehousing, sales, and manufacturing. So, individual employees from each of
these departments must describe their requirements. The sales department may need to deter-
mine when and how to update inventory quantities or to commit inventory at the time of the
sale but before it is shipped. Manufacturing may need certain information from the inventory
system to assist in scheduling production. So, remembering to include the horizontal dimen-
sion in the definition of requirements will ensure that the many different departments, even
those that may appear unrelated to the new system, are included.

By vertical dimension, we mean the information needs of clerical staff, of middle man-
agement, and of senior executives. Each of these stakeholders has different information
requests for the system that must be included in the design. The following sections describe
the characteristics and information needs of the various users on the vertical dimension.
These same characteristics also apply to each department across the horizontal dimension.

Executive

users

Business

users

Middle

manager users

Technical staff
Clients

Information

users

External

users

Figure 4-6

Stakeholders with an

interest in new system

development

C6696_04_CTP.4c 1/28/08 8:22 AM Page 129

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Business Users

Business users are the people who use the system to perform the day-to-day operations of an
organization. We often call these operations transactions. A transaction is a piece of work done
in an organization, such as “enter an order.” In Chapter 1, you learned that a transaction pro-
cessing system handles these types of business operations. Business users provide informa-
tion about the daily operations of the business and ways the system must support them.

Information Users

An information user is a person who needs current information from the system. This person
might be an operational user or someone else. In some cases, a business might want to make
information directly available to customers. However, an information user may not be allowed
to enter information on business transactions, just to view specific information. An informa-
tion user, then, provides an analyst with insight about what kinds of information should be
available daily, weekly, monthly, and annually, and about what format is most convenient.

Management Users

Managers are responsible for seeing that the company is performing its daily procedures effi-
ciently and effectively. Consequently, they need statistics and summary information from a
system. Management will help an analyst answer the following types of questions:

• What kinds of reports must the system produce?
• What kind of performance statistics must the system maintain?
• What kind of volume information must the system keep, and what volumes of transac-

tions must the new system support?
• Are the controls in the system adequate to prevent errors and fraud?
• How many requests for information will be made and how often?

Executive Users

The top executives of an organization are interested in strategic issues, as well as the daily
issues just described. They typically want information from a system so that they can com-
pare overall improvements in resource utilization. They might want the system to interface
with other systems to provide strategic information on trends and directions of the industry
and the business.

External Users

More and more systems today allow external entities to have direct access to the system.
Customers may access the system directly through the Internet. Suppliers may have access to a
system to check inventory levels and to initiate billing transactions. These users are more diffi-
cult to identify and access because they are not regular members of the organization. However,
today they belong to an important group that must be considered in system development.

CLIENT STAKEHOLDERS

Although the project team must meet the information processing needs of the users, it also
must satisfy the client. Chapter 3 defined the client as the person or group that is providing
the funding for the project. In many cases, the client is the same group as the executive users.
However, clients may also be a separate group, such as a board of trustees or executives in a
parent company. The project team includes the client in its list of important stakeholders
because the team must provide periodic status reviews to the client throughout development.
The client or a direct representative on a steering or oversight committee also usually approves
stages of the project and releases funds.

130 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

transaction

a single occurrence of a
piece of work or an
activity done in an
organization

C6696_04_CTP.4c 1/28/08 8:22 AM Page 130

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 4 Investigating System Requirements ♦ 131

TECHNICAL STAKEHOLDERS

Although the technical staff is not a true user group, this group affects many system require-
ments. The technical staff includes people who establish and maintain the computing envi-
ronment of the organization. They provide guidance in such areas as programming language,
computer platforms, and other equipment. For some projects, the project team includes a
member of the technical staff. For other projects, technical personnel are available as needed.

THE STAKEHOLDERS FOR ROCKY MOUNTAIN OUTFITTERS

To demonstrate the different perspectives of stakeholders, let’s look at the proposed customer
support system for Rocky Mountain Outfitters.

An important part of investigating system requirements is to identify all of the stakehold-
ers. The set of requirements is incomplete if users, clients, external entities, or important tech-
nical staff are not consulted as information is being gathered. At RMO, operational users of
the new order-processing system include inside sales representatives who take orders over the
phone, as well as clerks who process mail orders. They all have different views about what the
system should do for them. Sales representatives talk about looking up product information
for customers and confirming availability and shipping dates. Mail-order clerks talk about
scanning order information into the system to eliminate typing. The warehouse workers who
put the shipments together need information about orders that have been shipped, orders
to be shipped, and back orders, as well as their normal operational screens that allow them to
put orders together into shipments with printed bills of lading.

John and Liz Blankens, as owners, have special interests in reports of the products that
have been ordered and shipped. They are interested in watching seasonal trends within and
across products. In the sports equipment business, it is critically important to push the trendy
items quickly and move on when the trend is past.

The development of the customer support system has been funded in part from internal
cash flows. Funds have also been obtained, however, through a special line of credit at the
bank. RMO normally has a short-term line of credit for seasonal needs. Because the CSS proj-
ect is a longer-term investment for a capital good, John and Liz obtained a different line of
financing for it. Their banker is extremely interested in the success of the project, so in this
case, the project team even met with the bank’s staff to see what special formats of financial
information the bank would like the system to maintain.

Finally, because this system will involve new technology—the Internet and distributed
systems—very heavy involvement is required by the technical staff. Consequently, many
stakeholders will have input into the types of information that can be extracted from the sys-
tem. Figure 4-7 illustrates, from the upper-level RMO organization chart, people who will be
involved. The orange positions indicate the executives and middle managers who will
be involved as stakeholders. The project manager will build a list of all users who need to be
involved in requirements definition. This organization chart is just the beginning. Other
department managers and key employees will also be added.

How did the project team identify which stakeholders to include in the interview schedule?
This is always a difficult question. The process begins, however, with an analysis of the scope of
the new system. After defining the scope, the team must carefully analyze all the people who
may require information from the system in any way. At this point, it is better to err on the side
of including too many stakeholders rather than missing important sources of requirements.
Barbara Halifax sent John MacMurty a memo updating him on her progress in identifying the
CSS stakeholders and her upcoming plans for gathering information (see Barbara’s memo).

C6696_04_CTP.4c 1/28/08 8:22 AM Page 131

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

132 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

MaryAnn
Whitehead

Director of
International
Purchasing

Nathan
Brunner

AVP
Production

Henry
Manwaring

Director of
U.S.

Purchasing

Karen
Hansen

Director of
New Design

Brian
Haddock

Director of
Operations

Genny
Monson

AVP Retail
Sales

Joe
Jones

AVP
Marketing/
Advertising

Robert
Schneider

Director of
Catalog Sales

Christine
Roundy

Manager of
Telephone

Sales

April
 Sterling

AVP
 Accounting
and Finance

Mac
Preston

Chief
Information

Officer

John
MacMurty

Director of
System

Development

Ann
Hamilton

Director of
System
Support

Jason
Nadold

Manager
Warehousing

/ Shipping

John Blankens

President, CEO

Elizabeth Blankens

VP Merchandising
and Distribution

William McDougal

VP Marketing
and Sales

JoAnn White

VP Finance and
Systems

Figure 4-7

RMO stakeholders

involved in the CSS

requirements definition

C6696_04_CTP.4c 1/28/08 8:22 AM Page 132

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 4 Investigating System Requirements ♦ 133

TECHNIQUES FOR INFORMATION GATHERING

The objective of the analysis activities is to understand the business functions and develop
the system requirements. The question that always arises is whether to study and document
the existing system or whether to document only the requirements of the new system. When
the structured approach, as well as the other approaches explained in Chapter 2, were first
developed, systems analysts would first document the existing system and then extrapolate
the requirements of the new system from that documentation. In those days, the develop-
ment of system requirements was a four-step process: (1) identify the physical processes and
activities of the existing system, (2) extract the logical business function that was inherent in
each existing physical process, (3) develop the logical business functions for the approach to
be used in the new system, and (4) define the physical processing requirements of the new
system. One disadvantage of this approach was the inordinate amount of time it took.
Another problem, frequently with long-term consequences, was that system developers would
often simply automate the existing system—in other words, “pave the cow paths.” As a result,
no matter how inefficient the current system was, system developers would simply automate
the procedures that were already in place.

Avoid “analysis paralysis” by focusing on the new system requirements
from the beginning.

BEST PRACTICE

Today, analysts use an accelerated approach by balancing the review of current business
functions with the new system requirements. It is still critical to have a complete, correct set of
system requirements, but in today’s fast-paced world, there is no time or money to review all
the old systems and document all the inefficient procedures. As shown in Figure 4-8, the focus
of analysis activities today is to develop a set of logical system requirements for the new sys-
tem immediately. Analysts review the current system only when they need to understand the
business needs, not to define the specific processes of the old system. This focus on the new
while sometimes referring to the old is a balancing act for system professionals. They need to

C6696_04_CTP.4c 1/28/08 8:22 AM Page 133

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

understand the business needs in extreme detail (remember, “walk the walk and talk the
talk”), but they do not want to get caught up in old, inefficient methods. In fact, in today’s
development environment, one of the most valuable capabilities that a good system devel-
oper can bring is a new perspective to the problem.

134 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Theme Questions to users

What are the business operations and processes? What do you do?

How should those operations be performed? How do you do it?
What steps do you follow?

What information is needed to perform those What information do you use?
operations? What forms or reports do you use?

Figure 4-9

Themes for information-

gathering questions

The analysts develop the logical model of the new system as they gather information. The
project team creates the physical model (that is, how the system will be built) later as part of
systems design. Analysts focus on certain themes and use various techniques to develop the
logical model of the system.

QUESTION THEMES

The first questions that new systems analysts ask are, “What kind of information do I need to
collect? What is a requirement?” Basically, you want to obtain information that will enable
you to build the logical model of the new business system. As shown in Figure 4-9, three
major themes should guide you as you pursue your investigation.

Develop

requirements and

models for new

system

Distribute

questionnaires

Interview

users

Review existing

documentation

Observe business

procedures

Research vendor

solutions

Understand

new system

constraints

Understand

new system

procedures

Understand

new system

functions

Figure 4-8

The relationship between

information gathering

and model building

What Are the Business Processes?

In the first question—What do you do?—the focus is on understanding the business func-
tions. This question is the first step in being able to walk the walk. The analyst must obtain a
comprehensive list of all the business processes. In most cases, the users provide answers in
terms of the current system, so the analyst must discern carefully which of those functions are

C6696_04_CTP.4c 1/28/08 8:22 AM Page 134

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 4 Investigating System Requirements ♦ 135

fundamental—which will remain and which may possibly be eliminated with an improved
system. For example, sales clerks might indicate that the first thing they do when a customer
places an order is to check the customer’s credit history. In the new system, sales clerks might
never need to perform that function; the system might perform the check automatically. The
function remains a system requirement, but the method of carrying out the function moves
from the clerks to the computer system.

How Is the Business Process Performed?

The second question—How can it be done?—moves the discussion from the current system
to the new system. The focus is on how the new system should support the function rather
than on how it does now. Thus, the first two questions go hand in hand to discover the need
and begin to define the system requirement in terms of the new system. The users most fre-
quently talk about the current system, but it is critical for the systems analyst to go beyond
the current process. He or she must be able to help the user visualize new and more efficient
approaches to performing the business processes made possible by the new technology.

What Information Is Required?

The final question—What information is needed?—elaborates on the second question by
defining specific information that the new system must provide. The answers to the second
and third questions form the basis for the definition of the system requirements. One of the
shortcomings of many new systems analysts is that they do not identify all of the required
pieces of information. In both this question and the previous one, detail is the watchword.
An analyst must understand the nitty-gritty detail to develop a correct solution.

Focusing on these three themes helps an analyst ask intelligent, meaningful questions in
an investigation. Later, as you learn about models, you will be able to formulate additional
meaningful and detailed questions to ask.

As you develop skill in asking questions and building models, your problem-solving and
analytical skills will increase. Remember, your value as a systems analyst is not that you know
how to build a specific model or how to program in a specific language. Your value is in your
ability to analyze and solve business information problems—to gather the correct informa-
tion. Fundamental to that skill is how effectively and efficiently you can identify and capture
these business rules. Effective requirements are complete, comprehensive, and correct. An effi-
cient analyst is one who moves the project ahead rapidly with minimal intrusion on users’
time and use of other resources, yet ensures that the information gathered will produce com-
plete, comprehensive, and correct requirements specifications.

The next sections present the various methods of information gathering. All of these meth-
ods have been proven to be effective, although some are more efficient than others. In most
cases, analysts combine methods to increase both their effectiveness and efficiency and pro-
vide a comprehensive fact-finding approach. The most widely used methods are the following:

• Review existing reports, forms, and procedure descriptions
• Conduct interviews and discussions with users
• Observe and document business processes
• Build prototypes
• Distribute and collect questionnaires
• Conduct joint application design (JAD) sessions
• Research vendor solutions

REVIEW EXISTING REPORTS, FORMS, AND PROCEDURE
DESCRIPTIONS

This step should probably be the first in fact-finding activities. There are two sources of infor-
mation for existing procedures and forms. One source is external to the organization—at
industry-wide professional organizations and at other companies. It may not be easy to obtain
information from other companies, but they are a potential source of important information.

C6696_04_CTP.4c 1/28/08 8:22 AM Page 135

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Sometimes, industry journals and magazines report the findings of “best practices” studies.
The project team would be negligent in its duties if its members were not familiar with best
practice information. Also, with systems crossing organization boundaries more and more,
external sources are an important source of system requirements.

The second source of reports, forms, and procedures is the existing business documents
and procedure descriptions within the organization. This internal review serves two purposes.
First, it is a good way to get a preliminary understanding of the processes. Often new systems
analysts need to learn about the industry or the specific application that they are studying. A
preliminary review of existing documentation will bring them up to speed fairly rapidly.

To begin the process, the analysts ask users to provide copies of the forms and reports that
they currently use. They also request copies of procedural manuals and work descriptions.
The review of these materials provides an understanding of the business functions. They also
form the basis for the development of detailed interview questions.

The second way to use documents and reports is in the interviews themselves. Forms and
reports can serve as visual aids for the interview, and as the working documents for discus-
sion (see Figure 4-10). Discussion can center on the use of each form, its objective, its distrib-
ution, and its information content. The discussion should also include specific business
events that initiate the use of the form. Several different business events might require the
same form, and specific information about the event and the business process is critical. It is
also always helpful to have forms that have been filled out with real information to ensure
that the analyst obtains a correct understanding of the fields and data content.

Reviewing the documentation of existing procedures helps identify business rules that may
not come up in the interviews. Written procedures also help reveal discrepancies and redundan-
cies in the business processes. However, procedure manuals frequently are not kept up to date,
and they commonly include errors. To ensure that the assumptions and business rules that
derive from the existing documentation are correct, analysts should review them with the users.

136 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Rocky Mountain Outfitters—Customer Order Form

Rocky Mountain Outfitters

Name and address of person placing order.
(Please verify your mailing address and make correction below.)
Order Date

Description

Name

Address Apt. No

City State Zip

Phone: Day () Evening ()

Item No. Style Color Size
Sleeve
Length Qty Monogram Style

Price
Each Total

Method of Payment

Check/Money Order Gift Certificate(s) AMOUNT ENCLOSED $

Account Number

American Express MasterCard VISA

Signature

Other

Expiration Date

MO YR

Delivery Phone ()

MERCHANDISE TOTAL

Regular FedEx shipping $4.50 per U.S. delivery address
(Items are sent within 24 hours for delivery in 2 to 4 days)

Please add $4.50 per each additional U.S. delivery address

FedEx Standard Overnight Service

Any additional freight charges

International Shipping (see shipping information on back)

Gift Order or Ship To: (Use only if different from address at left.)

Name

Address Apt. No

City State Zip

Gift Card Message

Gift Address for this Shipment Only Permanent Change of Address

Figure 4-10

A sample order form for

Rocky Mountain

Outfitters

C6696_04_CTP.4c 1/28/08 8:22 AM Page 136

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 4 Investigating System Requirements ♦ 137

CONDUCT INTERVIEWS AND DISCUSSIONS WITH USERS

Interviewing stakeholders is by far the most effective way to understand business functions
and business rules. It is also the most time-consuming and resource-expensive option. In this
method, systems analysts meet with individuals or groups of users. A list of detailed ques-
tions is prepared, and discussion continues until all the processing requirements are under-
stood and documented by the project team. Obviously, this process may take some time, so it
usually requires multiple sessions with each of the users or user groups.

To conduct effective interviews, analysts need to organize in three areas: (1) preparing for
the interview, (2) conducting the interview, and (3) following up the interview. Figure 4-11 is
a sample checklist that summarizes the major points to be covered; it is useful in preparing
for and conducting an interview.

Establish the objective for the interview
Determine correct user(s) to be involved
Determine project team members to participate
Build a list of questions and issues to be discussed
Review related documents and materials
Set the time and location
Inform all participants of objective, time, and locations

Checklist for Conducting an Interview
Before

Dress appropriately
Arrive on time
Look for exception and error conditions
Probe for details
Take thorough notes
Identify and document unanswered items or open questions

During

Review notes for accuracy, completeness, and understanding
Transfer information to appropriate models and documents
Identify areas needing further clarification
Send thank-you notes if appropriate

After

Preparing for the Interview

Every successful interview requires preparation. The first and most important step in prepar-
ing for an interview is to establish its objective. In other words, what do you want to accom-
plish with this interview? Write down the objective so that it is firmly established in your
mind. The second step is to determine which users should be involved in the interview.
Frequently, the first two steps are so intertwined that both are done together. Even if you don’t
do anything else to prepare for your interviews, you must at least complete these two steps.
The objective and the participants drive everything else in the interview.

The interview participants include both users and project members. Generally, at least two
project members are involved in every interview. The two project members help each other
during the interview and compare notes afterward to ensure accuracy. The number of users
varies depending on the objective of the interview. A small number of users is generally best
when the interview objective is narrow or of a fact-finding nature. In such cases, interviewing
more than three users at a time tends to cause unnecessarily long discussions. Larger groups
are better if the objective is more open-ended, such as when exploring new process alterna-
tives in a BPR project. Larger groups are often better for generating and evaluating new ideas.

Figure 4-11

A sample checklist to

prepare for user

interviews

C6696_04_CTP.4c 1/28/08 8:22 AM Page 137

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

However, it can be difficult to manage a large group meeting to ensure high-quality input
from all participants. Professional facilitators and formal discovery techniques such as joint
application design (discussed later in this chapter) may be employed if the objective is com-
plex or critical and the group is large.

138 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

The next step is to prepare detailed questions to be used in the interview. Write down a
list of specific questions and prepare notes based on the forms or reports received earlier.
Usually you should prepare a list of questions that are consistent with the objective of the
interview. Both open-ended questions and closed-ended questions are appropriate. Open-
ended questions such as, “How do you do this function?” encourage discussion and explana-
tion. Closed-ended questions such as, “How many forms a day do you process?” are used to
get specific facts. Generally, open-ended questions help get the discussion started and encour-
age the user to explain all the details of the business process and the rules.

The last step is to make the final interview arrangements and to communicate those
arrangements to all participants. A specific time and location should be established. If possi-
ble, a quiet location should be chosen to avoid interruptions. Each participant should know
the objective of the meeting and, when appropriate, should have a chance to preview the
questions or materials to be used. Interviews consume a substantial amount of time, and they
can be made more efficient if each participant knows beforehand what is to be accomplished.

Conducting the Interview

New systems analysts are usually quite nervous about conducting interviews. However, in most
cases, the users are excited about getting a better system to help them do their jobs. Practicing
good manners usually ensures that the interview will go well. Here are a few guidelines.

Dress appropriately. Dress at least as well as the best-dressed user. In many corporate set-
tings such as banks or insurance companies with managers present, business suits are appro-
priate. In factory or manufacturing settings, work dress may be appropriate. The objective in
dressing is to project competence and professionalism without intimidating the user.

Arrive on time. If anything, be a little early. If the session is in a conference room, ensure
that it is set up appropriately. For a large group or a long session, plan for refreshment breaks.

Limit the time of the interview. Both the preparation and the interview itself affect the time
required. As you set the objective and develop questions, plan for about an hour and a half. If the
interview will require more time to cover the questions, it is usually better to break off the discus-
sion and schedule another session. (Other techniques that we discuss later have all-day sessions.)
The users have other responsibilities, and the systems analysts can absorb only so much informa-
tion at one time. It is better to have several shorter interviews than one long marathon. A series of
interviews provides an opportunity to absorb the material and to go back to get clarification later.
Both the analysts and the users will have better attitudes with several shorter interviews.

Look for exception and error conditions. Look for opportunities to ask “what if” questions.
“What if it doesn’t arrive? What if the signature is missing? What if the balance is incorrect? What
if two order forms are exactly the same?” The essence of good systems analysis is understanding
all of the “what ifs.” Make a conscious effort to identify all of the exception conditions and ask
about them. More than any other skill, the ability to think of the exceptions will strengthen the
skill of discovering the detailed business rules. It is a hard skill to teach from a textbook; experi-
ence will hone this skill. You will teach yourself this skill by conscientiously practicing it.

Probe for details. In addition to looking for exception conditions, the analyst must probe
to ensure a complete understanding of all procedures and rules. One of the most difficult
skills to learn as a new systems analyst is to get enough details. Frequently, it is easy to get a
general overview of how a process works. But do not be afraid to ask detailed questions until

Make sure at least two project members participate in user interviews.

BEST PRACTICE

C6696_04_CTP.4c 1/28/08 8:22 AM Page 138

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 4 Investigating System Requirements ♦ 139

you thoroughly understand how it works and what information is used. You cannot do effec-
tive systems analysis by glossing over the details.

Take careful notes. It is a good idea to take handwritten notes. Usually tape recorders
make users nervous. Note taking, however, signals that you think the information you are
obtaining is important, and the user is complimented. If two analysts conduct each interview,
they can compare notes later. Identify and document in your notes any unanswered questions
or outstanding issues that were not resolved. A good set of notes provides the basis for build-
ing the analysis models as well as establishing a basis for the next interview session.

Figure 4-12 is a sample agenda for an interview session. Obviously, you do not need to
conform exactly to a particular agenda. However, as with the interview checklist shown in
Figure 4-11, this figure will help prod your memory on issues and items that should be dis-
cussed in an interview. Make a copy and use it. As you develop your own style, you can mod-
ify the checklist for the way you like to work.

 Discussion and Interview Agenda

Setting

Objective of Interview
Determine processing rules for sales commission rates

Date, Time, and Location
April 21, 2010, at 9:00 a.m. in William McDougal’s office

User Participants (names and titles/positions)
William McDougal, vice president of marketing and sales, and
several of his staff

Project Team Participants
Mary Ellen Green and Jim Williams

Interview/Discussion

1. Who is eligible for sales commissions?
2. What is the basis for commissions? What rates are paid?
3. How is commission for returns handled?
4. Are there special incentives? Contests? Programs based on time?
5. Is there a variable scale for commissions? Are there quotas?
6. What are the exceptions?

Follow-Up

Important decisions or answers to questions
See attached write-up on commission policies

Open items not resolved with assignments for solution
See Item numbers 2 and 3 on open items list

Date and time of next meeting or follow-up session
April 28, 2010, at 9:00 a.m.

Figure 4-12

Sample interview session

agenda

Following Up the Interview

Follow-up is an important part of each interview. The first task is to absorb, understand, and
document the information that was obtained. Generally, analysts document the details of the
interview by constructing models of the business processes and writing textual descriptions of
nonfunctional requirements. These tasks should be completed as soon as possible after the

C6696_04_CTP.4c 1/28/08 8:22 AM Page 139

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

interview and the results distributed to the interview participants for validation. If the model-
ing methods are complex or unfamiliar to the users, the analyst should schedule follow-up
meetings to explain and verify the models, as described in the last section of this chapter.

During the interview, you probably asked some “what if” questions that the users could
not answer. They are usually policy questions raised by the new system that management has
not considered before. It is extremely important that these questions not get lost or forgotten.
For example, Figure 4-13 is a sample table for tracking outstanding or unresolved issues for
Rocky Mountain Outfitters. The table includes questions posed by users or analysts and
responsibilities assigned for resolving the issues. If several teams are working, a combined list
can be maintained. Other columns that might be added to the list are an explanation of the
problem’s resolution and the date resolved.

140 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Maintain an open-items list for unresolved problems and questions.

BEST PRACTICE

OBSERVE AND DOCUMENT BUSINESS PROCESSES

Along with interviews, another extremely useful method of gathering information is to
observe users directly at their job sites and to document the processes you observe. This first-
hand experience is invaluable to understanding exactly what occurs in business processes.

Observing

The old adage that a picture is worth a thousand words is also true with systems analysis.
More than any other activity, observing the business processes in action will help you under-
stand the business functions. However, while observing existing processes, you must also be
able to visualize the new system’s associated business processes. That is, as you observe the
current business processes to understand the fundamental business needs, you should never
forget that the processes could, and often should, change to be more efficient. Don’t get
locked into believing there is only one way of performing the process.

You can observe the work in several ways, from a quick walkthrough of the office or plant
to doing the work yourself. A quick walkthrough gives a general understanding of the layout
of the office, the need for and use of computer equipment, and the general workflow.
Spending several hours observing users at their jobs helps you understand the details of using

Outstanding issues control table

ID Issue title Date identified Target Responsible User contact Comments
end date project person

1 Partial 6-12-2010 7-15-2010 Jim Williams Jason Nadold Ship partials or wait
shipments for full shipment?

2 Returns and 7-01-2010 9-01-2010 Jim Williams William Are commissions
commissions McDougal recouped on

returns?

3 Extra 7-01-2010 8-01-2010 Mary Ellen Green William How to handle com-
commissions McDougal missions on special

promotions?

Figure 4-13

A sample open-items list

Finally, make a list of new questions based on areas that need further elaboration or that
are missing information. This list will prepare you for the next interview.

C6696_04_CTP.4c 1/28/08 8:22 AM Page 140

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 4 Investigating System Requirements ♦ 141

the computer system and carrying out business functions. By being trained as a user and actu-
ally doing the job, you can discover the difficulties of learning new procedures, the impor-
tance of a system that is easy to use, and the stumbling blocks and bottlenecks of existing
procedures and information sources.

It is not necessary to observe all processes at the same level of detail. A quick walkthrough
may be sufficient for one process, whereas another process that is critical or more difficult to
understand might require an extended observation period. If you remember that the objec-
tive is a complete understanding of the business processes and rules, you can assess where to
spend your time to gain that thorough understanding. As with interviewing, it is usually bet-
ter if two analysts combine their efforts in observing procedures.

Observation often makes the users nervous, so you need to be as unobtrusive as possible.
You can put users at ease in several ways, such as working with a user or observing several
users at once. Common sense and sensitivity to the needs and feelings of the users will usu-
ally result in a positive experience.

Documenting Workflows with Activity Diagrams

As you gather information about business processes, primarily by interviewing the users and
by observing the processes, you will need to document your results. One effective way to cap-
ture this information is through the use of diagrams. Eventually, you may want to use dia-
grams to describe the workflows of the new system, but for now, let’s just focus on how we
would document the current business workflows.

A workflow is the sequence of processing steps that completely handles one business trans-
action or customer request. Workflows may be simple or complex. Complex workflows can be
composed of dozens or hundreds of processing steps and may include participants from dif-
ferent parts of an organization. As an analyst, you may try to depend only on your memory to
remember and understand the workflow (a bad idea), you may write it down in a long descrip-
tion, or you can document it with a diagram. The advantages of a simple diagram are that you
can visualize it better, and you can review it with the users to make sure it is correct. One of the
major benefits of using diagrams and models is that they become a powerful communication
mechanism between the project team and the users.

No single diagram is commonly used to model workflows. Diagrams commonly
employed include flowcharts, data flow diagrams, and activity diagrams. Data flow diagrams
do a good job of capturing the flow of data within a workflow, but they aren’t designed to
represent control flows. Flowcharts are specifically designed to represent control flow among
processing steps, but they don’t represent data flow. So, many analysts use a type of workflow
diagram called an activity diagram. An activity diagram is simply a workflow diagram that
describes the various user (or system) activities, the person who does each activity, and the
sequential flow of these activities. The activity diagram is one of the Unified Modeling
Language (UML) diagrams associated with the object-oriented approach, but it can be used
with any development approach.

Figure 4-14 shows the basic symbols used in an activity diagram. The ovals represent the
individual activities in a workflow. The connecting arrows represent the sequence between
the activities. The black circles are used to denote the beginning and ending of the workflow.
The diamond is a decision point at which the flow of the process will either follow one path
or the other path. The heavy solid line is a synchronization bar, which either splits the path
into multiple concurrent paths or recombines concurrent paths. The swimlane represents an
agent who performs the activities. Because in a workflow it is common to have different
agents (that is, people) performing different steps of the workflow process, the swimlane sym-
bol divides the workflow activities into groups showing which agent performs which activity.

workflow

a sequence of steps to
process a business
transaction

activity diagram

a type of workflow
diagram that describes
the user activities and
their sequential flow

synchronization

bar

a symbol in an activity
diagram to control the
splitting or uniting of
sequential paths

swimlane

a rectangular area on an
activity diagram
representing the activities
of a single agent

C6696_04_CTP.4c 1/28/08 8:22 AM Page 141

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 4-15 is an actual activity diagram for a workflow. This workflow represents a cus-
tomer requesting a quote from a salesperson. If it is a simple request, the salesperson can
enter the data and create the quote. If it is complex, the salesperson requests assistance from a
technical expert to generate the quote. In both cases, the computer system calculates the
details of the quote.

Suppose in this case that you have interviewed the salesperson and observed the generation of
a quote. Looking at Figure 4-15, you can see how the workflow progresses. The customer initiates
the first step by requesting a quote. The salesperson performs the next step in the workflow. She
writes down the details of the quote request and then decides whether she can do it herself or
whether she needs help. If she does not need help, the salesperson enters the information into
the computer system. If the salesperson needs help, the technical expert performs the next step.
The expert reviews the quote request to make sure that the requested components can be inte-
grated into a functioning computer system. The activity of checking the request is fairly com-
plex, and you could break it down into more detailed steps if desired. For now, let’s leave the
diagram at this level of detail. The expert then enters the information into the system. At this
point, the computer system generates the detailed quote. Notice that no matter which path was
taken, they both result in this common activity. Finally, the customer reviews the quote and
decides whether it needs changes or is acceptable. In this simple case, the customer always buys
something, so this workflow is obviously not completely accurate.

Notice that an activity diagram focuses on the sequence of activities. This diagram is
straightforward and quite easy to understand. In fact, one of the strengths of using activity
diagrams to document workflows is that users also find them very easy to understand. You
can use graphical representations such as this diagram to review your understanding of the
particular workflow procedure with the user.

Manager

Review
financials

Prepare
report

Ending activity (Pseudo)

Activity

Transition arrow

Starting activity (Pseudo)

Swimlane

[yes][no]

Decision activity

Another way
to show decision

Synchronization bar (Split)

Synchronization bar (Join)

Figure 4-14

Activity diagram symbols

142 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

C6696_04_CTP.4c 1/28/08 8:22 AM Page 142

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Customer Salesperson Technical expert System

Request
quote

Develop notes
of requirements

Ask help?

Enter data
into system

Check
requirements

Enter data
into system

Calculate
quote

Review the
quote

Yes
No

Yes

Changes required?

No

Accept quote
as order

Figure 4-15

A simple activity diagram

to demonstrate a

workflow

CHAPTER 4 Investigating System Requirements ♦ 143

Figure 4-16 illustrates another workflow. This diagram demonstrates some new concepts.
Let’s assume that the customer from the previous example did want to proceed with an order.
Figure 4-16 shows the workflow that is required to get the order scheduled for production.
The salesperson sends to engineering the printed quote, which has now become an order. This
example emphasizes the fact that a document is being transmitted. To indicate that a docu-
ment is being passed, you place the document symbol at the end of the connecting arrow, and
the arrow now becomes a conduit for transmitting a document, not just a flow of activities.
After engineering develops the specifications, two concurrent activities happen: purchasing
orders the materials, and production writes the program for the automated milling machines.
These two activities are completely independent and can occur at the same time. Notice that
one synchronization bar splits the path into two concurrent paths, and another synchroniza-
tion bar reconnects them. Finally, scheduling puts the order on the production schedule.

Creating activity diagrams to document workflows is straightforward. The first step is to
identify the agents to create the appropriate swimlanes. Next, just follow the various steps of

C6696_04_CTP.4c 1/28/08 8:22 AM Page 143

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

the workflow, and make appropriate ovals for the activities. Connect the activity ovals with
arrows to show the workflow. Here are a couple of simple guidelines:

• Use a decision symbol to represent an either/or situation—one path or the other path, but
not both. As a shorthand notation, you can merge an activity (using an oval) and a deci-
sion (using a diamond) into a single oval with two exit arrows, as indicated on the right
in Figure 4-14. This notation represents a decision (either/or) activity. Wherever you have
an activity that reads “verify” or “check,” you will probably require a decision—one for
the “accept” path and one for the “reject” path. You can merge either/or paths into a com-
mon activity (as in Calculate quote shown in Figure 4-15) or into other connecting arrows.

• Use synchronization bars for parallel paths—situations in which both paths are taken.
Include both a beginning and ending synchronization bar. You can also use synchroniza-
tion bars to represent a loop such as a “do while” programming loop. Put the bar at the
beginning of the loop and describe it as “for every.” Put another synchronization bar at
the end of the loop with the description “end for every.”

BUILD PROTOTYPES

As we discussed briefly in Chapter 2, a prototype is an initial, working model of a larger,
more complex entity. Prototypes are used to test and validate ideas, and there are many names
to differentiate these uses: throwaway prototypes, discovery prototypes, design prototypes,
and evolving prototypes. As already explained, prototypes are used during analysis to test fea-
sibility and to help identify processing requirements. These prototypes may be in the form of
simple screens or report programs. During design, prototypes may be built to test various

144 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Salesperson Engineering Purchasing Production

Accept
order

Make
specifications

Buy
materials

Program
computer

Schedule
production

Scheduling

Order

Figure 4-16

An activity diagram

showing concurrent

paths

prototype

a preliminary working
model of a larger system

C6696_04_CTP.4c 1/28/08 8:22 AM Page 144

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 4 Investigating System Requirements ♦ 145

design and interface alternatives. Even during implementation, prototypes may be built to
test the effectiveness and efficiency of different programming techniques.

Prototyping is such a strong tool that you will find it used in almost every development
project in some way. As mentioned earlier in the chapter, a discovery prototype is used for a
single discovery objective and then discarded after the concept has been tested. For example,
if you use a prototype to determine screen formats and processing sequences, you would
throw away the prototype after finishing that definition. Evolving prototypes, on the other
hand, are prototypes that grow and change and may eventually even be used as the final, live
system. As you will see later in Chapter 16, one approach to prototyping is to keep modifying
the prototype and adding to it until it actually becomes the system that is installed.

The following are characteristics of effective prototypes:

• Operative. Generally, a prototype should be a working model, with the emphasis on
working. A simple start to a prototype, called a mock-up, is an electronic form (such as a
screen) that shows what an interface or system looks like but cannot execute an activity.
Later, a working prototype will actually execute and provide both “look and feel” charac-
teristics, but it may lack some functionality.

• Focused. To test a specific concept or verify an approach, a prototype should be focused
on a single objective. Extraneous execution capability that is not part of the specific objec-
tive should be excluded. Although it might be possible to combine several simple proto-
types into a larger prototype, the focused objective still applies. Later, the project team can
combine prototypes to test the integration of several components.

• Quick. Rapid prototype development requires appropriate tools for creating interfaces
and software. A complete application development environment may not be necessary
and the environment may not need to support “industrial strength” features. What’s
important is an efficient developer interface that quickly produces a testable prototype.

Integrating prototyping activities in the project is fairly simple. The important point to
keep in mind is to have an overall philosophy and purpose for building prototypes and to
maintain a consistent focus across all the prototypes that are built.

DISTRIBUTE AND COLLECT QUESTIONNAIRES

Questionnaires have a limited and specific use in information gathering. The benefit of a
questionnaire is that it enables the project team to collect information from a large number
of stakeholders. Even if the stakeholders are widely distributed geographically, they can still
help define requirements through questionnaires.

Frequently, the project team can use a questionnaire to obtain preliminary insight on the
information needs of the various stakeholders. This preliminary information can then be
used to help determine the areas that need further research with document reviews, inter-
views, and observation. Questionnaires are also helpful to answer quantitative questions such
as, “What forms are used to enter new customer information?” and, “On the average, how
long does it take to enter one standard order?” Finally, questionnaires can be used to deter-
mine the users’ opinions about various aspects of the system. Such questions as “On a scale
of 1 to 7, how important is it to be able to access a customer’s past purchase history?” are
often called closed-ended questions, because they direct the person answering the question
to provide a direct response to only that question. They do not invite discussion or elabora-
tion. The strength of closed-ended questions, however, is that the answers are always limited to
the set of choices. The project team can tabulate the answers to determine averages or trends.

Figure 4-17 is a sample questionnaire showing three types of questions. The first part has
closed-ended questions to determine quantitative information. The second part consists of
opinion questions in which respondents are asked whether they agree or disagree with the
statement. Both types of questions are useful for tabulating and determining quantitative
averages. The final part requests an explanation of a procedure or problem. Questions such as
these are good as a preliminary investigation to help direct further fact-finding activities.

mock-up

an example of a final
product that is for
viewing only and is not
executable

closed-ended

questions

questions that have a
simple, definitive answer

C6696_04_CTP.4c 1/28/08 8:22 AM Page 145

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

146 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Questionnaires are not well suited to helping you learn about processes, workflows, or
techniques. The questions identified earlier, such as “How do you do this process?”, are best
answered using interviews or observation. Questions that encourage discussion and elabora-
tion are called open-ended questions. Although a questionnaire can contain a very limited

RMO Questionnaire

This questionnaire is being sent to all telephone-order sales personnel. As you know, RMO is developing a new
customer support system for order taking and customer service.

The purpose of this questionnaire is to obtain preliminary information to assist in defining the requirements for
the new system. Follow-up discussions will be held to permit everybody to elaborate on the system requirements.

Part I. Answer these questions based on a typical four-hour shift.
1. How many phone calls do you receive?___
2. How many phone calls are necessary to place an order for a product?_______________________________
3. How many phone calls are for information about RMO products, that is, questions only?_________________
4. Estimate how many times during a shift customers request items that are out of stock.__________________
5. Of those out-of-stock requests, what percentage of the time does the customer desire to put the item
 on back order?______________%
6. How many times does a customer try to order from an expired catalog?______________________________
7. How many times does a customer cancel an order in the middle of the conversation?___________________
8. How many times does an order get denied due to bad credit?______________________________________

Part II. Circle the appropriate number on the scale from 1 to 7 based on how strongly you
agree or disagree with the statement.

Question Strongly Agree Strongly Disagree

It would help me do my job better to have longer 1 2 3 4 5 6 7
descriptions of products available while talking
to a customer.

It would help me do my job better if I had the 1 2 3 4 5 6 7
past purchase history of the customer available.

I could provide better service to the customer if I 1 2 3 4 5 6 7
had information about accessories that were
appropriate for the items ordered.

The computer response time is slow and causes 1 2 3 4 5 6 7
difficulties in responding to customer requests.

Part III. Please enter your opinions and comments.

Please briefly identify the problems with the current system that you would like to see resolved in a new system.

Figure 4-17

A sample questionnaire

Limit the number of open-ended questions on a questionnaire.

BEST PRACTICE

open-ended

questions

questions that require
discussion and do not
necessarily have a
simple, short answer

C6696_04_CTP.4c 1/28/08 8:22 AM Page 146

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 4 Investigating System Requirements ♦ 147

number of open-ended questions, stakeholders frequently do not return questionnaires that
contain many open-ended questions.

CONDUCT JOINT APPLICATION DESIGN SESSIONS

Joint application design (JAD) is a technique used to expedite the investigation of system
requirements. The normal interview and discussion approach, as explained earlier, requires a
substantial amount of time. The analysts first meet with the users, then document the discus-
sion by writing notes and building models, and then review and revise the models.
Unresolved issues are placed on an open-items list and may require several additional meet-
ings and reviews to be finalized. This process can extend from several weeks to months,
depending on the size of the system and the availability of user and project team resources.

joint application

design (JAD)

a technique to define
requirements or design a
system in a single
session by having all
necessary people
participate

A JAD session speeds up the process of defining requirements.

BEST PRACTICE

The objective of JAD is to compress all of these activities into a shorter series of JAD ses-
sions with users and project team members. An individual JAD session might last from a sin-
gle day to a week. During the session, all of the fact-finding, model-building, policy decisions,
and verification activities are completed for a particular aspect of the system. If the system is
small, the entire analysis might be completed during the JAD session. The critical factor in a
successful JAD session is to have all of the important stakeholders present and available to
contribute and make decisions. The actual participants vary depending on the objective of the
specific JAD session. The following people and groups may be involved:

• The JAD Session Leader. One of the more important members of the group, the session
leader is experienced or trained in understanding group dynamics and in facilitating
group discussion. Normally, a JAD session involves quite a few people. Each session has a
detailed agenda with specific objectives that must be met, and the discussion must
progress toward meeting those objectives. Maintaining focus requires someone with skills
and experience to keep people on task tactfully. Often it is tempting to appoint a systems
analyst as the session leader. However, experience indicates that successful JAD sessions
are conducted by someone who is trained to lead group decision making.

• Users. Earlier, this chapter identified various classes of users. It is important to have all of the
appropriate users in the JAD sessions. Frequently, as requirements are discovered, managers
must make policy decisions. If managers are not available in the sessions to make those deci-
sions, progress is halted. Because of business pressures, it might be difficult for top executives
to be present during the entire session. In that case, arrangements should be made for execu-
tives to visit the session once or twice a day to become involved in policy discussions.

• Technical Staff. A representative from the technical support staff should also be present
in the JAD session. There are always questions and decisions about technical issues that
need to be answered. For example, participants might need details of computer and net-
work configurations, operating environments, and security issues.

• Project Team Members. Both systems analysts and user experts from the project team
should be involved in JAD sessions. These members assist in the discussion, clarify points,
control the level of detail needed, build models, document the results, and generally see
that the system requirements are defined to the necessary level of detail. The session
leader is a facilitator, but often the leader is not the expert on how much detail and defin-
ition is required. Members of the project team are the experts on ensuring that the objec-
tives are completely satisfied.

JAD sessions are usually conducted in special rooms with supporting facilities. First,
because the process is so intense, it is important to be away from the normal day-to-day inter-
ruptions. Sometimes an off-site location may be necessary, or notification that interruptions

C6696_04_CTP.4c 1/28/08 8:22 AM Page 147

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

are not welcome may be posted. On the other hand, it is usually helpful to have telephone
access to executives and technical staff who are not involved in the meetings but who may be
invited from time to time to finalize policy or technical decisions.

Resources in the JAD session room should include an overhead projector, a black or white
board, flip charts, and adequate workspace for the participants. JAD sessions are work ses-
sions, and all the necessary work paraphernalia should be provided.

Recently, JAD sessions have been taking advantage of electronic support to increase their effi-
ciency. Analysis and documentation can be enhanced if participants have personal or laptop
computers connected in a network. Then as requirements are documented with narrative
descriptions or models, or even as some simple discovery prototypes are built, they can be made
available to everybody. Often, an easy-to-use suite of modeling and application development
tools are provided to assist in visualization of screen and report layouts and file design. The suite
may also provide a central repository for all the requirements developed during the session.

Group support systems (GSSs), which also run on the network of computers, allow all
participants to post comments (anonymously, if desired) in a common working chat room.
This approach helps participants who may be shy in group discussions to become more active
and contribute to the group decisions. GSSs also enable the team to store final requirements
as decisions are made. Normally JAD sessions are conducted with everyone in the same room.
However, GSSs on wider networks provide the opportunity for virtual meetings with partici-
pants at geographically dispersed locations.

Figure 4-18 shows an example of a conference room with electronic support. Such a room
might be available in larger companies that have development projects in progress more fre-
quently. The room shown in Figure 4-18 has workstations available to develop model dia-
grams and prototypes during the JAD sessions. This room could even be quite sophisticated
by having computer support for collaborative work (CSCW) software on the computers to
facilitate comment and discussion. With CSCW software, certain executives could even partic-
ipate from remote locations, if necessary.

As stated earlier, one of the dangers of JAD is the risk involved in expediting decisions.
Because the objective of JAD is to come to a conclusion quickly on policy decisions and
requirements details, sometimes decisions are not optimal. At times, details are inappropri-
ately defined or missed altogether. However, JAD sessions have been largely successful in
reducing project development efforts and shortening the schedule.

148 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Group
support
server

Printer

White
board

Screen for
computer
projector

Computer
projector

Figure 4-18

A JAD facility

group support

system (GSS)

a computer system that
enables multiple people
to participate with
comments at the same
time, each from their
own computer

C6696_04_CTP.4c 1/28/08 8:22 AM Page 148

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 4 Investigating System Requirements ♦ 149

RESEARCH VENDOR SOLUTIONS

Many of the problems and opportunities that companies want to address with new informa-
tion systems have already been solved by other companies. In many instances, consulting
firms have experience with the same problems, and sometimes software firms already have
packaged solutions for a particular business need. Directories such as Data Sources also list
thousands of hardware, software, consulting, and solution developers—it makes sense to
learn about and capitalize on this existing knowledge.

There are three positive contributions and one danger in exploring existing solutions.
First, researching alternative solutions will frequently help users generate new ideas for how
to better perform their business functions. Seeing how someone else solved a problem, and
applying that idea to the culture and structure of the existing organization, will often provide
viable alternative solutions for business needs.

Second, some of these solutions are excellent and state of the art. Without this research,
the development team may create a system that is obsolete even before it is designed.
Companies need solutions that not only solve basic business problems but that are up to date
with current competitive practices.

Third, it is often cheaper, and less risky, to buy a solution rather than to build it. If the solu-
tion meets the needs of the company and can be purchased, then that is usually a safer,
quicker, and less expensive route. There are many ways to buy solutions. Chapter 8 discusses
alternative schemes to build and buy. Early in the development project, you want to research
other alternatives but not make a final decision until you have investigated all the alternatives.

The danger, or caveat, in this process is that sometimes the users, and even the systems
analysts, want to buy one of the alternatives immediately. But if a solution such as a packaged
software system is purchased too early in the process, the company’s needs may not be thor-
oughly investigated. Too many companies have bought a system only to find out later that it
only supports half the functions that were needed. Don’t fall into this dangerous pit.

The first difficulty in researching vendor alternatives is simply to find out who has solu-
tions that fit the business need. Many of the large software and hardware companies, such as
Oracle, IBM, Microsoft, and Computer Associates, have specific solution systems. There are
also directories of system solutions—of software, hardware, and developer companies. Data
Sources is one of the better ones. You can also search the Internet to find more directories.
Sometimes these directories can be found in the library—a company technical library, the city
library, or a nearby university library.

Other places to look are in trade journals for the industry. For example, the retail industry
has several trade journals. System providers frequently advertise in these journals and at trade
shows. Another method is word of mouth from other companies in the industry. Generally,
users will have friends who work in competing companies. These people are sometimes aware
of specific vendors that have helped solve their own business needs. Although companies
compete fiercely on the sales and marketing end, it is not unusual for them to belong to a
common trade organization that helps to share knowledge about the industry, including
knowledge about system solutions.

After a list of possible providers has been developed, the next step is to research the details
of each solution. It is easy to get the sales and marketing literature, but it is more difficult to
get specifics of the system. Useful resources include: (1) technical specifications, (2) a demo
or trial system, (3) references of existing clients who would let you observe their system,
(4) an on-site visit, and (5) a printout of the screens and reports.

The final step is to review the details of the information received. Depending on the infor-
mation obtained, it can be reviewed solely by the project team or with the users. In many
cases, a review with key users is the most beneficial in understanding and identifying various
approaches to addressing the business need. In any event, researching the solutions that have
already been developed is an effective early step in understanding the business and identify-
ing possible courses of action.

C6696_04_CTP.4c 1/28/08 8:22 AM Page 149

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

VALIDATING THE REQUIREMENTS

Now that you have learned about information-gathering techniques and ways to elicit require-
ments from the users, you need to make sure that the information you gathered is correct. All
too frequently, systems analysts think they understand what the users need but have failed to
capture some very important subtleties about the business processes. Obviously, correcting
such a mistake after the system has been programmed is very expensive. In fact, various studies
have indicated that fixing a requirements error later in the development cycle can cost hun-
dreds of times more than it would have cost to fix during the requirements definition.

If we compare the development of a new information system to the construction of a
house, the requirements determined during analysis are like a house’s blueprints and con-
struction designs. The construction of the house is dependent on those blueprints. What if
there are errors in the blueprints, such as load-bearing walls that are not strong enough or
missing structural supports? If these errors are not discovered until the second story is built, it
will be extremely expensive to remove and rebuild walls. So, the blueprints have to be correct.
How does an architect ensure that they are correct? By not waiting until the house is being
built to “test” the correctness of the blueprints.

System requirements have a similar problem. The design and construction of the system
depend on correct requirements. It is too late, and very expensive, if the requirements are
“tested” only while the programming is being done. Testing and validation of the system
requirements must be done as early as possible.

At this point in your project activities, you have collected information about the user
requirements. You may have developed some workflow diagrams. In the next chapter, you
will learn about building models to describe the system requirements. All of these elements
should be thoroughly tested before the actual design and programming begin. When writing
a computer program, a programmer must verify the accuracy of the code by conducting vari-
ous tests. Executing the program on a computer—by entering appropriate input data and
observing the output—tests a computer program. Analysts cannot test the requirements that
way, so they have to use a different approach.

Various techniques can be used to validate the information from the users and the require-
ments that are developed from that information. To check internal consistency, analysts build
models and verify that they are mathematically consistent. You will learn more about models
in the next chapter. One powerful technique, called structured walkthroughs, is useful both for
validating the requirements against the users’ needs as well as verifying internal consistency.

A structured walkthrough, sometimes just called a walkthrough, is a review of the findings
from your investigation and of the models built based on those findings. A walkthrough is
considered structured because analysts have formalized the review process into a set proce-
dure. The objective of a structured walkthrough is to find errors and problems. Its purpose is
to ensure that the model is correct. The fundamental concept is one of documenting the
requirements as you understand them and then reviewing them for any errors, omissions,
inconsistencies, or problems. A review of the findings can be done informally with colleagues
on the project team, but a structured walkthrough must be more formal.

It is important to note one critical point: A structured walkthrough is not a performance
review. Managers should be involved only if they were involved in the original fact-finding
and thus are required for verification or validation. The review is of an analyst’s work and not
the person. To help you understand the more structured approach, this section reviews the
what, when, who, and how of a structured walkthrough.

One of the major responsibilities of the project manager, as described in Appendix A on the
book’s Web site, is to ensure the quality of the final system. Often during the rush and pressure of
a project, systems analysts will think, “My work is good. It does not need to be reviewed.” But it is
very unwise for a project manager to skip the review. Because of the costly consequences, it just
does not make sense to exclude from the project plan specific tasks and procedures to ensure that

150 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

structured

walkthrough

a review of the findings
from your investigation
and of the models built
based on those findings

C6696_04_CTP.4c 1/28/08 8:22 AM Page 150

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 4 Investigating System Requirements ♦ 151

the requirements are complete and accurate. Omissions such as this will always cause problems
later in the project. Structured walkthroughs can be performed to validate gathered information;
however, they should definitely be performed to validate the specification models (discussed in
the next few chapters). This section focuses on the process of a structured walkthrough.

WHAT AND WHEN

The key input to a structured walkthrough is one or more analysis or design models. They can
be narratives describing processes, flowcharts showing workflows, or diagrams documenting
entire procedures. Normally, it is better to conduct several smaller walkthroughs that review
three to six pages of documentation than to cover 30 pages of details. Any written work that
is a fairly independent package can be reviewed in a walkthrough. It is not uncommon to
hold smaller walkthroughs every week or two with members of the project team. The fre-
quency of the walkthroughs is not as critical as the timing—a walkthrough should be sched-
uled as soon as possible after the documents have been created.

WHO

The two main parties involved in walkthroughs are the person or people who need their work
reviewed and the group that reviews it. For verification—that is, internal consistency and
correctness—it is best to have other experienced analysts involved in the walkthrough. They look
for inconsistencies and problems. For validation—that is, ensuring that the system satisfies all the
needs of the various stakeholders—the appropriate stakeholders should be involved. The nature of
the work to be reviewed dictates who the reviewers should be. If it is a diagram showing a business
process, the users who supplied the original definition should be involved. If it is a technical speci-
fication of design details, the technical staff should be involved in the review. At times, the review-
ers may be members of the project team. In other instances, they are external users or technical
staff. Those who can validate the correctness of the work are the people who should be invited.

HOW

As with an interview, a structured walkthrough requires preparation, execution, and follow-up.

Preparation

The analyst whose work is being reviewed prepares material for review. Next, he or she identi-
fies the appropriate participants and provides them copies of the material. Finally, the analyst
schedules a time and place for the walkthrough and notifies all participants.

Execution

During the walkthrough, the analyst presents the material point by point. If it is a diagram or
flowchart, he or she walks through the flow, explaining each component. One effective tech-
nique is to define a sample test case and process it through the defined flow. The reviewers
look for inconsistencies or problems and point them out. A librarian, a helper for the presen-
ter, documents the comments made by the reviewers. Presenters should never be their own
librarians because they should not be distracted from explaining the documentation. To
ensure accuracy, someone else should record the errors, comments, and suggestions.

In a structured walkthrough, have a nonparticipant act as librarian to
record all errors, comments, and suggestions.

BEST PRACTICE

Corrections and solutions to problems are not made during the walkthrough. At most, some
suggested solutions may be provided, but the documentation should not be corrected during
the walkthrough. Because presenters are commonly a little nervous, it is unfair to ask them to
make wise decisions on the spur of the moment. If a misunderstanding of the user requirements
is uncovered, a brief review might be in order. However, if an error is fairly complex, it is better

C6696_04_CTP.4c 1/28/08 8:22 AM Page 151

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

to schedule an additional interview to clarify the misunderstanding. The walkthrough should
not get bogged down into a fact-finding session. The reviewer should only provide feedback,
and the presenter can integrate it into the material later, when he or she has the entire set of
comments and can make corrections without interruptions or further criticism.

Follow-Up

Follow-up consists of making the required corrections. If the reviewed material has major
errors and problems, an additional walkthrough may be necessary. Otherwise, the corrections
are made, and the project continues to the next activities.

Figure 4-19 is a sample review form that was used in one of the review sessions at Rocky
Mountain Outfitters for the sales commission rates and rules. Not shown are several attached
sheets, including a couple of flowcharts of procedures. The material reviewed in this case is
simply a list of business rules for commission rates. The reviewers are senior managers from
the user community. Because sales commission business rules are critical, and these managers
make the policy decisions about commissions, they are the obvious choices to review the
rules as uncovered in discussions and interview sessions.

152 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

 Walkthrough Control Sheet

Project Control Information

Project: Online Catalog System, Customer Support Subsystem

Segment of project being reviewed: Review of business rules for sales commission rates

Team leader: Mary Ellen Green

Author of work: Jim Williams

Walkthrough Details

Date, time, and location
April 10, 2010. 10:00 a.m. MIS conference room.

Description of materials being reviewed:
This is a review of the business rules before they are integrated into the diagrams and models.
There is a short flowchart attached showing the flow of the commission process. There is
another flowchart showing the process to set commission rates. We will also review outstanding
issues to ensure that all understand the policy decisions that must be made.

Participating reviewers:
William McDougal, Genny Monson, Robert Schneider

Results of Walkthrough

___________Accept. sign-offs:___
___________Minor revisions. Description of revisions:

___________Rework and schedule new walkthrough. Description of required rework:
 Excellent and thorough. No rework required.

XX

Figure 4-19

A structured

walkthrough

evaluation form

C6696_04_CTP.4c 1/28/08 8:22 AM Page 152

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 4 Investigating System Requirements ♦ 153

SUMMARY
There are six primary activities of systems analysis:

• Gather information.
• Define system requirements.
• Prioritize requirements.
• Prototype for feasibility and discovery.
• Generate and evaluate alternatives.
• Review recommendations with management.

Generally we divide system requirements into two categories: functional and nonfunctional requirements.
The functional requirements are those that explain the basic business functions that the new system must sup-
port. Nonfunctional requirements involve the objectives of the system for technology, performance, usability,
reliability, and security.

Models are useful for defining requirements and designs. There are three types of models: mathematical,
descriptive, and graphical.

To ferret out the requirements, analysts must work with various stakeholders in the new system. We cate-
gorize stakeholders into three groups: (1) the users, those who will actually use the system day to day; (2) the
clients, those who pay for and own the system; and (3) the technical staff, the people who must ensure that
the system operates within the computing environment of the organization. One of the most important first
steps in determining systems requirements is to identify these various system stakeholders.

A fundamental question to investigate system requirements is, “What kind of information do I need?”
This chapter provides you with some general guidelines. As you learn more about modeling, you should also
understand better what information you need. Three major themes of information should be pursued:

• What are the business processes and operations?
• How are the business processes performed?
• What are the information requirements?

Analysts use seven primary techniques to gather this information, and one technique ensures its correctness.
The seven fact-finding techniques are the following:

• Review existing reports, forms, and procedure descriptions.
• Conduct interviews and discussions with users.
• Observe and document business processes.
• Build prototypes.
• Distribute and collect questionnaires.
• Conduct JAD sessions.
• Research vendor solutions.

The fundamental idea of a prototype is an initial, working model of a larger, more complex entity. The primary purpose of a prototype
is to have a working model that will test a concept or verify an approach. Discovery prototypes are built to define requirements but are
then usually discarded or at least not used for the final programming.

Joint application design is a technique used to expedite the investigation of system requirements by holding several marathon sessions
with all the critical participants. Discussion results in requirements definition and policy decisions immediately, without the delays of inter-
viewing separate groups and trying to reconcile differences. When done correctly, JAD is a powerful and effective technique.

The review technique to ensure that analysis is accurate and complete is called a structured walkthrough. Remember that a structured
walkthrough has the objective of reviewing and improving the work. It is not a performance review.

C6696_04_CTP.4c 1/28/08 8:22 AM Page 153

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

KEY TERMS

activity diagram, p. 141

closed-ended questions, p. 145

descriptive model, p. 126

functional requirement, p. 122

graphical model, p. 126

group support system (GSS), p. 148

joint application design (JAD), p. 147

logical model, p. 120

mathematical model, p. 125

mock-up, p. 145

nonfunctional requirements, p. 123

open-ended questions, p. 146

performance requirement, p. 123

physical model, p. 120

prototype, p. 144

reliability requirement, p. 123

security requirement, p. 123

stakeholders, p. 128

structured walkthrough, p. 150

swimlane, p. 141

synchronization bar, p. 141

system requirements, p. 122

technical requirement, p. 123

transaction, p. 130

usability requirement, p. 123

workflow, p. 141

REVIEW QUESTIONS

1. List the six activities of systems analysis.

2. What are three types of models?

3. What is the difference between functional requirements

and nonfunctional requirements?

4. Explain the use of a discovery prototype and an

evolutionary prototype.

5. List and describe the three fact-finding themes.

6. What is the objective of a structured walkthrough?

7. Explain the steps in preparing for an interview session.

8. What are the benefits of doing vendor research during

information-gathering activities?

9. What categories of stakeholders should you include in

fact-finding?

10. What is meant by vertical and horizontal dimensions when

determining users to involve?

11. What is JAD? When is it used?

12. What is BPR? What does it have to do with systems analysis?

13. What technique is used to validate user requirements?

14. Describe the open-items list and explain why it is important.

15. What do correct, complete, and comprehensive mean with

regard to systems analysis?

16. List and describe the seven information-gathering

techniques.

17. What is the purpose of an activity diagram?

18. Draw and explain the symbols used on an activity diagram.

THINKING CRITICALLY

1. Provide an example of each of the three types of models

that might apply to designing a car, a house, and an office

building. Explain why requirements models are logical

models rather than physical models.

2. One of the toughest problems in investigating system

requirements is to make sure that they are complete and

comprehensive. What things would you do to ensure that

you get all of the right information during an interview

session?

3. What can you do to ensure that you have included all of

the right stakeholders on your list of people to interview?

How can you double-check your list?

4. One of the problems you will encounter during your inves-

tigation is “scope creep”—that is, user requests for addi-

tional features and functions. Scope creep happens

because sometimes users have many unsolved problems

and the system investigation may be the first time anybody

has listened to their needs. How do you keep the system

from growing and including new functions that should not

be part of the system?

5. It is always difficult to observe users in their jobs. It fre-

quently makes both you and them uncomfortable. What

things could you do to ensure that user behavior is not

changing because of your visit? How could you make

observation more natural?

6. What would you do if you got conflicting answers for the

same procedure from two different people you inter-

viewed? What would you do if one was a clerical person

and the other was the department manager?

7. You are a team leader of four systems analysts. You have

one analyst who has never done a structured walkthrough

of her work. How would you help the analyst to get

started? How would you ensure that the walkthrough was

effective?

154 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

C6696_04_CTP.4c 1/28/08 8:22 AM Page 154

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

8. You have been assigned to resolve several issues on the

open-items list, and you are having a hard time getting

policy decisions from the user contact. How can you

encourage the user to finalize these policies?

9. You are going on your first consulting assignment to do

systems analysis. Your client does not like to pay to train

new, inexperienced analysts. What should you do to

appear competent and well prepared? How should you

approach the client?

10. In the running case of Rocky Mountain Outfitters, you have

set up an interview with Jason Nadold in the shipping depart-

ment. Your objective is to determine how shipping works and

what the information requirements for the new system will

be. Make a list of questions, open-ended and closed-ended,

that you would use. Include any questions or techniques you

would use to ensure you find out about the exceptions.

11. Develop an activity diagram based on the following narra-

tive. Note any ambiguities or questions that you have as you

develop the model. If you need to make assumptions, also

note them.

The purpose of the Open Access Insurance System is to

provide automotive insurance to car owners. Initially,

prospective customers fill out an insurance application, which

provides information about the customer and his or her vehi-

cles. This information is sent to an agent, who sends it to var-

ious insurance companies to get quotes for insurance. When

the responses return, the agent then determines the best pol-

icy for the type and level of coverage desired and gives the

customer a copy of the insurance policy proposal and quote.

12. Develop an activity diagram based on the following narrative.

Note any ambiguities or questions that you have as you develop

the model. If you need to make assumptions, also note them.

The purchasing department handles purchase requests

from other departments in the company. People in the

company who initiate the original purchase request are the

“customers” of the purchasing department. A case worker

within the purchasing department receives the request and

monitors it until it is ordered and received.

Case workers process requests for the purchase of

products under $1,500, write a purchase order, and then

send it to the approved vendor. Purchase requests over

$1,500 must first be sent out for bid from the vendor that

supplies the product. When the bids return, the case

worker selects one bid. Then, he or she writes a purchase

order and sends it to the vendor.

13. Develop an activity diagram based on the following narra-

tive. Note any ambiguities or questions that you have as you

develop the model. If you need to make assumptions, also

note them.

The shipping department receives all shipments on out-

standing purchase orders. When the clerk in the shipping

department receives a shipment, he or she finds the out-

standing purchase order for those items. The clerk then

sends multiple copies of the shipment packing slip. One

copy goes to purchasing, and the department updates its

records to indicate that the purchase order has been fulfilled.

Another copy goes to accounting so that a payment can be

made. A third copy goes to the requesting in-house cus-

tomer so that he or she can receive the shipment.

After payment is made, the accounting department sends a

notification to purchasing. After the customer receives and

accepts the goods, he or she sends notification to purchas-

ing. When purchasing receives these other verifications, it

closes the purchase order as fulfilled and paid.

EXPERIENTIAL EXERCISES

1. Conduct a fact-finding interview with someone involved in

a procedure that is used in a business or organization. This

person could be someone at the university, in a small busi-

ness in your neighborhood, in the student volunteer office

at the university, in a doctor’s or dentist’s office, in a volun-

teer organization, or at your local church. Identify a process

that is done, such as keeping student records, customer

records, or member records. Make a list of questions and

conduct the interview. Remember, your objective is to

understand that procedure thoroughly—that is, to become

an expert on that single procedure.

2. Follow the same instructions as for exercise 1, except make

this exercise an observation experience. Either observe the

other person do the work or ask to carry out the procedure

yourself. Write down the details of the process you observe.

3. Get a group of your fellow students together and conduct

a structured walkthrough of your results from exercise 1 or

2. Using the results of your interview or observation, docu-

ment the procedure in a flowchart with some narrative.

Then, conduct a walkthrough with several colleagues. Or

take another assignment, such as Thinking Critically ques-

tion 9, and walk through your preparation for that assign-

ment. Follow the steps outlined in the text.

4. Research and write a one- to two-page research paper

using at least three separate library sources on one of the

following topics:

a. Joint application design

b. Prototyping as a discovery mechanism

c. Computer support for collaborative work (CSCW)

d. Workflow systems

e. Structured walkthrough

CHAPTER 4 Investigating System Requirements ♦ 155

C6696_04_CTP.4c 1/28/08 8:22 AM Page 155

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. Using Rocky Mountain Outfitters and the customer support

subsystem as your guide, develop a list of all the procedures

that may need to be researched. You may want to think

about the exercise in the context of your experience with

retailers such as L. L. Bean, Lands’ End, or Amazon.com.

Get some catalogs, check out the Internet marketing done

on the retailers’ Web sites, and then think about the under-

lying business procedures that are required to support those

sales activities. List the procedures and describe your under-

standing of each.

CASE STUDIES
JOHN AND JACOB, INC., ONLINE TRADING SYSTEM

John and Jacob, Inc., is a regional brokerage firm that has been suc-

cessful over the last several years. Competition for customers is

intense in this industry. The large national firms have very deep

pockets, with many services to offer to clients. Severe competition

also comes from discount and Internet trading companies.

However, John and Jacob has been able to cultivate a substantial

customer base from upper-middle income clients in the northeast-

ern United States. To maintain a competitive edge with its cus-

tomers, John and Jacob is in the process of developing a new online

trading system. The plan for the system identifies many new capa-

bilities that would provide new services to its clients.

Edward Finnigan, the project manager, is in the process of iden-

tifying all the groups of people who should be included in the devel-

opment of the system requirements. He isn’t quite sure exactly who

should be included. Here are the issues he’s considering:

• Users. The trading system is to be online to each of the

company’s 30 trading offices. Obviously, the brokers who

are going to use the system need to have input, but how

should this be done? Edward also isn’t sure what approach

would be best to ensure that the requirements are com-

plete, yet not require tremendous amounts of time.

Including all of the offices would increase enthusiasm and

support for the system, but it would take a lot of time.

Involving more brokers would bring divergent opinions

that would have to be reconciled.

• Customers. The trading system will also include confirma-

tions, reports of trades, and customer statements. Web

access is also planned, which will enable customers to

effect trades and to check their accounts. Consequently,

Edward wonders how to involve John and Jacob customers

in the development of system requirements. Normally, cus-

tomers are not asked to participate in the development of

systems. However, it would be nice to know how best to

serve John and Jacob’s customers. Edward is sensitive to

this issue because some brokers have told him that many

customers do not like the format of their statements from

the current system. He would like to involve customers, but

he does not know how.

• Other Stakeholders. Edward knows he should involve

other stakeholders to help define system requirements. He

isn’t quite sure whom he should contact. Should he go to

senior executives? Should he contact middle manage-

ment? Should he include back-office functions such as

accounting and investing? He isn’t quite sure how to get

organized or how to decide who should be involved.

1. What is the best method for Edward to involve the brokers

(users) in development of the new online trading system?

Should he use a questionnaire? Should he interview the

brokers in each of the company’s 30 offices, or would one

or two brokers representing the entire group be better?

How can Edward ensure that the information about

requirements is complete, yet not lose too much time

doing so?

2. Concerning customer input for the new system, how can

Edward involve customers in the process? How can he

interest them in participating? What methods can Edward

use to ensure that the customers he involves are represen-

tative of John and Jacob’s entire customer group?

3. As Edward considers what other stakeholders he should

include, what are some criteria he should use? Develop

some guidelines to help him build a list of people to include.

RETHINKING ROCKY MOUNTAIN OUTFITTERS

Barbara Halifax, the project manager for the CSS

project, had finished identifying the list of stake-

holders in the project. As shown earlier in the chap-

ter, quite a few senior executives would be involved.

Most of them would not have major input. Those in Bill McDougal’s

area would, of course. Not only was he the project sponsor, but all

his assistants were excited about this new system and its potential

to help the business grow. Barbara had a good working relationship

with all of these executives.

Barbara had also identified numerous department managers and

senior customer service representatives who would be able to pro-

vide detailed processing requirements. She had divided her list of

stakeholders into two groups. The first group consisted of all those

with primary responsibility to help define user requirements. The sec-

ond group included those who would not have direct use of the sys-

tem but would need reports and information from the system. She

wanted to make sure the needs of these people were also satisfied.

As an experienced project manager, Barbara had her checklists of

things to do. She used a project manager checklist to help her

156 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

C6696_04_CTP.4c 1/28/08 8:22 AM Page 156

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

remember all important tasks. Being a project manager was much too

critical, and potentially stressful, to do it “by the seat of your pants.”

As she reviewed her list, she noticed several activities that she

had not yet considered on the CSS project. She was thinking that

before she let her project team start to meet with the users, she

ought to consider these items and review them with her team. The

items that most caught her attention were the following:

• Develop a communications plan with the user.
• Manage user expectations.
• Control the scope and avoid scope creep.

Based on the concepts you learned in this chapter, what would
you do if you were Barbara? (You also might want to review
Appendix A on the book’s Web site). Obviously, you want to provide
the best possible solution for the company, but you also need to
control the project, the scope, and the users so that the system will
be successful and be installed on time.

1. Identify the major points you would include in a communi-

cations plan at this point in the project.

2. What advice would you give your project team to help it

manage the user expectations?

3. What early planning can you do now to ensure that the

scope is realistic—to meet the need but within the time

and budget allotted?

FOCUSING ON RELIABLE PHARMACEUTICAL SERVICE

Reliable Pharmaceutical Service plans to

develop an extranet that enables its client

health-care facilities to order drugs and supplies

as if they were ordering from an internal pharmacy. The extranet

should enable Reliable’s suppliers to function as if they were part of

Reliable’s internal organization. These views of the final system have

significant implications for defining system requirements and for

gathering information about those requirements.

1. What information-gathering methods are most appropri-

ate to learn about requirements from Reliable’s own man-

agement staff and other employees? From client

health-care organizations? From suppliers?

2. Should patients in client health-care facilities participate in

the information-gathering process? If so, why, and in what

ways should they participate?

3. With respect to gathering information from suppliers and

clients, how deeply within those organizations should sys-

tems analysts look when defining requirements? How might

Reliable deal with supplier and client reluctance to provide

detailed information about their internal operations?

4. For which user community or communities (internal, supplier,

or client) are prototypes likely to be most beneficial? Why?

FURTHER RESOURCES

Vangalur S. Alagar, Specification of Software Systems. Springer-

Verlag, 1998.

Soren Lauesen, Software Requirements: Styles and Techniques.

Addison-Wesley, 2002.

Stan Magee, Guide to Software Engineering Standards and

Specifications. Artech House, 1997.

Suzanne Robertson and James Robertson, Mastering the

Requirements Process. Addison-Wesley, 2000.

Karl Wiegers, Software Requirements. Microsoft Press, 1999.

Jane Wood, Joint Application Development. John Wiley &

Sons, 1995.

Ralph Young, Effective Requirements Practices. Addison-

Wesley, 2001.

CHAPTER 4 Investigating System Requirements ♦ 157

C6696_04_CTP.4c 1/28/08 8:22 AM Page 157

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

158

MODELING SYSTEM
REQUIREMENTS5
L E A R N I N G O B J E C T I V E S

After reading this chapter, you should be able to:

■ Understand why identifying use cases is the key to defining functional

requirements

■ Use three techniques for identifying use cases

■ Write brief, intermediate, and fully developed use case descriptions

■ Explain how the concept of things in the problem domain also defines

requirements

■ Identify and analyze data entities and domain classes needed in the system

■ Read, interpret, and create an entity-relationship diagram

■ Read, interpret, and create a domain model class diagram

CHAPTER

C H A P T E R O U T L I N E

User Goals, Events, and Use Cases

Use Case Descriptions

“Things” in the Problem Domain

The Entity-Relationship Diagram

The Domain Model Class Diagram

Where You Are Headed

C6696_05_CTP.4c 1/28/08 8:22 AM Page 158

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 5 Modeling System Requirements ♦ 159

Waiters on Call is a restaurant meal-delivery service started in 2003 by Sue and Tom Bickford.
The Bickfords both worked for restaurants while in college and always dreamed of opening
their own restaurant. But unfortunately, the initial investment was always out of reach. The
Bickfords noticed that many restaurants offer takeout food, and some restaurants—primarily
pizzerias—offer home delivery service. Many people they met, however, seemed to want
home delivery with a wider food selection.

Sue and Tom conceived Waiters on Call as the best of both worlds: a restaurant service
without the high initial investment. The Bickfords contracted with a variety of well-known
restaurants in town to accept orders from customers and to deliver the complete meals. After
preparing the meal to order, the restaurant charges Waiters on Call a wholesale price, and the
customer pays retail plus a service charge and tip. Waiters on Call started modestly, with only
two restaurants and one delivery driver working the dinner shift. Business rapidly expanded,
and the Bickfords realized they needed a custom computer system to support their operations.
They hired a consultant, Sam Wells, to help them define what sort of system they needed.

“What sort of events happen when you are running your business that make you want to
reach for a computer?” asked Sam. “Tell me about what usually goes on.”

“Well,” answered Sue, “when a customer calls in wanting to order, I need to record it and
get the information to the right restaurant. I need to know which driver to ask to pick up the
order, so I need drivers to call in and tell me when they are free. Sometimes customers call
back wanting to change their orders, so I need to get my hands on the original order and
notify the restaurant to make the change.”

“Okay, how do you handle the money?” queried Sam.
Tom jumped in. “The drivers get a copy of the bill directly from the restaurant when they

pick up the meal. The bill should agree with our calculations. The drivers collect that amount
plus a service charge. When drivers report in at closing, we add up the money they have and
compare it with the records we have. After all drivers report in, we need to create a deposit
slip for the bank for the day’s total receipts. At the end of each week, we calculate what we
owe each restaurant at the agreed-to wholesale price and send each a statement and check.”

“What other information do you need to get from the system?” continued Sam.
“It would be great to have some information at the end of each week about orders by

restaurant and orders by area of town—things like that,” Sue said. “That would help us decide
about advertising and contracts with restaurants. Then we need monthly statements for our
accountant.”

Sam made some notes and sketched some diagrams as Sue and Tom talked. Then after
spending some time thinking about it, he summarized the situation for Waiters on Call. “It
sounds to me like you need a system to use whenever these events occur:

• A customer calls in to place an order, so you need to record an order.
• A driver is finished with a delivery, so you need to record delivery completion.
• A customer calls back to change an order, so you need to update an order.
• A driver reports for work, so you need to sign in the driver.
• A driver submits the day’s receipts, so you need to reconcile driver receipts.

“Then you need the system to produce information at specific points in time—for example,
when it is time to:

• Produce an end-of-day deposit slip
• Produce end-of-week restaurant payments
• Produce weekly sales reports
• Produce monthly financial reports

WAITERS ON CALL MEAL-DELIVERY SYSTEM

C6696_05_CTP.4c 1/28/08 8:22 AM Page 159

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

“Based on the way you have described your business operations, I am assuming you will
need the system to store information about these types of things, which we call data entities
or domain classes:

• Restaurants
• Menu items
• Customers
• Orders
• Order payments
• Drivers

“Then I suppose you will need to maintain information about restaurants and drivers.
You’ll need to use the system when you add a new restaurant, a restaurant changes the menu,
you hire a new driver, or a driver leaves. Am I on the right track?”

Sue and Tom quickly agreed that Sam was talking about the system in a way they could
understand. They were confident that they had found the right consultant for the job.

OVERVIEW

The preceding chapter described the systems analysis activities of the SDLC and then intro-
duced the many tasks and techniques involved when completing the first analysis activity—
gathering information about the system, its stakeholders, and its requirements. An extensive
amount of information is required to properly define the system’s functional and nonfunc-
tional requirements. This chapter, along with Chapters 6 and 7, presents techniques for docu-
menting the functional requirements by creating a variety of models. These models are
created as part of the analysis activity Define system requirements, although remember that the
analysis activities actually are done in parallel and in iterations.

In this chapter we focus on two key concepts that help define system requirements in both
the traditional and the object-oriented approach: use cases and things in the problem domain
of users. This chapter covers specific models for both the traditional approach and the object-
oriented approach, including those based on the Rocky Mountain Outfitters (RMO) customer
support system. Chapter 6 continues the discussion of requirements models for the tradi-
tional approach, and Chapter 7 continues the object-oriented approach.

USER GOALS, EVENTS, AND USE CASES

Virtually all newer approaches to system development begin the requirements modeling
process with the concept of a use case. A use case is an activity the system performs, usually
in response to a request by a user. The term use case originated with the object-oriented
approach, but today it is also used when modeling functional requirements in the traditional
approach. If you are focusing on the traditional approach in your studies, remember that a
use case is basically the same as an activity or process.

Several techniques are recommended for identifying use cases. One approach is to talk to
all users to get them to describe their goals in using the system. This approach is called the
user goal technique. First, list all users and think through what each type of user needs the
system to do for their jobs. Then interview each type of user and focus on their goals. By
focusing on one type of user at a time, an analyst can systematically address the problem of
identifying use cases. In the user goal technique, the analyst might start with the existing sys-
tem and list all system functions that are currently included, adding any new functionality
requested by users. Then the existing system functions and requested functions can be used to
establish user goals.

160 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

use case

an activity the system
performs

user goal

technique

an approach for
identifying use cases in
which an analyst talks to
all users to get them to
describe their goals in
using the system

C6696_05_CTP.4c 1/28/08 8:22 AM Page 160

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 5 Modeling System Requirements ♦ 161

Figure 5-1 lists a few Rocky Mountain Outfitters users (also called actors) and some of
their work goals for the customer support system. By asking users about their goals, an ana-
lyst can focus on new or promising processes rather than just automating existing procedures.
Many analysts find this approach useful for getting an initial list of use cases.

User/actor User goal and resulting use case

Order clerk Look up item availability
Create new order
Update order

Shipping clerk Record order fulfillment
Record back order

Merchandising manager Create special promotion
Produce catalog activity report

Figure 5-1

Identifying use cases with

the user goal technique

Another important technique for identifying use cases is the CRUD technique. CRUD is
an acronym for Create, Read or Report, Update, and Delete. The analyst starts by looking at the
types of data stored by the system, which are modeled as data entities or domain classes, as
described later in this chapter. Examples of types of data include Customer, Order, Inventory
Item, and Shipment in the RMO customer support system example. To identify use cases, the
analyst looks at each type of data and includes use cases that create the data, read or report
on the data, update the data, and delete the data. Figure 5-2 shows an example of potential
use cases for a Customer.

Data entity/class CRUD Resulting use case

Customer Create Add new customer

Read/Report Look up customer
Produce customer list
List customer orders

Update Update customer information

Delete Delete inactive customer

Figure 5-2

Identifying use cases with

the CRUD technique

The most comprehensive technique for identifying use cases is the event decomposition
technique, which is described in detail in the next section. No matter what approach they use
to identify use cases, analysts must identify them at the right level of detail. For example, one
analyst might identify a use case as typing in a customer name on a form. A second analyst
might identify a use case as the entire process of adding a new customer. A third analyst might
even define a use case as working with customers all day, which could include adding new
customers, updating customer records, deleting customers, following up on late-paying cus-
tomers, or contacting former customers. The first example is too narrow to be useful. The sec-
ond example defines a complete user goal, which is the right level of analysis for a use case.
Working with customers all day—the third example—is too broad to be useful.

The appropriate level of detail for identifying use cases is one that focuses on elementary
business processes (EBPs). An EBP is a task that is performed by one person, in one place, in
response to a business event; that adds measurable business value; and that leaves the system
and its data in a consistent state. (See the 2005 Larman text, as referenced in the “Further
Resources” section at the end of the chapter, for additional discussion of EBPs.) In Figure 5-1,
some of the RMO customer support system goals that will become use cases are Create new
order, Record order fulfillment, Create special promotion, and so forth. These use cases are good
examples of elementary business processes. In Figure 5-2, some of the use cases are Add new
customer, Produce customer list, and Update customer information; all are good examples of ele-
mentary business processes. Each is performed by one user in a set time and place, and after
it is completed, the system and its data are in a consistent state.

CRUD technique

an approach in which an
analyst looks at each
type of data and includes
use cases that create the
data, read or report on
the data, update the data,
and delete the data

elementary

business process

(EBP)

a task that is performed
by one person, in one
place, in response to a
business event; it adds
measurable business
value and leaves the
system and its data in a
consistent state

C6696_05_CTP.4c 1/28/08 8:22 AM Page 161

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Note that each EBP (and so each use case) occurs in response to a business event. An
event occurs at a specific time and place, can be described, and should be remembered by the
system. Events drive or trigger all processing that a system does, so listing events and analyz-
ing them makes sense when you need to define system requirements by identifying use cases.

EVENT DECOMPOSITION TECHNIQUE

In determining the use cases for a system, many analysts use event decomposition, the third
technique mentioned earlier in this chapter. This technique focuses on identifying the events
to which a system must respond and then determining how a system must respond—the
system’s use cases. When defining the requirements for a system, it is useful to begin by ask-
ing, “What events occur that will require the system to respond?” By asking about the events
that affect the system, you direct your attention to the external environment and look at the
system as a black box. This initial perspective helps keep your focus on a high-level view of
the system (looking at the scope) rather than on the inner workings of the system. It also
focuses your attention on the system’s interfaces to outside people and other systems. End
users—those who will actually use the system—can readily describe system needs in terms of
events that affect their work. So, the external focus on events is appropriate when working
with users. Finally, focusing on events gives you a way to divide (or decompose) the system
requirements into use cases so that you can study each separately.

Some events that are important to a store’s charge account processing system are shown
in Figure 5-3. The system requirements are decomposed into use cases based on six events. A
customer triggers three events: pays a bill, makes a charge, or changes address. The system
responds with three use cases: Record a payment, Process a charge, or Maintain customer data.
Three other events are triggered inside the system by time: time to send out monthly state-
ments, time to send late notices, and time to produce end-of-week summary reports. The sys-
tem responds with use cases that carry out what it is time to do: Produce monthly statements,
Send late notices, and Produce summary reports. Describing this system in terms of events keeps
the focus of the charge account system on the business requirements and the elementary busi-
ness processes. Then the next step is to divide the work among developers; one analyst might
focus on the events triggered by people, and another analyst might focus on events triggered
internally. The system is decomposed in a way that allows it to be understood in detail. The
result is a list of use cases triggered by business events at the right level of analysis.

The importance of the concept of events for defining functional requirements was first
emphasized for modern structured analysis when this concept was adapted to real-time sys-
tems in the early 1980s. Real-time systems must react immediately to events in the environ-
ment. Early examples of real-time systems include control systems such as manufacturing
process control or avionics guidance systems. For example, in process control, if a vat of
chemicals is full, then the system needs to turn off the fill valve. The relevant event is “vat is
full,” and the system needs to respond to that event immediately. In an airplane guidance sys-
tem, if the plane’s altitude drops below 5,000 feet, then the system needs to turn on the low-
altitude alarm.

Most information systems now being developed are so interactive that they can be
thought of as real-time systems. In fact, people expect a real-time response to almost every-
thing. So, use cases for business systems are now identified by using the event decomposition
approach.

162 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Try to use several approaches for identifying use cases, and then cross-
check to be sure no use cases have been overlooked.

BEST PRACTICE

event

an occurrence at a
specific time and place
that can be described
and is worth
remembering

event

decomposition

an analysis technique
that focuses on
identifying the events to
which a system must
respond and then
determining how the
system must respond

C6696_05_CTP.4c 1/28/08 8:22 AM Page 162

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

TYPES OF EVENTS

There are three types of events to consider when using the event decomposition technique to
identify use cases: external events, temporal events, and state events (also called internal
events). The analyst begins by trying to identify and list as many of these events as possible,
refining the list while talking with system users.

External Events

An external event is an event that occurs outside the system, usually initiated by an external
agent or actor. An external agent (or actor) is a person or organizational unit that supplies or
receives data from the system. To identify the key external events, the analyst first tries to iden-
tify all of the external agents that might want something from the system. A classic example
of an external agent is a customer. The customer may want to place an order for one or more
products. This event is of fundamental importance to an order-processing system like the one
needed by Rocky Mountain Outfitters. But other events are associated with a customer.
Sometimes a customer wants to return an ordered product, or a customer needs to pay the
invoice for an order. External events such as these are the types that the analyst looks for
because they begin to define what the system needs to be able to do. They are events that lead
to important transactions that the system must process.

When describing external events, it is important to name the event so that the external
agent is clearly defined. The description should also include the action that the external agent
wants to pursue. So, the event Customer places an order describes the external agent (a cus-
tomer) and the action that the customer wants to take (to place an order for some products)
that directly affects the system. Again, if the system is an order-processing system, the system
needs to process the order for the customer.

Important external events can also result from the wants and needs of people or organiza-
tional units inside the company—for example, management requests for information. A typi-
cal event in an order-processing system might be Management checks order status. Perhaps

CHAPTER 5 Modeling System Requirements ♦ 163

“customer pays

bill,” so use

case is Record a

payment

External events

occur in the

environment

“customer changes

address,” so use case is

Maintain customer data

“customer

makes a

charge,” so use

case is Process

a charge

Temporal events occur

inside the system

“time to send out

monthly statements,”

so use case is Produce

monthly statements

Charge account processing system

“time to send

late notices,” so

use case is Send

late notices “time to produce end-of-

week summary reports,”

so use case is Produce

summary reports

Events affecting a charge

account processing

system that lead to

use cases

Figure 5-3

external event

an event that occurs
outside the system,
usually initiated by an
external agent or actor

C6696_05_CTP.4c 1/28/08 8:22 AM Page 163

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

managers want to follow up on an order for a key customer, and the system must routinely
provide that information.

Another type of external event occurs when external entities provide new information that
the system simply needs to store for later use. For example, a regular customer reports a change
in address, phone, or employer. Usually one event for each type of external agent can be
described to handle updates to data, such as Customer updates account information. Figure 5-4
provides a checklist to help in identifying external events.

164 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

External events to look for include:
√ External agent wants something resulting in a transaction
√ External agent wants some information
√ Data changed and needs to be updated
√ Management wants some information

Figure 5-4

External event checklist

Temporal Events

A second type of event is a temporal event, an event that occurs as a result of reaching a point
in time. Many information systems produce outputs at defined intervals, such as payroll sys-
tems that produce a paycheck every two weeks (or each month). Sometimes the outputs are
reports that management wants to receive regularly, such as performance reports or exception
reports. These events are different from external events in that the system should automati-
cally produce the required output without being told to do so. In other words, no external
agent or actor is making demands, but the system is supposed to generate information or
other outputs when they are needed.

The analyst begins identifying temporal events by asking about the specific deadlines that
the system must accommodate. What outputs are produced at that deadline? What other pro-
cessing might be required at that deadline? The analyst usually identifies these events by defin-
ing what the system needs to produce at that time. The payroll example discussed previously
might be named Time to produce biweekly payroll. The event defining the need for a monthly sum-
mary report might be named Time to produce monthly sales summary report. Figure 5-5 provides a
checklist to use in identifying temporal events.

Temporal events to look for include:
√ Internal outputs needed

√ Management reports (summary or exception)
√ Operational reports (detailed transactions)
√ Internal statements and documents (including payroll)

√ External outputs needed
√ Statements, status reports, bills, reminders

Figure 5-5

Temporal event checklist

Temporal events do not have to occur on a fixed date. They can occur after a defined period
of time has elapsed. For example, a bill might be given to a customer when a sale has occurred.
If the bill has not been paid within 15 days, the system might send a late notice. The temporal
event Time to send late notice might be defined as a point 15 days after the billing date.

temporal event

an event that occurs as a
result of reaching a point
in time

C6696_05_CTP.4c 1/28/08 8:22 AM Page 164

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 5 Modeling System Requirements ♦ 165

State Events

A third type of event is a state event, an event that occurs when something happens inside
the system that triggers the need for processing. State events are also called internal events. For
example, if the sale of a product results in an adjustment to an inventory record and the
inventory in stock drops below a reorder point, it is necessary to reorder. The state event
might be named Reorder point reached. Often state events occur as a consequence of external
events. Sometimes they are similar to temporal events, except the point in time cannot be
defined. The reorder event might be named Time to reorder inventory, which sounds like a tem-
poral event.

IDENTIFYING EVENTS

It is not always easy to define the events that affect a system. But some guidelines can help an
analyst think through the process.

Events Versus Prior Conditions and Responses

It is sometimes difficult to distinguish between an event and part of a sequence of prior con-
ditions that leads up to the event. Consider an example of a customer buying a shirt from a
retail store (see Figure 5-6). From the customer’s perspective, this purchase involves a long
sequence of events. The first event might be that a customer wants to get dressed. Then the
customer wants to wear a striped shirt. Next, his striped shirt appears to be worn out. Then
the customer decides to drive to the mall. Then he decides to go into Sears. Then he tries on a
striped shirt. Then the customer decides to leave Sears and go to Wal-Mart to try on a shirt.
Finally, the customer wants to purchase the shirt. The analyst has to think through such a
sequence to arrive at the point at which an event directly affects the system. In this case, the
system is not affected until the customer is in the store, has a shirt in hand ready to purchase,
and says, “I want to buy this shirt.”

Customer thinks

about getting a

new shirt

Customer drives to

the mall

Customer tries on a

shirt at Sears

Customer goes to

Wal-Mart

Customer tries on a

shirt at Wal-Mart

Customer buys

a shirt

(the event that directly

affects the system!)

Figure 5-6

Sequence of actions that

lead up to only one event

affecting the system

In other situations, it is not easy to distinguish between an external event and the system’s
response. For example, when the customer buys the shirt, the system requests a credit card
number, and the customer supplies the credit card. Is the act of supplying the credit card an
event? In this case, no. It is part of the interaction that occurs while completing the original
transaction.

state event

an event that occurs
when something happens
inside the system that
triggers the need for
processing

C6696_05_CTP.4c 1/28/08 8:22 AM Page 165

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The way to determine whether an occurrence is an event or part of the interaction following
the event is by asking whether any long pauses or intervals occur—that is, can the system trans-
action be completed without interruption? Or is the system at rest again waiting for the next
transaction? After the customer wants to buy the shirt, the process continues until the transac-
tion is complete. There are no significant stops after the transaction begins. After the transaction
is complete, the system is at rest, waiting for the next transaction to begin. The elementary busi-
ness process (EBP) concept defined earlier describes this as leaving the system and its data in a
consistent state.

On the other hand, separate events occur when the customer buys the shirt using his store
credit card account. When the customer later pays the bill at the end of the month, is the pro-
cessing part of the interaction involving the purchase? In this case, no. The system records the
transaction and then does other things. It does not halt all processes to wait for the payment. A
separate event occurs later that results in sending the customer a bill (this is a temporal event:
Time to send monthly bills). Eventually, another external event occurs (Customer pays the bill).

The Sequence of Events: Tracing a Transaction’s Life Cycle

It is often useful in identifying events to trace the sequence of events that might occur for a specific
external agent or actor. In the case of Rocky Mountain Outfitters’ new customer support system,
the analyst might think through all of the possible transactions that might result from one new
customer (see Figure 5-7). First, the customer wants a catalog or asks for some information about
item availability, resulting in a name and address being added to the database. Next, the customer
might want to place an order. Perhaps he or she will want to change the order, correcting the size
of the shirt, for example, or buy another shirt. Next, the customer might want to check the status
of an order to find out the shipping date. Perhaps the customer has moved and wants an address
change recorded for future catalog mailings. Finally, the customer might want to return an item.
Thinking through this type of sequence can help identify events.

166 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Customer requests a

catalog

Customer wants to check

item availability

Customer places

an order

Customer wants to

check order status

Customer updates

account information

Customer returns

the item

Customer changes or

cancels an order

Figure 5-7

The sequence of

“transactions” for one

specific customer

resulting in many events

Technology-Dependent Events and System Controls

Sometimes the analyst is concerned about events that are important to the system but do not
directly concern users or transactions. Such events typically involve design choices or system
controls. During analysis, the analyst should temporarily ignore these events. They are impor-
tant for design, however.

C6696_05_CTP.4c 1/28/08 8:22 AM Page 166

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 5 Modeling System Requirements ♦ 167

Some examples of events that affect design issues include external events that involve
actually using the physical system, such as logging on. Although important to the final opera-
tion of the system, such a detail of implementation should be deferred. At this stage, the ana-
lyst should focus only on the functional requirements—the work that the system needs to
complete. A logical model does not need to indicate how the system is actually implemented,
so the model should omit the implementation details.

Most of these events involve system controls, which are checks or safety procedures put
in place to protect the integrity of the system. Logging on to a system is required because of
system security controls, for example. Other controls protect the integrity of the database,
such as backing up the data every day. Both of these controls are important to the system, and
they will certainly be added to the system during design. But spending time on these controls
during analysis only adds to the requirements model details that the users are not typically
very concerned about (they trust information services to take care of such details).

One technique used to help decide which events apply to controls is to assume that tech-
nology is perfect. The perfect technology assumption states that events should be included
during analysis only if the system would be required to respond under perfect conditions—
that is, with equipment never breaking down, capacity for processing and storage being
unlimited, and people operating the system being completely honest and never making mis-
takes. By pretending that technology is perfect, analysts can eliminate events like Time to back
up the database because they can assume that the disk will never crash. Again, during design,
the project team adds these controls because technology is obviously not perfect. Figure 5-8
lists some examples of events that can be deferred until the design phase.

User wants to log on

to the system

User wants to change the

password

User wants to change

preference settings

System crash

requires database

recovery

Time to back up the

database

Time to require the

user to change the

password

Don’t worry much
about these until the

design phase

Figure 5-8

Events deferred until

design

EVENTS IN THE ROCKY MOUNTAIN OUTFITTERS CASE

The Rocky Mountain Outfitters customer support system involves a variety of events, many of
them similar to those just discussed. A list of the external events is shown in Figure 5-9. Some
of the most important external events involve customers: Customer wants to check item
availability, Customer places an order, Customer changes or cancels order. Other external events
involve RMO departments: Shipping fulfills order, Marketing wants to send promotional materials
to customers, Merchandising updates catalog. The analyst can develop this list of external events
by looking at all of the people and organizational units that want the system to do something
for them.

system controls

checks or safety
procedures put in place
to protect the integrity of
the system

perfect

technology

assumption

the assumption that
events should be
included during analysis
only if the system would
be required to respond
under perfect conditions

C6696_05_CTP.4c 1/28/08 8:22 AM Page 167

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The customer support system also includes quite a few temporal events, shown in Figure 5-10.
Many of these produce periodic reports for organizational units: Time to produce order summary
reports, Time to produce fulfillment summary reports, Time to produce catalog activity reports. The analyst
can develop the list of temporal events by looking for all of the regular reports and statements that
the system must produce at certain times.

168 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Customer wants to check item availability
Customer places an order
Customer changes or cancels order
Customer or management wants to check order status
Shipping fulfills order
Shipping identifies back order
Customer returns item (defective, changed mind, full or partial returns)
Prospective customer requests catalog
Customer updates account information
Marketing wants to send promotional materials to customers
Management adjusts customer charges (correct errors, make concessions)
Merchandising updates catalog (add, change, delete, change prices)
Merchandising creates special product promotion
Merchandising creates new catalog

Figure 5-9

External events for the

RMO customer support

system

Time to produce order summary reports
Time to produce transaction summary reports
Time to produce fulfillment summary reports
Time to produce prospective customer activity reports
Time to produce customer adjustment/concession reports
Time to produce catalog activity reports

Figure 5-10

Temporal events for the

RMO customer support

system

LOOKING AT EACH EVENT AND THE RESULTING USE CASE

For each event, the most important information to identify is the use case to which the sys-
tem needs to respond. This information can be entered in an event table. An event table
includes rows and columns, representing events and their details, respectively. Each row in
the event table records information about one event and its use case. Each column in the
table represents a key piece of information about that event and use case. The information
about an event Customer wants to check item availability is shown in Figure 5-11. Note that the
resulting use case is named Look up item availability.

Use an event table as a catalog of information about the use cases that
make up the functional requirements of the system.

BEST PRACTICE

event table

a catalog of use cases
that lists events in rows
and key pieces of
information about each
event in columns

C6696_05_CTP.4c 1/28/08 8:22 AM Page 168

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Information in the event table documents important aspects of the event and the result-
ing use case. First, for each event, how does the system know the event has occurred? A signal
that tells the system an event has occurred is called the trigger. For an external event, the trig-
ger is the arrival of data that the system must process. For example, when a customer places
an order, the new order details are provided as input. The source of the data is also important
to know. In this case, the source of the new order details is the customer—an external agent.
For a temporal event, the trigger is a point in time. For example, at the end of each business
day, the system knows it is time to produce transaction summary reports.

Next, what does the system do when the event occurs? What the system does (the reaction
to the event) is the use case. When a customer places an order, the system is used to carry out
the use case Create a new order. When it is time to produce transaction summary reports, the
system is used to carry out the use case Produce transaction summary reports.

Finally, what response does the use case produce? A response is an output from the sys-
tem. When the system produces transaction summary reports, those reports are the outputs.
One use case can generate several responses. For example, when the system creates a new
order, an order confirmation goes to the customer, the order details go to shipping, and a
record of the transaction goes to the bank. The destination is the place where any response
(output) is sent, again an external agent. Sometimes a use case generates no response at all.
For example, if the customer wants to update account information, the information is
recorded in the database, but no output needs to be produced. Recording information in the
database is part of the use case.

The list of events—together with the trigger, source, use case, response(s), and destina-
tion(s) for each event—can be placed in an event table so that the analyst can keep track of
them for later use. An event table is a convenient way to record key information about the
requirements for the information system. The event table for the RMO customer support sys-
tem is shown in Figure 5-12. Each use case in the event table is further described with use case
descriptions, as shown in the next section. Then this event table will later be used in Chapter 6
to draw data flow diagrams to define functional requirements using the traditional approach.
In Chapter 7, this event table will be used to draw use case diagrams and system sequence dia-
grams using the object-oriented approach.

CHAPTER 5 Modeling System Requirements ♦ 169

Event

Customer
wants to check

item
availability

Trigger

Item inquiry

Source

Customer

Use case

Look up item
availability

Response

Item
availability

details

Destination

Customer

Response: What output
(if any) is produced by
the system?

Trigger: How does the system know the
event occurred? For external events, this
is data entering the system. For temporal
events, it is a definition of the point in
time that triggers the system processing.

Use case: What does the system
do when the event occurs? The
use case is what is important
to define for functional
requirements.

Destination: What external
agent gets the output
produced?

The event that causes the
system to do something.

Source: For an external
event, the external agent,
or actor, is the source of the
data entering the system.

Figure 5-11

Information about each

event in an event table

trigger

a signal that tells the
system that an event has
occurred, either the
arrival of data needing
processing or a point in
time

source

an external agent or
actor that supplies data
to the system

response

an output, produced by
the system, that goes to
a destination

destination

an external agent or
actor that receives data
from the system

C6696_05_CTP.4c 1/28/08 8:22 AM Page 169

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

170 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Customer support system event table

Event Trigger Source Use case Response Destination

1. Customer wants to Item inquiry Customer Look up item Item availability Customer
check item availability availability details

2. Customer places New order Customer Create new order Real-time link Credit bureau
an order

Order confirmation Customer

Order details Shipping

Transaction Bank

3. Customer changes Order change Customer Update order Change Customer
or cancels order request confirmation

Order change details Shipping

Transaction Bank

4. Time to produce order “End of week, Produce order Order summary Management
summary reports month, quarter, summary reports reports

and year”

5. Time to produce “End of day” Produce Transaction Accounting
transaction transaction summary
summary reports summary reports reports

6. Customer or Order status Customer or Look up order Order status details Customer or
management wants to inquiry management status management
check order status

7. Shipping fulfills order Order fulfillment Shipping Record order
notice fulfillment

8. Shipping identifies Back-order notice Shipping Record back order Back-order notification Customer
back order

9. Customer returns item Order return Customer Create order return Return confirmation Customer
notice

Transaction Bank

10. Time to produce “End of week, Produce fulfillment Fulfillment summary Management
fulfillment summary month, quarter, summary reports reports
reports and year”

11. Prospective customer Catalog request Prospective Provide catalog info Catalog Prospective
requests catalog customer customer

12. Time to produce “End of month” Produce prospective Prospective customer Marketing
prospective customer customer activity activity reports
activity reports reports

13. Customer updates Customer account Customer Update customer
account information update notice account

14. Marketing wants to Promotion Marketing Distribute Promotional Customer and
send promotional package promotional package prospective
materials to customers details package customer

15. Management adjusts Customer charge Management Create customer Charge Customer
customer charges adjustment charge adjustment adjustment

notification

Transaction Bank

Figure 5-12

The complete event table

for the RMO customer

support system: a

catalog of use cases

C6696_05_CTP.4c 1/28/08 8:22 AM Page 170

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 5 Modeling System Requirements ♦ 171

USE CASE DESCRIPTIONS

A list of use cases and an event table provide an overview of all the use cases for a system.
Detailed information about each use case is described with a use case description. A use case
description lists and describes the processing details for a use case. Implied in all use cases is
a person who uses the system. In UML, that person is called an actor. An actor is always out-
side the automation boundary of the system but may be part of the manual portion of the
system. In this respect, an actor is not always the same as the source of the event in the event
table. A source of an event is the initiating person or entity that supplies data. In contrast, an
actor in a use case is the person who is actually interacting with the computer system itself. By
defining actors that way—as those who interact with the system—we can more precisely
define the exact interactions to which the automated system must respond. This tighter focus
helps define the specific requirements of the automated system itself—to refine them as we
move from the event table to the use case details.

Customer support system event table, continued

Event Trigger Source Use case Response Destination

16. Time to produce “End of month” Produce customer Customer adjustment Management
customer adjustment/ adjustment reports reports
concession reports

17. Merchandising updates Catalog update Merchandising Update catalog
catalog details

18. Merchandising creates Special promotion Merchandising Create special
special product details promotion
promotion

19. Merchandising creates New catalog Merchandising Create new catalog Catalog Customer and
new catalog details prospective

customer

20. Time to produce “End of month” Produce catalog Catalog activity Merchandising
catalog activity reports activity reports reports

Figure 5-12 cont.

The complete event table

for the RMO customer

support system: a

catalog of use cases

Another way to think of an actor is as a role. For example, in the RMO case, the use case
Create new order might involve an order clerk talking to the customer on the phone. Or, the
customer might be the actor if the customer places the order directly, through the Internet.

To create a comprehensive, robust system that truly meets users’ needs, we must understand all
of the detailed steps of each use case. Internally, a use case includes a whole sequence of steps to
complete a business process. For example, frequently several variations of the business steps exist
within a single use case. The use case Create new order will have a separate flow of activities depend-
ing on which actor invokes the use case. The processes for an order clerk creating a new order over
the telephone might be quite different from the processes for a customer creating an order over the
Internet. Each flow of activities is a valid sequence for the Create new order use case. These different
flows of activities are called scenarios, or sometimes use case instances. Thus, a scenario is a

Be sure to remember that actors have direct contact with the automated
system.

BEST PRACTICE

use case

description

a description that lists
the processing details for
a use case

actor

in UML diagrams, a
person who uses the
system

scenario or use

case instance

a unique set of internal
activities within a use
case that represents a
unique path through the
use case

C6696_05_CTP.4c 1/28/08 8:22 AM Page 171

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

unique set of internal activities within a use case and represents a unique path through the
use case.

Typically, use case descriptions are written at three separate levels of detail: brief description,
intermediate description, and fully developed description, depending on an analyst’s needs.

BRIEF DESCRIPTION

A brief description can be used for very simple use cases, especially when the system to be
developed is also a small, well-understood application. A simple use case would normally
have a single scenario and very few, if any, exception conditions. An example would be Update
customer data. Generally, a use case such as Create new order is complex enough that either an
intermediate or fully developed description is developed, although a brief description might
be written initially (see Figure 5-13).

172 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

INTERMEDIATE DESCRIPTION

The intermediate-level use case description expands the brief description to include the internal
flow of activities for the use case. If there are multiple scenarios, each flow of activities is described
individually. Exception conditions can be documented if they are needed. Figures 5-14 and 5-15
show intermediate descriptions that document the two scenarios of Order clerk creates telephone
order and Customer creates Web order. These two scenarios were identified as separate work flows
for the Create new order use case. Notice that each describes what the user and the system require
to carry out the processing for the scenario. Exception conditions are also listed. Each step is iden-
tified with a number to make it easier to read. In many ways, this description is a version of struc-
tured English, which can include sequence, decision, and repetition blocks.

When the customer calls to order, the order clerk and system verify customer information,
create a new order, add items to the order, verify payment, create the order transaction,
and finalize the order.

Create new order description

Figure 5-13

Brief description of

Create new order
use case

Figure 5-14

Intermediate description

of the telephone order

scenario for Create
new order

C6696_05_CTP.4c 1/28/08 8:22 AM Page 172

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 5 Modeling System Requirements ♦ 173

FULLY DEVELOPED DESCRIPTION

The fully developed description is the most formal method for documenting a use case. Even
though it takes a little more work to define all the components at this level, it is the preferred
method of describing the internal flow of activities for a use case. One of the major difficul-
ties for software developers is that they often struggle to obtain a deep understanding of the
users’ needs. But if you create a fully developed use case description, you increase the proba-
bility that you thoroughly understand the business processes and the ways the system must
support them. Figure 5-16 is an example of a fully developed use case description of the tele-
phone order scenario for the Create new order use case, and Figure 5-17 shows the Web order
scenario for the same use case.

Figures 5-16 and 5-17 can also serve as a standard template for documenting a fully devel-
oped description for other scenarios and use cases. The first and second compartments are
used to identify the use cases and scenarios within use cases, if needed, that are being docu-
mented. In larger or more formal projects, a unique identifier can also be added for the use
case, with an extension identifying the particular scenario. Sometimes the name of the system
developer who produced the form is also added.

The third compartment identifies the triggering event that initiates the use case from the
event table. The fourth compartment is a brief description of the use case or scenario. Analysts
may just duplicate the brief description they constructed earlier here. The fifth compartment
identifies the actor or actors. The sixth compartment identifies other use cases and the way
they are related to this use case. These cross references to other use cases help document all
aspects of the users’ requirements.

The stakeholders compartment identifies interested parties other than specific actors. They
might be users who do not actually invoke the use case but who have an interest in results
produced from the use case. For example, in Figures 5-16 and 5-17, no one in the marketing
department actually creates new orders, but they do perform statistical analysis of the orders
that were entered. So, marketers have an interest in the data that is captured and stored from
the Create new order use case. Considering all stakeholders is an important step for system
developers so that they ensure they have understood all requirements.

Figure 5-15

Intermediate description

of the Web order scenario

for Create new order

C6696_05_CTP.4c 1/28/08 8:22 AM Page 173

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The next two compartments, called preconditions and postconditions, provide critical infor-
mation about the state of the system before and after the use case executes. Preconditions
state what conditions must be true before a use case begins. In other words, they identify what
the state of the system must be for the use case to begin, including what objects must already
exist, what information must be available, and even the condition of the actor prior to begin-
ning the use case.

174 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Figure 5-16

Fully developed

description of the

telephone order scenario

for Create new order

preconditions

conditions that must be
true before a use case
begins

C6696_05_CTP.4c 1/28/08 8:22 AM Page 174

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 5 Modeling System Requirements ♦ 175

A postcondition identifies what must be true upon completion of the use case. The same
items that are used to describe the precondition should be included in the statement of the
postcondition. For example, during the processing of a use case that updates various financial
accounts, some accounts will be out of balance. So, a postcondition for that use case would be
that the updates should be complete for all accounts and that they should all be in balance.

Figure 5-17

Fully developed

description of the Web

order scenario for Create
new order

postconditions

conditions that must be
true upon completion of
the use case

C6696_05_CTP.4c 1/28/08 8:22 AM Page 175

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The final two compartments in the template describe the detailed flow of activities of the
use case. In this instance, we have shown a two-column version, identifying the steps per-
formed by the actor and the responses required by the system. The item numbering helps
identify the sequence of the steps. Some developers prefer the one-column version, as shown
at the intermediate level. Alternative activities and exception conditions are described in the
final compartment. The numbering of exception conditions also helps tie the exceptions with
specific steps in the use case description.

176 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

“THINGS” IN THE PROBLEM DOMAIN

The RMO memo from Barbara Halifax shows the importance of events, use cases, and func-
tional requirements, as discussed earlier in the chapter. Another key concept discussed in the
memo involves understanding and modeling things about which the system needs to store
information. To the users, these items are the things they deal with when they do their work—
products, orders, invoices, and customers—that need to be part of the system. They are often
referred to as things in the problem domain of the system. For example, an information sys-
tem needs to store information about customers and products, so it is important for the ana-
lyst to identify lots of information about them. Often these things are similar to the external
agents or actors that interact with the system. For example, a customer external agent places
an order, but the system also needs to store information about the customer. In other cases,
these things are distinct from external agents. For example, there is no external agent named
product, but the system needs to store information about products.

In the traditional approach to development, these things make up the data about which
the system stores information. The type of data that needs to be stored is definitely a key aspect
of the requirements for any information system. In the object-oriented approach, these things
become the objects that interact in the system. No matter which approach you use to develop
an information system, identifying and understanding these things are both key initial steps.

Preconditions and postconditions are critical to understanding the
processing done for a use case.

BEST PRACTICE

C6696_05_CTP.4c 1/28/08 8:22 AM Page 176

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Other types of things can include organizational units, such as a division, department, or
workgroup. Similarly, sites or locations might be important in a particular system, such as a
warehouse, a store, or a branch office. Finally, information about an incident or interaction of
importance can be considered a thing—information about an order, a service call, a contract,
or an airplane flight. An order, a shipment, and a return are important incidents in the Rocky
Mountain Outfitters case. Sometimes these incidents are thought of as relationships between
things. For example, an order is a relationship between a customer and an item of inventory.
Initially, the analyst might simply list all of these as things and then make adjustments that
might be required by different approaches to analysis and design.

The analyst identifies these types of things by thinking about each event in the event table
and asking questions. For example, for each event, what types of things are affected that the
system needs to know about and store information about? When a customer places an order,
the system needs to store information about the customer, the items ordered, and the details
about the order itself, such as the date and payment terms. Note that for the fully developed
use case descriptions written for each use case, the preconditions and postconditions usually
list specific things of importance. Figure 5-16 shows the Create new order scenario, which
includes Customer, Catalog, Product, Inventory Item, Order, Line Item, and Transaction. All
are important things in the user’s work.

CHAPTER 5 Modeling System Requirements ♦ 177

TYPES OF THINGS

As with use cases, an analyst should ask the users to discuss the types of things that they work
with routinely. The analyst can ask about several types of things to help identify them. Many
things are tangible and therefore more easily identified, but others are intangible. Different
types of things are important to different users, so it is important to include information from
all types of users.

Figure 5-18 shows some types of things to consider. Tangible things are often the most
obvious, such as an airplane, book, or vehicle. In the Rocky Mountain Outfitters case, a cata-
log and an item in the catalog are tangible things of importance. Another common type of
thing in an information system is a role played by a person, such as employee, customer, doc-
tor, or patient. A customer is obviously a very important role a person plays in the Rocky
Mountain Outfitters case.

airplane
book

vehicle
document
worksheet

employee
customer

doctor
patient

end user
system

administrator

division
department

section
task force

workgroup

sensor
timer

controller
printer

disk drive
keyboard

display
window
mouse
menu
button

warehouse
branch office

factory
retail store

desktop

Tangible
things

Organizational
units

Devices

Things

Roles
played

flight
service call

logon
logoff

contract
purchase

order
payment

Incidents,
events, or

interactions

Sites/
locations

Figure 5-18

Types of things

C6696_05_CTP.4c 1/28/08 8:22 AM Page 177

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

PROCEDURE FOR DEVELOPING AN INITIAL LIST OF THINGS

The general guidelines just discussed reveal that analysts can use many sources of informa-
tion to develop an initial list of things about which the system needs to store information.
Another useful procedure is to begin by listing all of the nouns that users mention when talk-
ing about the system. Consider the events, the activities or use cases, the external agents or
actors, and the triggers and responses from the event table as potential things, for example.
Then add to the list any additional nouns that appear in information about the existing sys-
tem or that come up in discussions with stakeholders.

Step One: Using the event table and information about each event, identify all of

the nouns.

For the RMO customer support system, the nouns include RMO, customer, product item,
order, confirmation, transaction, shipping, bank, change request, summary report, management,
transaction report, accounting, back order, back-order notification, return, return confirmation,
fulfillment reports, prospective customer, catalog, marketing, customer account, promotional
materials, charge adjustment, catalog details, merchandising, and catalog activity reports.

Step Two: Using other information from existing systems, current procedures, and

current reports or forms, add items or categories of information needed.

For the RMO customer support system, these items might include more detailed informa-
tion, such as price, size, color, style, season, inventory quantity, payment method, shipping
address, and so forth. Some of these items might be additional categories, and some might be
more specific pieces of information about things you have already identified (called attributes).

Step Three: Refine the list and record assumptions or issues to explore.

As this list of nouns builds, it will be necessary to refine it. Ask these questions about each
noun to try to decide whether you should include it:

• Is it a unique thing the system needs to know about?
• Is it inside the scope of the system I am working on?
• Does the system need to remember more than one of these items?

Ask these questions about each noun to decide whether you should exclude it:

• Is it really a synonym for some other thing I have identified?
• Is it really just an output of the system produced from other information I have identified?
• Is it really just an input that results in recording some other information I have identified?

Ask these questions about each noun to decide whether you should research it:

• Is it likely to be a specific piece of information (attribute) about some other thing I have
identified?

• Is it something that I might need if assumptions change?

Figure 5-19 lists some of the nouns from the RMO customer support system event table
and other sources, with some notes about each one.

RELATIONSHIPS AMONG THINGS

After recording and refining the list of things, the analyst researches and records additional
information. Many important relationships among things are important to the system. A
relationship is a naturally occurring association among specific things, such as an order is
placed by a customer and an employee works in a department (see Figure 5-20). Is placed by and
works in are two relationships that naturally occur between specific things. Information sys-
tems need to store information about employees and about departments, but equally impor-
tant is storing information about the specific relationships—John works in the accounting
department, and Mary works in the marketing department, for example. Similarly, it is quite
important to store the fact that Order 1043 for a shirt was placed by John Smith.

178 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

relationship

a naturally occurring
association among
specific things, such as
an order is placed by a
customer and an
employee works in a
department

C6696_05_CTP.4c 1/28/08 8:22 AM Page 178

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 5 Modeling System Requirements ♦ 179

Identified noun Notes on including noun as a thing to store

Accounting We know who they are. No need to store it.

Back order A special type of order? Or a value of order status? Research.

Back-order information An output that can be produced from other information.

Bank Only one of them. No need to store.

Catalog Yes, need to recall them, for different seasons and years. Include.

Catalog activity reports An output that can be produced from other information. Not stored.

Catalog details Same as catalog? Or the same as product items in the
catalog? Research.

Change request An input resulting in remembering changes to an order.

Charge adjustment An input resulting in a transaction.

Color One piece of information about a product item.

Confirmation An output produced from other information. Not stored.

Credit card information Part of an order? Or part of customer information? Research.

Customer Yes, a key thing with lots of details required. Include.

Customer account Possibly required if an RMO payment plan is included. Research.

Fulfillment reports An output produced from information about shipments. Not stored.

Inventory quantity One piece of information about a product item. Research.

Management We know who they are. No need to store.

Marketing We know who they are. No need to store.

Merchandising We know who they are. No need to store.

Order Yes, a key system responsibility. Include.

Payment method Part of an order. Research.

Price Part of a product item. Research.

Product item Yes, what RMO includes in a catalog and sells. Include.

Promotional materials An output? Or documents stored outside the scope? Research.

Prospective customer Possibly same as customer. Research.

Return Yes, the opposite of an order. Include.

Return confirmation An output produced from information about a return. Not stored.

RMO There is only one of these! No need to store.

Season Part of a catalog? Or is there more to it? Research.

Shipment Yes, a key thing to track. Include.

Shipper Yes, they vary and we need to track the order. Include.

Shipping Our department. No need to store.

Shipping address Part of customer? Or order? Or shipment? Research.

Size Part of a product item. Research.

Style Part of a product item. Research.

Summary report An output produced from other information. Not stored.

Transaction Yes, each one is important and must be remembered. Include.

Transaction report An output produced from transaction information. Not stored.

Figure 5-19

Partial list of “things”

based on nouns for RMO

C6696_05_CTP.4c 1/28/08 8:22 AM Page 179

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Relationships between things apply in two directions. For example, a customer places an
order describes the relationship in one direction. Similarly, an order is placed by a customer
describes the relationship in the other direction. It is important to understand the relation-
ship in both directions because sometimes it might seem more important for the system to
record the relationship in one direction than in the other. For example, Rocky Mountain
Outfitters definitely needs to know what items a customer ordered so the shipment can be
prepared. However, it might not be apparent initially that the company needs to know all of
the customers who have ordered a particular item. What if the company needs to notify all
customers who ordered a defective or recalled product? Knowing this information would be
very important, but the operational users might not immediately recognize that fact.

It is also important to understand the nature of each relationship in terms of the number
of associations for each thing. For example, a customer might place many different orders,
but an order is placed by only one customer. The number of associations that occur is referred
to as the cardinality of the relationship. Cardinality can be one to one or one to many. Again,
cardinality is established for each direction of the relationship. The term multiplicity is used
to refer to the number of associations in the object-oriented approach, as defined by UML.
Figure 5-21 lists examples of cardinality/multiplicity associated with an order.

180 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Mr Smith

Order # 1043

red shirt size
16/32

401 jeans size
34 long

Accounting Dept
“is

placed
by”

“works in”

“contains” “contains”

Figure 5-20

Relationships naturally

occur among things

Mr. Jones has placed no order yet,
but there might be many placed

over time.

A particular order is placed by Mr.
Smith. There can’t be an order

without stating who the customer is.

An order contains at least one item,
but it could contain many items.

cardinality/multiplicity
is zero or more—
optional relationship

cardinality/multiplicity
is one and only one—
mandatory relationship

cardinality/multiplicity
is one or more—
mandatory relationship

Figure 5-21

Cardinality/multiplicity of

relationships

Sometimes it is important to describe not just the cardinality but also the range of possi-
ble values of the cardinality (the minimum and maximum cardinality). For example, a partic-
ular customer might not ever place an order. In this case, there are zero associations.
Alternatively, the customer may place one order, meaning one association exists. Finally, the
customer might place two, three, or even more orders. The relationship for a customer plac-
ing an order can have a range of zero, one, or more, usually indicated as zero or more. The

cardinality

the number of
associations that occur
among specific things,
such as a customer
places many orders and
an employee works in one
department

multiplicity

a synonym for cardinality
(used with the object-
oriented approach as
defined by UML)

C6696_05_CTP.4c 1/28/08 8:22 AM Page 180

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 5 Modeling System Requirements ♦ 181

zero is the minimum cardinality, and “more” is the maximum cardinality. These terms are
referred to as “cardinality constraints.”

In some cases, at least one association is required (a mandatory as opposed to optional
relationship). For example, the system might not record any information about a customer
until the customer places an order. Therefore, the cardinality would read “customer places
one or more orders.”

A one-to-one relationship can also be refined to include minimum and maximum cardi-
nality. For example, the order is placed by one customer—it is impossible to have an order if
there is no customer. Therefore, one is the minimum cardinality, making the relationship
mandatory. Because there cannot be more than one customer for each order, one is also the
maximum cardinality. Sometimes such a relationship is read as “an order must be placed by
one and only one customer.”

The relationships described here are between two different types of things—for example, a
customer and an order. These are called binary relationships. Sometimes a relationship is
between two things of the same type. For example, the relationship is married to is between two
different people. This type of relationship is called a unary relationship (sometimes called a
recursive relationship). Another example of a unary relationship is an organizational hierarchy
in which one organizational unit reports to another organizational unit—the packing depart-
ment reports to shipping, which reports to distribution, which reports to marketing.

A relationship can also be among three different types of things, called a ternary relationship,
or any number of different types of things, called an n-ary relationship. One particular order, for
example, might be associated with a specific customer plus a specific sales representative, requiring
a ternary relationship.

Storing information about the relationships is just as important as storing information
about the specific things. It is important to have information on the name and address of
each customer, but it is equally important (or perhaps more so) to know what items each cus-
tomer has ordered.

Initially, focus on identifying each “thing” in the problem domain, but also
be sure to focus on associations/relationships among them, which are often
just as important to the system users.

BEST PRACTICE

ATTRIBUTES OF THINGS

Most information systems store and use specific pieces of information about each thing, as dis-
cussed in Figure 5-19 earlier. The specific pieces of information are called attributes. For exam-
ple, a customer has a name, a phone number, a credit limit, and so on. Each of these details is
an attribute. The analyst needs to identify the attributes of each thing that the system needs to
store. One attribute may be used to identify a specific thing, such as a Social Security number
for an employee or an order number for a purchase. The attribute that uniquely identifies the
thing is called an identifier, or key. Sometimes the identifier is already established (a Social
Security number, vehicle ID number, or product ID number). Sometimes the system needs to
assign a specific identifier (an invoice number or transaction number).

A system may need to remember many similar attributes. For example, a customer has sev-
eral names—a first name, a middle name, a last name, and possibly a nickname. A compound
attribute is an attribute that contains a collection of related attributes, so an analyst may
choose one compound attribute to represent all of these names, perhaps naming it Customer
full name. A customer might also have several phone numbers—a home phone number, office
phone number, fax phone number, and cellular phone number. The analyst might start out by
describing the most important attributes but later add to the list. Attribute lists can get quite

binary

relationships

relationships between
two different types of
things, such as a
customer and an order

unary (recursive)

relationship

a relationship among two
things of the same type,
such as one person being
married to another
person

ternary

relationship

a relationship among
three different types of
things

n-ary

relationship

a relationship among n
(any number of) different
types of things

attribute

one piece of specific
information about a thing

identifier (key)

an attribute that uniquely
identifies a thing

compound

attribute

an attribute that contains
a collection of related
attributes

C6696_05_CTP.4c 1/28/08 8:22 AM Page 181

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

long. Some examples of attributes of a customer and the values of attributes for specific cus-
tomers are shown in Figure 5-22.

182 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

All customers have these attributes: Each customer has a value for each attribute:

Customer ID 101 102 103

First name John Mary Bill

Last name Smith Jones Casper

Home phone 555-9182 423-1298 874-1297

Work phone 555-3425 423-3419 874-8546

Figure 5-22

Attributes and values

THE ENTITY-RELATIONSHIP DIAGRAM

The traditional approach to system development (the structured techniques and information
engineering approaches, as described in Chapter 2) places a great deal of emphasis on data
storage requirements for a new system. Data entities are the things about which the system
needs to store information. Data storage requirements include the data entities, their attrib-
utes, and the relationships among the data entities. The model used to define the data storage
requirements with the traditional approach is called the entity-relationship diagram (ERD).

EXAMPLES OF ERD NOTATION

On the entity-relationship diagram, rectangles represent data entities, and the lines connecting
the rectangles show the relationships among data entities. Figure 5-23 shows an example of a
simplified entity-relationship diagram with two data entities, Customer and Order. Each
Customer can place many Orders, and each Order is placed by one Customer. The cardinality is
one to many in one direction and one to one in the other direction. The “crow’s feet” symbol on
the line next to the Order data entity indicates “many” orders. But other symbols on the relation-
ship line also represent the minimum and maximum cardinality constraints. See Figure 5-24 for
an explanation of relationship symbols. The model in Figure 5-23 actually says that a Customer
places a minimum of zero and a maximum of many Orders. Reading in the other direction, the
model says an Order is placed by at least one and only one Customer. This notation can express
precise details about the system. The constraints reflect the business policies that management
has defined, and the analyst must discover what these policies are. The analyst does not deter-
mine that two customers cannot share one order; management does.

an Order must be placed
by exactly one Customer

a Customer can place zero
or more Orders

Customer Order

Figure 5-23

A simple entity-

relationship diagram

data entities

the things about which
the system needs to
store information in the
traditional approach to
information systems

C6696_05_CTP.4c 1/28/08 8:22 AM Page 182

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 5 Modeling System Requirements ♦ 183

Figure 5-25 shows the model expanded to include the order items (one or more specific
items included on the order). Each order contains a minimum of one and a maximum of
many items (there could not be an order if it did not contain at least one item). For example,
an order might include a shirt, a pair of shoes, and a belt, and each of these items is associated
with the order. This example also shows some of the attributes of each data entity: A customer
has a customer number, a name, a billing address, and several phone numbers. Each order has
an order ID, order date, and so on. Each order item has an item ID, quantity, and price. The
attributes of the data entity are listed below the name, with the key identifier listed first.

Zero or one (optional)

One or more (mandatory)

Zero or more (optional)

Exactly one (mandatory)
Figure 5-24

Cardinality symbols of

relationships

Customer

Cust number*
Name

Bill address
Home phone
Office phone

Order

Order ID*
Order date

Amount

Order Item

Item ID*
Quantity

Price

*Indicates the identifier or key

Figure 5-25

An expanded ERD with

attributes shown

Figure 5-26 shows how the actual data in some transactions might look. John is a cus-
tomer who has placed two orders. The first order, placed on February 4, was for two shirts and
one belt. The second order, placed on March 29, was for one pair of boots and two pairs of
sandals. Mary is a customer who has not yet placed an order. Recall that a customer might
place zero or more orders. Therefore, Mary is not associated with any orders. Finally, Sara
placed an order on March 30 for three pairs of sandals.

While working on the model, the analyst often refines the ERD. One example of refine-
ment is analyzing many-to-many relationships. Figure 5-27 shows an example of a many-to-
many relationship. At a university, courses are offered as course sections, and a student enrolls
in many course sections. Each course section contains many students. Therefore, the relation-
ship between course section and student is many to many. There are situations in which
many-to-many relationships occur naturally, and they can be modeled as shown, with “crow’s
feet” on both ends of the relationship. If a relational database is designed from an ERD with
a many-to-many relationship, a separate table containing keys from both sides of the rela-
tionship is created because relational databases cannot directly implement many-to-many
relationships. Chapter 13 discusses relational databases in detail.

C6696_05_CTP.4c 2/13/08 10:36 AM Page 183

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

On closer analysis, however, analysts often discover that many-to-many relationships
involve additional data that must be stored. For example, in the ERD in Figure 5-27, where is
the grade that each student receives for the course stored? This is important data, and
although the model indicates which course section a student took, the model does not have a
place for the grade. The solution is to add a data entity to represent the relationship between
student and course section, sometimes called an associative entity. The associative entity is
given the missing attribute. Figure 5-28 shows the expanded ERD with an associative entity
named Course Enrollment, which has an attribute for the student’s grade.

184 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

John

Mary

Sara

no orders for
Mary yet!

Order 3 March 30

Order 1 Feb 4

Order 2 March 29

First shirt

Second shirt

Belt

Boots

First sandals

Second sandals

Third sandals

First sandals

Second sandals

Figure 5-26

Customers, orders, and

order items consistent

with the expanded ERD

Course

Course number*
Title

Credit hours

Course Section

Section number*
Start time

Room number

Student

Student ID*
Name
Major

Figure 5-27

A university course

enrollment ERD with a

many-to-many

relationship

associative entity

a data entity that
represents a many-to-
many relationship
between two other data
entities

C6696_05_CTP.4c 1/28/08 8:22 AM Page 184

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 5 Modeling System Requirements ♦ 185

Reading the relationships in Figure 5-28 from left to right, the ERD says that one course
section has many course enrollments, each with its own grade, and each course enrollment
applies to one specific student. Reading from right to left, it says one student has many course
enrollments, each with its own grade, and each course enrollment applies to one specific
course section. A database implemented using this model will be able to produce grade lists
showing all students and their grades in each course section, as well as grade transcripts show-
ing all grades earned by each student.

Other refinements are made to the ERD during the modeling process. One major refine-
ment process that applies to designing relational databases, called normalization, is discussed
in Chapter 13.

THE ROCKY MOUNTAIN OUTFITTERS ERD

The Rocky Mountain Outfitters entity-relationship diagram is a variation of the customer and
order example already described. Most of the data entities are from the list of things devel-
oped in Figure 5-19. Figure 5-29 shows a fairly complete version of the model but without
the attributes to make it easier to focus on the data entities and relationships.

Each customer can place zero or more orders. Each order can have one or more order
items, meaning the order might be for one shirt and two sweaters. Each order item is for a
specific inventory item, meaning a specific size and color of shirt. Although the diagram does
not show such an attribute, an inventory item should have an attribute for quantity on hand
of that size and color. Because there are many colors and sizes (each with its own quantity),
each inventory item is associated with a product item that describes the item generically (ven-
dor, gender, description).

An earlier version of the model showed that each product item is contained in one or
more catalogs, and each catalog contains one or more product items, a many-to-many rela-
tionship. Therefore, this model adds an associative entity named Catalog Product between
Catalog and Product Item because the relationship has some attributes that need to be
remembered, specifically the regular and special prices. Each catalog can list a different price
for the same product item (ski pants might be cheaper in the spring catalog).

Course

Course number*
Title

Credit hours

Course Section

Section number*
Start time

Room number

Student

Student ID*
Name
Major

Course
Enrollment

Grade

Figure 5-28

A refined university

course enrollment ERD

with an associative entity

C6696_05_CTP.4c 1/28/08 8:22 AM Page 185

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The entity-relationship diagram for Rocky Mountain Outfitters also has information
about shipments. Because this diagram includes requirements for orders, not retail sales, each
order item is part of a shipment. A shipment may contain many order items. Each shipment
is shipped by one shipper.

The ERD shown in Figure 5-29 contains a lot of very specific information about the data
storage requirements for the system. Be sure that you can trace through all of the relationships
shown and try to describe a specific example of each data entity involved in one specific
order. Try listing the attributes for each data entity to check your understanding. Draw a
sketch similar to that shown in Figure 5-26 to show some actual data this ERD describes. You
can check your understanding of the attributes by looking ahead to the domain model class
diagram in the next section and to the relational database design in Chapter 13.

After it is developed, a model like this entity-relationship diagram needs to be walked through
carefully, as you would walk through the logic of a program. Being able to walk through and
“debug” any model is a very important skill in system development, as discussed in Chapter 4.

To test your understanding of the diagram, consider whether one order might have items
shipped by different shippers. Is it possible, given the requirements shown in this diagram? The
answer is yes. Operationally, some order items might be back ordered, so when they are finally
shipped, they are part of a different shipment. A different shipper could handle this shipment.

186 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Order Item

Order

Shipper

Shipment

Order
Transaction

Return Item

Customer

Inventory
Item

CatalogCatalog
Product

Product
Item

Figure 5-29

Rocky Mountain

Outfitters customer

support system entity-

relationship diagram

(ERD) without attributes

C6696_05_CTP.4c 1/28/08 8:22 AM Page 186

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 5 Modeling System Requirements ♦ 187

Other requirements shown in the model include one or more order transactions for each order.
An order transaction is a record of a payment or a refund for the order. One order transaction is cre-
ated when the customer initially pays for the order. Later, though, the customer might add another
item to the order, generating an additional charge. This involves a second order transaction. Finally,
the customer might return an item, requiring a refund and a third order transaction.

THE DOMAIN MODEL CLASS DIAGRAM

The object-oriented approach also emphasizes understanding the things involved in the user’s
work. This approach models classes of objects instead of data entities. The classes of objects
have attributes and associations, just like the data entities. Multiplicity (called cardinality in
the traditional approach) also applies among classes. The sets of requirements models for the
traditional and object-oriented approaches eventually diverge, looking quite different because
of the object behavior. The design models are definitely very different. But initially, when
defining requirements, the approach to modeling is similar with the object-oriented approach.

The class diagram is used to show classes of objects for a system. The notation is from the
Unified Modeling Language (UML), which has become the standard for models used with object-
oriented system development. One type of UML class diagram shows the things in the users’ work
domain, referred to as the domain model class diagram. Another type of UML class diagram notation
is used to create design class diagrams when designing software classes (see Chapter 11). On a class
diagram, rectangles represent classes, and the lines connecting the rectangles show the associations
among classes. Figure 5-30 shows a symbol for one domain class: Customer. The domain class sym-
bol is a rectangle with two sections. The top section contains the name of the class, and the bottom
section lists the attributes of the class. Class names always begin with a capital letter, and attribute
names always begin with a lowercase letter. Class diagrams are drawn by showing classes and asso-
ciations among classes. You will first learn about the UML notation for creating the domain model
class diagram. Many of the examples used previously for the entity-relationship diagram are
redrawn using UML domain class diagram notation so that you can compare them. In fact, many
developers now use the UML class diagram in place of the ERD even when using the traditional
approach. Later, you will learn about additional hierarchies used in domain class diagrams.

The name of the class

Attributes: all objects in
the class have a value for

each of these

Customer

custNumber
name
billAddress
homePhone
officePhone

Figure 5-30

The UML domain class

symbol with name and

attributes

DOMAIN MODEL CLASS DIAGRAM NOTATION

Figure 5-31 shows a simplified domain model class diagram with three classes, Customer, Order,
and OrderItem. Here each class symbol includes only two sections. In the diagram notation, we see
that each Customer can place many Orders, and each Order is placed by one Customer; the associa-
tions “places” and “consists of” can be included on the diagram as shown for clarity, but this detail
is optional. The multiplicity is one to many in one direction and one to one in the other direction.
The multiplicity notation, shown as an asterisk on the line next to the Order class, indicates “many”
orders. See Figure 5-32 for a summary of multiplicity notation. The other association shows that an
Order consists of one or more OrderItems, and each OrderItem is associated with one Order.

C6696_05_CTP.4c 1/28/08 8:22 AM Page 187

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

188 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

OrderItem

orderID
orderDate
amount

Order

1..*0..*1 1

Customer

custNumber
name
billAddress
homePhone
officePhone

places consists of

itemID
quantity
price

Figure 5-31

A simple domain model

class diagram

Figure 5-33 shows the initial course enrollment example as a domain model class diagram.
Recall that a Course has zero or more CourseSections. Each CourseSection enrolls zero or more
Students, and each Student is enrolled in zero or more CourseSections—a many-to-many asso-
ciation. But because each student’s grade for the section must be stored, the model must be
modified, as it was in the ERD example. The class diagram notation adds an association class
named CourseEnrollment to hold the grade attribute, as shown in Figure 5-34. A dashed line
connects the association class to the association line between CourseSection and Student.

Focus first on problem domain classes that are “things” in the users’ work
environment, not on the software classes that you will eventually need to design.

BEST PRACTICE

Zero or more
(optional)

One or more
(mandatory)

One and only one
(mandatory)

One and only one
alternate

(mandatory)

Zero or more
alternate
(optional)

Zero or one
(optional)

1

0..*0..1

1..1 1..*

*

Figure 5-32

Multiplicity of

associations

Student

sectionNumber
startTime
roomNumber

CourseSection

0..*

0..* 0..*

1

Course

courseNumber
title
creditHours

studentID
name
major

Figure 5-33

A university course

enrollment domain

model class diagram

with a many-to-many

association

C6696_05_CTP.4c 1/28/08 8:22 AM Page 188

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 5 Modeling System Requirements ♦ 189

Reading the associations in Figure 5-34 from left to right, the class diagram says that one
course section has many course enrollments, each with its own grade, and each course enroll-
ment applies to one specific student. Reading from right to left, it says one student has many
course enrollments, each with its own grade, and each course enrollment applies to one spe-
cific course section. A system implemented on the basis of this domain model will be able to
produce grade lists showing all students and their grades in each course section, as well as
grade transcripts showing all grades earned by each student. It is equivalent to the ERD shown
in Figure 5-28.

MORE COMPLEX ISSUES ABOUT CLASSES OF OBJECTS

Some issues about the problem domain come up more frequently with the object-oriented
approach than with the traditional approach, although the issues are not exclusively object-
oriented. These issues are two additional ways that people structure their understanding of things
in the real world: generalization/specialization hierarchies and whole-part hierarchies. This sec-
tion discusses these concepts and shows how the class diagram is used to represent them.

Generalization/Specialization

Generalization/specialization hierarchies are based on the idea that people classify things
in terms of similarities and differences. Generalizations are judgments that group similar
types of things; for example, there are many types of motor vehicles—cars, trucks, and trac-
tors. All motor vehicles share certain general characteristics, so a motor vehicle is a more gen-
eral class. Specializations are judgments that categorize different types of things—for
example, special types of cars include sports cars, sedans, and sport utility vehicles. These
types of cars are similar in some ways, yet different in other ways. Therefore, a sports car is a
special type of car.

A generalization/specialization hierarchy is used to structure or rank these things from the
more general to the more special. As discussed previously, classification refers to defining
classes of things. Each class of thing in the hierarchy might have a more general class above it,
called a superclass. At the same time, a class might have a more specialized class below it,
called a subclass. In Figure 5-35, a car has three subclasses and one superclass (MotorVehicle).
UML class diagram notation uses a triangle that points to the superclass to show a generaliza-
tion/ specialization hierarchy.

We mentioned that people structure their understanding by using generalization/specialization
hierarchies. That is, people learn by refining the classifications they make about some field of

courseNumber
title
creditHours

Course

grade

CourseEnrollment

sectionNumber
startTime
roomNumber

CourseSection

studentID
name
major

Student

0..*

1

0..* 0..*

Figure 5-34

A refined university

course enrollment

domain model class

diagram with an

association class

generalization/

specialization

hierarchies

hierarchies that
structure or rank classes
from the more general
superclass to the more
specialized subclasses;
sometimes called
inheritance hierarchies

C6696_05_CTP.4c 1/28/08 8:22 AM Page 189

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

knowledge. A knowledgeable banker can talk at length about special types of loans and deposit
accounts. A knowledgeable merchandiser like John Blankens at Rocky Mountain Outfitters can talk
at length about special types of outdoor activities and clothes. Therefore, when asking users about
their work, the analyst is trying to understand the knowledge the user has about the work, which
the analyst can represent by constructing generalization/specialization hierarchies. At some level,
the motivation for the new customer support system at RMO started with John’s recognition that
Rocky Mountain Outfitters might handle many special types of orders with a new system (Web
orders, telephone orders, and mail orders). These special types of orders are shown in Figure 5-36.

Inheritance allows subclasses to share characteristics of their superclasses. Returning to
Figure 5-35, a car is everything any other motor vehicle is but also something special. A sports
car is everything any other car is plus something special. In this way, the subclass “inherits”
characteristics. In the object-oriented approach, inheritance is a key concept that is possible
because of generalization/specialization hierarchies. Sometimes these hierarchies are referred
to as inheritance hierarchies.

190 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Trucks, Cars, and Tractors
are special types of Motor

Vehicles

Sports Cars, Sedans, and
Sport Utilities are special

types of Cars

TractorTruck

MotorVehicle

SportUtilitySedanSportsCar

Car

Figure 5-35

A generalization/

specialization hierarchy

for motor vehicles

Whole-Part Hierarchies

Another way that people structure information about things is by defining them in terms of
their parts. For example, learning about a computer system might involve recognizing that the
computer is actually a collection of parts—processor, main memory, keyboard, disk storage, and
monitor. A keyboard is not a special type of computer; it is part of a computer. Yet, it is also
something entirely separate in its own right. Whole-part hierarchies capture the relationships
that people make when they learn to make associations between an object and its components.

There are two types of whole-part hierarchies: aggregation and composition. The term
aggregation is used to describe a form of association that specifies a whole-part relationship
between the aggregate (whole) and its components (parts) where the parts can exist sepa-
rately. Figure 5-37 demonstrates the concept of aggregation in a computer system, showing
the UML diamond symbol to represent aggregation. The term composition is used to
describe whole-part relationships that are even stronger, where the parts, once associated, can
no longer exist separately. The UML diamond symbol is filled in to represent composition.

inheritance

a concept that allows
subclasses to share
characteristics of their
superclasses

whole-part

hierarchies

hierarchies that
structure classes
according to their
associated components

aggregation

whole-part relationship
between an object and
its parts

composition

whole-part relationship
in which the parts cannot
be dissociated from the
object

C6696_05_CTP.4c 1/28/08 8:22 AM Page 190

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 5 Modeling System Requirements ♦ 191

Order

MailOrderTelephoneOrderWebOrder

Web Orders, Telephone
Orders, and Mail Orders

are special types of Orders

Figure 5-36

A generalization/

specialization hierarchy

for orders

Monitor

DiskStorage

Keyboard

MainMemory

Processor

Computer

Processor, Main
Memory, Keyboard, Disk
Storage, and Monitor are

parts of a computer

Figure 5-37

Whole-part (aggregation)

relationships between a

computer and its parts

C6696_05_CTP.4c 1/28/08 8:22 AM Page 191

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Whole-part hierarchies, both aggregation and composition, serve mainly to allow the ana-
lyst to express subtle distinctions about associations among classes. As with any association
relationship, multiplicity can apply, such as when a computer has one or more disk storage
devices.

The UML class diagram examples we have seen so far are domain model class diagrams.
The design class diagram is a refinement of the class diagram and is used to represent soft-
ware classes in the new system. You will learn about the process of converting the domain
model class diagram to a design class diagram in Chapter 11.

THE ROCKY MOUNTAIN OUTFITTERS DOMAIN MODEL CLASS
DIAGRAM

The domain model class diagram for Rocky Mountain Outfitters is shown in Figure 5-38. As you
can see, it is very similar to the entity-relationship diagram shown previously in Figure 5-29. The
main attributes of all classes are shown, although as with the ERD, attributes can be left off the
class diagram when presenting an overview of the model.

A generalization/specialization hierarchy is included to show that an order can be any one
of three types—Web order, telephone order, and mail order—as discussed previously. Note
that all types of orders share the attributes listed for Order, but each special type of order has
some additional attributes. Order is an abstract class (the name is in italic) because any order
must be one of the three special types.

The other classes and associations among classes are similar to the RMO entity-relationship
diagram. CatalogProduct is an association class attached to the association between Catalog and
ProductItem. Multiplicity for association relationships is indicated with both minimums and
maximums. No whole-part associations (aggregation or composition) are shown, although it
might be argued that an OrderTransaction is part of an Order or that a ProductItem is part of a
Catalog. It does not make much difference in this example because whole-part and association
relationships are similar when they are implemented. Many analysts choose not to indicate
aggregation or composition on class diagrams for business systems.

192 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

C6696_05_CTP.4c 1/28/08 8:22 AM Page 192

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 5 Modeling System Requirements ♦ 193

shipperID {key}
name
address
contactName
telephone

Shipper

1

1

inventoryID {key}
size
color
options
quantityOnHand
averageCost
reorderQuantity

InventoryItem

quantity
price
backorderStatus

OrderItem

orderID {key}
orderDate
priorityCode
shipping&Handling
tax
grandTotal

Order

quantity
price
reason
condition
disposal

ReturnItem

date
transactionType
amount
paymentMethod

OrderTransaction

1

emailAddress
replyMethod

WebOrder

dateReceived
processorClerk

MailOrder

0..*

1

1..*

1

0..*

1..*

0..*

1

0..1

0..*

1

1

1..*

trackingNo {key}
dateSent
timeSent
shippingCost
dateArrived
timeArrived

Shipment

accountNo {key}
name
billingAddress
shippingAddress
dayPhone
nightPhone

Customer

phoneClerk
callStartTime
lengthOfCall

TelephoneOrder

price
specialPrice

CatalogProduct

1..*

0..*

catalogID {key}
season
year
description
effectiveDate
endDate

Catalog

productID {key}
vendor
gender
description

ProductItem

0..*

0..*

Figure 5-38

Rocky Mountain

Outfitters domain model

class diagram

C6696_05_CTP.4c 1/28/08 8:22 AM Page 193

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

WHERE YOU ARE HEADED

The requirements models for a new system created using analysis activities become quite dif-
ferent depending on whether the project team uses the traditional approach or the object-
oriented approach. The two key concepts discussed in this chapter—use cases and things in
the user’s problem domain—are the starting places in the modeling process for both
approaches. The next two chapters discuss these two approaches separately, in both cases
starting with the same preliminary information. Figure 5-39 shows how the two approaches
diverge after the events and things are identified.

194 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Events, use
cases, and
event table

Things

Context
diagram

DFD fragments

Data flow
definitions

Process
descriptions

Entity-
relationship

diagram (ERD)

Class
diagram

Object-Oriented

Approach

Traditional

Approach

Other
traditional

models

Use case
diagrams

Use case
descriptions

System
sequence
diagrams

Activity
diagrams

State machine
diagrams

Figure 5-39

Requirements models for

the traditional approach

and the object-oriented

approach

The traditional approach takes the use cases in the event table and creates a set of data
flow diagrams (DFDs) based on the information in the table, including the context diagram
and DFD fragments. The entity-relationship diagram (ERD) defines the data storage require-
ments that are included in the DFDs. Other information about the requirements includes
data flow definitions and process descriptions. These and some additional traditional models
are discussed in Chapter 6.

The object-oriented approach takes the event table and use case descriptions and creates
use case diagrams, activity diagrams, system sequence diagrams, and state machine diagrams.
These models are discussed in Chapter 7.

C6696_05_CTP.4c 1/28/08 8:22 AM Page 194

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

SUMMARY
This chapter is the first of three chapters that present techniques for modeling a system’s functional require-
ments, highlighting the tasks that are completed during the analysis activity named Define system require-
ments. Use cases and things in the user’s work environment are key concepts common to all approaches to
system development. The traditional approach uses entity-relationship diagrams (ERD), and the object-ori-
ented approach uses class diagrams as key models of the problem domain.

A key early step in the modeling process is to identify and list the use cases that define the functional require-
ments for the system. Use cases can be identified using the user goal technique, the CRUD technique, and the event
decomposition technique. The event decomposition technique begins by identifying the events that require a
response from the system. An event is something that can be described, something that occurs at a specific time and
place, and something worth remembering. External events occur outside the system, usually triggered by someone
who interacts with the system. Temporal events occur at a defined point in time, such as the end of a work day or the
end of every month. State or internal events occur based on an internal system change. Information about each event
is recorded in an event table, which lists the event, the trigger for the event, the source of the trigger, the use case
that the system must carry out, the response produced as system output, and the destination for the response.

Each use case identified by the analyst is further documented by a use case description. A use case
description can be brief, intermediate, or fully developed. Use case actors, scenarios, stakeholders, precondi-
tions, postconditions, flows of activities, and exception conditions are identified and documented.

The other key concept involves the things users deal with in their work that the system needs to remember, such
as products, orders, invoices, and customers. There are many naturally occurring relationships among things the user
works with: A customer places an order, and an order requires an invoice. Cardinality (or multiplicity) of a relationship
refers to the number of associations involved in a relationship: A customer might place many orders, and each order is
placed by one customer. Attributes are specific pieces of information about a thing, such as a name and an address for
a customer. The traditional approach models these things as data entities that represent data that is stored. The object-
oriented approach models these things as objects belonging to a domain class. The traditional approach uses the entity-
relationship diagram to show data entities, attributes of data entities, and relationships. The object-oriented approach
uses the UML class diagram to show the same information, calling it the domain model class diagram. Two additional
concepts are used in class diagrams (although they are sometimes used in entity-relationship diagrams, too): general-
ization/specialization hierarchies, which allow inheritance from a superclass to a subclass, and whole-part hierarchies, which allow a collection of
objects to be associated as a whole and its parts. The UML class diagram is also used to model design classes, which will be explored in Chapter 11.

The next two chapters discuss requirements models produced by the traditional approach and the object-oriented approach, respectively.

KEY TERMS

actor, p. 171
aggregation, p. 190
associative entity, p. 184
attribute, p. 181
binary relationships, p. 181
cardinality, p. 180
composition, p. 190
compound attribute, p. 181
CRUD technique, p. 161
data entities, p. 182
destination, p. 169
elementary business process (EBP), p. 161
event, p. 162
event decomposition, p. 162
event table, p. 168
external event, p. 163
generalization/specialization hierarchies, p. 189
identifier (key), p. 181
inheritance, p. 190
multiplicity, p. 180

n-ary relationship, p. 181
perfect technology assumption, p. 167
postconditions, p. 175
preconditions, p. 174
relationship, p. 178
response, p. 169
scenario, p. 171
source, p. 169
state event, p. 165
system controls, p. 167
temporal event, p. 164
ternary relationship, p. 181
trigger, p. 169
unary (recursive) relationship, p. 181
use case, p. 160
use case description, p. 171
use case instances, p. 171
user goal technique, p. 160
whole-part hierarchies, p. 190

CHAPTER 5 Modeling System Requirements ♦ 195

C6696_05_CTP.4c 1/28/08 8:22 AM Page 195

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

REVIEW QUESTIONS

1. What are the two key concepts used to begin defining sys-

tem requirements?

2. What is a use case?

3. What are three techniques used to identify use cases?

4. What is an event and what is an elementary business

process (EBP)?

5. What are the three types of events?

6. Which type of event results in data entering the system?

7. Which type of event occurs at a defined point in time?

8. Which type of event does not result in data entering the

system but always results in an output?

9. What type of event would be named Employee quits job?

10. What type of event would be named Time to produce

paychecks?

11. What are some examples of system controls?

12. What does the perfect technology assumption state?

13. What are the columns in an event table?

14. What is a trigger? A source? A use case? A response? A

destination?

15. What is the difference between a use case and a scenario?

Give an example of each.

16. What are the three types of use case descriptions? Which

one is usually sufficient for simple use cases?

17. What are preconditions and postconditions? Give an exam-

ple of each.

18. What are exception conditions? Give an example.

19. What communicates back and forth in a two-column flow

of activities?

20. What is a “thing” called in models used in the traditional

approach?

21. What is a “thing” called in the object-oriented approach?

22. What is a relationship?

23. What is cardinality or multiplicity of a relationship?

24. Describe how an entity-relationship diagram shows the min-

imum and maximum cardinality.

25. What are unary, binary, and n-ary relationships?

26. What are attributes and compound attributes?

27. What is an associative entity?

28. What symbols are shown in an entity-relationship diagram?

29. What symbols are shown in a domain model class diagram?

30. How is multiplicity shown on a domain model class diagram?

31. What is a generalization/specialization hierarchy?

32. From what type of class do subclasses inherit?

33. What are two types of whole-part hierarchies?

34. What does the triangle symbol indicate on a line connecting

classes on the class diagram?

35. How is an association class shown on a class diagram?

36. What type of classes are shown in a domain model class

diagram?

THINKING CRITICALLY

1. Explain how a user goal can be used as a technique to
identify use cases.

2. Explain how the CRUD technique can be used to identify
use cases.

3. Explain the importance of elementary business processes
(EBPs) in identifying use cases.

4. Review the external event checklist in Figure 5-4, and think
about a university course registration system. What is an
example of an event of each type in the checklist? Name
each event using the guidelines for naming an external event.

5. Review the temporal event checklist in Figure 5-5. Would a
student grade report be an internal or external output?
Would a class list for the instructor be an internal or exter-
nal output? What are some other internal and external
outputs for a course registration system? Using the guide-
lines for naming temporal events, what would you name
the events that trigger these outputs?

6. In a course registration system, for the event Student
registers for classes, create an event table entry listing the
event, trigger, source, use case, response(s), and destina-
tion(s). For the event Time to produce grade reports, cre-
ate another event table entry.

7. Consider the following sequence of actions taken by a cus-
tomer at a bank. Which action is the event the analyst

should define for a bank account transaction-processing sys-
tem? (1) Kevin gets a check from Grandma for his birthday.
(2) Kevin wants a car. (3) Kevin decides to save his money. (4)
Kevin goes to the bank. (5) Kevin waits in line. (6) Kevin
makes a deposit in his savings account. (7) Kevin grabs the
deposit receipt. (8) Kevin asks for a brochure on auto loans.

8. Consider the perfect technology assumption, which states
that events should be included during analysis only if the sys-
tem would be required to respond under perfect conditions.
Could any of the events in the event table for Rocky Mountain
Outfitters be eliminated based on this assumption? Explain.
Why are events such as User logs on to system and Time to
back up the data required only under imperfect conditions?

9. Draw an entity-relationship diagram, including minimum
and maximum cardinality for the following: The system
stores information about two things: cars and owners. A
car has attributes for make, model, and year. The owner has
attributes for name and address. Assume that a car must be
owned by one owner, and an owner can own many cars,
but an owner might not own any cars (perhaps she just sold
them all, but you still want a record of her in the system).

10. Draw a class diagram for the cars and owners described in
exercise 9 but include subclasses for sports car, sedan, and
minivan with appropriate attributes.

196 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

C6696_05_CTP.4c 1/28/08 8:22 AM Page 196

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 5 Modeling System Requirements ♦ 197

11. Consider the entity-relationship diagram shown in
Figure 5-28, the refined ERD showing course enrollment
with an associative entity. Does this model allow a student
to enroll in more than one course section at a time? Does
the model allow a course section to contain more than one
student? Does the model allow a student to enroll in sev-
eral sections of the same course and get a grade for each
enrollment? Does the model store information about all
grades earned by all students in all sections?

12. Again consider the entity-relationship diagram shown in
Figure 5-28. Add the following to the diagram and list any
assumptions you had to make. A faculty member usually
teaches many course sections, but some semesters a faculty
member may not teach any. Each course section must have
at least one faculty member teaching it, but sometimes
teams teach course sections. Furthermore, to make sure that
all course sections are similar, one faculty member is
assigned as course coordinator to oversee the course, and
each faculty member can be coordinator of many courses.

13. If the entity-relationship diagram you drew in exercise 12
showed a many-to-many relationship between faculty mem-
ber and course section, a further look at the relationship
might reveal the need to store some additional information.
What might this information include? (Hint: Does the
instructor have specific office hours for each course section?
Do you give an instructor some sort of evaluation for each
course section?) Expand the ERD to allow the system to store
this additional information.

14. Draw a class diagram for the course enrollment system com-
pleted in exercise 13. Be sure to use the correct notation for
association classes.

15. Consider a system that needs to store information about com-
puters in a computer lab at a university, such as the features
and location of each computer. What are the things that might
be included in a model? What are some of the relationships
among these things? What are some of the attributes of these
things? Draw an entity-relationship model for this system.

16. Draw a domain model class diagram for the computer lab
system described in exercise 15.

17. Consider the domain model class diagram for Rocky Mountain
Outfitters shown in Figure 5-38. If a Web order is created, how

many attributes does it have? If a telephone order is created,
how many attributes does it have? If an existing customer
places a phone order for one item, how many new objects are
created overall for this transaction?

18. A product item for RMO is not the same as an inventory
item. A product item is something like a men’s leather hunt-
ing jacket supplied by Leather ‘R’ Us. An inventory item is a
specific size and color of the jacket—like a size medium
brown leather hunting jacket. If RMO adds a new jacket to
its catalog, and six sizes and three colors are available in
inventory, how many objects need to be added overall?

19. Consider the following domain model class diagram show-
ing college, department, and faculty members.
a. What kind of relationships are shown in the model?
b. How many attributes does a “faculty member” have?

Which (if any) have been inherited from another class?
c. If you add information about one college, one depart-

ment, and four faculty members, how many objects
do you add to the system?

d. Can a faculty member work in more than one depart-
ment at the same time? Explain.

e. Can a faculty member work in two departments at
the same time, where one department is in the col-
lege of business and the other department is in the
college of arts and sciences? Explain.

EXPERIENTIAL EXERCISES

1. Visit some Web sites of car manufacturers such as Honda,

BMW, Toyota, and Acura. Many of these sites have a use

case that is typically named Build and price a car. As a

potential customer, you can select a car model, select fea-

tures and options, and get the car’s suggested price and list

of specifications. Try one of these use cases and write a

fully developed use case description based on what you

see. Include the use case name, triggering event, stake-

holders, actors, preconditions, postconditions, a two-

column flow of activities, and exception conditions.

2. Set up a meeting with a librarian. During your meeting, ask the

librarian to describe the situations that come up in the library

to which the book checkout system needs to respond. List

these external events. Now ask about points in time, or dead-

lines, that require the system to produce a statement, notice,

report, or other output. List these temporal events. Does it

seem natural for the librarian to describe the system in this

way? Similarly, ask the librarian to describe the things about

which the system needs to store information. See whether you

can get the librarian to list the important attributes and

describe relationships among things. Does it seem natural for

C6696_05_CTP.4c 1/28/08 8:22 AM Page 197

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

198 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

CASE STUDIES
THE SPRING BREAKS ‘R’ US TRAVEL SERVICE BOOKING
SYSTEM

Spring Breaks ‘R’ Us Travel Service (SBRU) books spring-break trips at

resorts for college students. During the fall, resorts submit availability

information to SBRU indicating rooms, room capacity, and room

rates for each week of the spring-break season. Each resort offers

bookings for a different number of weeks each season, and rooms

have different rates depending on the week. Usually, the resorts

make a variety of rooms with different capacities available so stu-

dents can book the right room size. Couples can book a two-person

room, for example, and four people can book a room for four.

In December, SBRU generates a list of resorts, available weeks, and

room rates that is distributed to college campus representatives all over

the country. When a group of students submits a reservation request

for a week at a particular resort, SBRU assigns the students to a room

with sufficient capacity and sends each student a confirmation notice.

When the cutoff date for a week arrives, SBRU sends each resort a list

of students booked in each room for the following week. When the

students arrive at the resort, they pay the resort directly for the room.

Resorts send commission checks directly to the SBRU accounting sys-

tem, which is separate from the booking system. When spring break is

over, students return to their schools and hit the books.

1. To what events must the SBRU booking system respond?

Create a complete event table listing the event, trigger,

source, use case, response, and destination for each event.

Be sure to consider only the events that trigger processing

in the booking system, not the SBRU accounting system or

the systems operated by the resorts.

2. List the data entities (or classes) that are mentioned. List

the attributes of each data entity (or class). List the rela-

tionships among data entities (or classes).

3. Which classes might be refined into a generalization/

specialization hierarchy? List the superclass and any sub-

classes for each of them.

THE REAL ESTATE MULTIPLE LISTING SERVICE SYSTEM

The Real Estate Multiple Listing Service system supplies information

that local real estate agents use to help them sell houses to their

customers. During the month, agents list houses for sale (listings)

by contracting with homeowners. The agent works for a real estate

office, which sends information on the listing to the multiple listing

service. Therefore, any agent in the community can get information

on the listing.

Information on a listing includes the address, year built, square

feet, number of bedrooms, number of bathrooms, owner name,

owner phone number, asking price, and status code. At any time

during the month, an agent might directly request information on

listings that match customer requirements, so the agent contacts

the multiple listing service with the request. Information is provided

on the house, on the agent who listed the house, and on the real

estate office for which the agent works. For example, an agent

might want to call the listing agent to ask additional questions or

call the homeowner directly to make an appointment to show the

house. Twice each month (on the 15th and 30th), the multiple list-

ing service produces a listing book that contains information on all

listings. These books are sent to all of the real estate agents. Many

real estate agents want the books (which are easier to flip through),

so they are provided even though the information is often out of

date. Sometimes agents and owners decide to change information

about a listing, such as reducing the price, correcting previous infor-

mation on the house, or indicating that the house is sold. The real

estate office sends in these change requests to the multiple listing

service when the agent asks the office to do so.

1. To what events must the multiple listing service system

respond? Create a complete event table listing the event, trig-

ger, source, use case, response, and destination for each event.

2. Draw an entity-relationship diagram to represent the data

storage requirements for the multiple listing service system,

including the attributes mentioned. Does your model

include data entities for offer, buyer, and closing? If so,

the librarian to describe these things? Create either an ERD

or a class diagram based on what you learn.

3. Visit a restaurant or the college food service and talk to a

server (or talk with a friend who is a food server). Ask

about the external events, temporal events, and data enti-

ties or objects, as you did in exercise 1. What are the

events for order processing at a restaurant? Complete an

event table and either an ERD or class diagram.

4. Review the procedures for course registration at your univer-

sity and talk with the staff in advising, in registration, and in

your major department. Think about the sequence that goes

on over an entire semester. What are the events that students

trigger? What are the events that your major department

triggers? What are the temporal events that result in informa-

tion going to students? What are the temporal events that

result in information going to instructors or departments?

5. Again review information about your own university.

Create generalization/specialization hierarchies using the

domain model class diagram notation for (1) types of fac-

ulty, (2) types of students, (3) types of courses, (4) types of

financial aid, and (5) types of housing. Include attributes

for the superclass and the subclasses in each case.

C6696_05_CTP.4c 1/28/08 8:22 AM Page 198

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 5 Modeling System Requirements ♦ 199

reconsider. Include information that the multiple listing ser-

vice needs to store, which might be different from infor-

mation the real estate office needs to store.

3. Draw a domain model class diagram that corresponds to

the ERD but shows that different types of listings have dif-

ferent attributes. The description in the case assumes all

listings are for single-family houses. What about multifam-

ily listings or commercial property listings?

THE STATE PATROL TICKET PROCESSING SYSTEM

The purpose of the State Patrol ticket processing system is to record

driver violations, to keep records of the fines paid by drivers when

they plead guilty or are found guilty of moving violations by the

courts, and to notify the court that a warrant for arrest should be

issued when such fines are not paid in a timely manner. A separate

State Patrol system records accidents and verification of financial

responsibility (insurance). Yet a third system produces driving record

reports from the ticket and accident records for insurance compa-

nies. Finally, a fourth system issues, renews, or suspends driver’s

licenses. These four systems are obviously integrated in that they

share access to the same database, but otherwise, they are oper-

ated separately by different departments of the State Patrol. State

Patrol operations (what the officers do) are entirely separate.

The portion of the database used with the ticket processing sys-

tem involves driver data, ticket data, officer data, and court data.

Driver data, officer data, and court data are used by the system. The

system creates and maintains ticket data. Driver attributes include

license number, name, address, date of birth, date licensed, and so on.

Ticket attributes include ticket number (each is unique and preprinted

on each sheet of the officer’s ticket book), location, ticket type, ticket

date, ticket time, plea, trial date, verdict, fine amount, and date paid.

Court and officer data include the name and address of each, respec-

tively. Each driver may have zero or more tickets, and each ticket

applies to only one driver. Officers write quite a few tickets.

When an officer gives a ticket to a driver, a copy of the ticket is

turned in and entered into the system. A new ticket record is created,

and relationships to the correct driver, officer, and court are established

in the database. If the driver pleads guilty, he or she mails in the fine in

a preprinted envelope with the ticket number on it. In some cases, the

driver claims innocence and wants a court date. When the envelope is

returned without a check and the trial request box has an “X” in it, the

system notes the plea on the ticket record; looks up driver, ticket, and

officer information; and sends a ticket details report to the appropriate

court. A trial date questionnaire form is also produced at the same

time and is mailed to the driver. The instructions on the questionnaire

tell the driver to fill in convenient dates and mail the questionnaire

directly to the court. Upon receiving this information, the court sched-

ules a trial date and notifies the driver of the date and time.

When the trial is completed, the court sends the verdict to the

ticketing system. The verdict and trial date are recorded for the

ticket. If the verdict is innocent, the system that produces driving

record reports for insurance companies will ignore the ticket. If the

verdict is guilty, the court gives the driver another envelope with the

ticket number on it for mailing in the fine.

If the driver fails to pay the fine within the required period, the

ticket processing system produces a warrant request notice and

sends it to the court. This happens if the driver does not return the

original envelope within two weeks or does not return the court-

supplied envelope within two weeks of the trial date. What hap-

pens then is in the hands of the court. Sometimes the court

requests that the driver’s license be suspended, and the system that

processes drivers’ licenses handles the suspension.

1. To what events must the ticket processing system respond?

Create a complete event table listing the event, trigger,

source, use case, response, and destination for each event.

2. For the use case Record new ticket, complete a fully developed

use case description based on the information in the case study.

3. Draw an entity-relationship diagram to represent the data stor-

age requirements for the ticket processing system, including the

attributes mentioned. Explain why it is important to understand

how the system is integrated with other State Patrol systems.

4. Draw a domain model class diagram that corresponds to

the ERD but assumes there are different types of drivers.

Classifications of types of drivers vary by state. Some states

have restricted licenses for minors, for example, and spe-

cial licenses for commercial vehicle operators. Research

your state’s requirements, and create a generalization/

specialization hierarchy for the class Driver, showing the

different attributes each special type of driver might have.

Consider the same issues for types of tickets. Include some

special types of tickets in a generalization/specialization

hierarchy in the class diagram.

5. Use the CRUD technique to verify that all domain classes are

provided for in the use cases identified in the event table. In

an integrated system like the ticket processing system, some

domain classes are created by and updated by another sys-

tem. Create a table with domain classes down the rows and

each state patrol system in the case across the columns.

Indicate C, R, U, or D for each class and each system.

RETHINKING ROCKY MOUNTAIN OUTFITTERS

When listing nouns and making some decisions

about the initial list of things (see Figure 5-19), the

RMO team decided to research Customer Account

as a possible data entity or class if the system

included an RMO payment plan (similar to a company charge

account plan). Many retail store chains have their own charge

accounts for the convenience of the customer—to increase sales to

the customer and to better track customer purchase behavior.

Consider the implications to the system if management decided

to incorporate an RMO charge account and payment plan as part of

the customer support system.

1. Discuss the implications that such a change would have on

the scope of the project. How might this new capability

C6696_05_CTP.4c 1/28/08 8:22 AM Page 199

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

200 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

change the list of stakeholders the team would involve

when collecting information and defining the require-

ments? Would the change have any effect on other RMO

systems or system projects planned or under way? Would

the change have any effect on the project plan originally

developed by Barbara Halifax? In other words, is this a

minor change or a major change?

2. What events need to be added to the event table?

Complete the event table entries for these additional

events. What activities or use cases for existing events

might be changed because of a charge account and pay-

ment plan? Explain.

3. What are some additional things and relationships among

things that the system would be required to store because

of the charge account and payment plan? Modify the

entity-relationship diagram and the class diagram to reflect

these charges.

FOCUSING ON RELIABLE PHARMACEUTICAL SERVICE

In Chapter 1, you learned about the back-

ground and prescription-processing operations

for Reliable Pharmaceutical Service. As dis-

cussed in this chapter, defining the requirements for the new sys-

tem starts by taking the information gathered about the needed

system and then focusing on the events that require system pro-

cessing and on the things about which the system needs to store

information. The full system would involve many events and things.

In this chapter’s case exercise, we focus on only a subset of events

for the system and a subset of data entities or classes. Exercises in

later chapters will add to the scope and complexity of the require-

ments for Reliable.

1. Create an event table that lists information about system

requirements based on the following specific system pro-

cessing: When a nursing home needs to fill prescriptions

for its patients, it provides order details to Reliable. Reliable

immediately records information about the order and pre-

scriptions. Prescription orders come in from all of Reliable’s

nursing-home clients throughout the day. At the start of

each 12-hour shift, Reliable prepares a case manifest,

detailing all recent orders, which is given to one of the

pharmacists. When the pharmacist has assembled the

orders for each client, the pharmacist records the order ful-

fillment. (Review the Reliable case description at the end of

Chapter 1 for more details.) In addition, the system needs

to add or update patient information, add or update drug

inventory information, produce purchase orders to replen-

ish the drug inventory, record inventory adjustments, and

generate various management reports. For now, ignore

any billing, payments, or insurance processing.

2. Create an entity-relationship diagram that shows the data

storage requirements for the following portion of the sys-

tem: Add a few attributes to each data entity and show

minimum and maximum cardinality. To process the pre-

scription order, Reliable needs to know about the patients,

the nursing home, and the nursing-home unit where each

patient resides. Each nursing home has at least one, but

possibly many, units. A patient is assigned to a specific

unit. An order consists of one or more prescriptions, each

for one specific drug and for one specific patient. An order,

therefore, consists of prescriptions for more than one

patient. Careful tracking and record keeping is obviously

crucial. In addition, each patient has many prescriptions.

One pharmacist fills each order.

3. Create a domain model class diagram for the object-ori-

ented approach that shows the same requirements as

described in step 2. Include a few attributes for each class

and show minimum and maximum multiplicity. Be sure to

identify any association classes and use the correct notation.

4. How important is it to understand that each order includes

prescriptions for more than one patient? Is this the type of

information that is difficult to sort out at first? Did you see

the implications initially, or did you have to work through

the model until it made sense to you? Discuss.

C6696_05_CTP.4c 1/28/08 8:22 AM Page 200

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 5 Modeling System Requirements ♦ 201

FURTHER RESOURCES

Some classic and more recent texts include the following:

Peter Rob and Carlos Coronel, Database Systems: Design,

Implementation, and Management, Seventh Edition. Course

Technology, 2007.

Craig Larman, Applying UML and Patterns (3rd ed.). Prentice-

Hall, 2005.

Grady Booch, Ivar Jacobson, and James Rumbaugh, The Unified

Modeling Language User Guide. Addison-Wesley, 1999.

Ed Yourdon, Modern Structured Analysis. Prentice Hall, 1989.

Stephen McMenamin and John Palmer, Essential Systems

Analysis. Prentice Hall, 1984.

C6696_05_CTP.4c 1/28/08 8:22 AM Page 201

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

202

THE TRADITIONAL APPROACH
TO REQUIREMENTS6
L E A R N I N G O B J E C T I V E S

After reading this chapter, you should be able to:

■ Explain how the traditional approach and the object-oriented approach differ

when modeling the details of a use case

■ List the components of a traditional system and the symbols representing

them on a data flow diagram

■ Describe how data flow diagrams can show the system at various levels of

abstraction

■ Develop data flow diagrams, data element definitions, data store definitions,

and process descriptions

■ Develop tables to show the distribution of processing and data access across

system locations

CHAPTER

C H A P T E R O U T L I N E

Traditional and Object-Oriented Views of Activities/Use Cases

Data Flow Diagrams

Documentation of DFD Components

Locations and Communication through Networks

C6696_06_CTP.4c 1/28/08 8:22 AM Page 202

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 6 The Traditional Approach to Requirements ♦ 203

Arturo Romero and Lei Xu were meeting to review a first draft of several data flow diagrams
for San Diego Periodicals’ new advertising billing system. Arturo was the analyst assigned to
define the new system requirements. Lei was the manager in charge of advertising accounts—
she knew virtually all there was to know about how the current system operated. The two had
met several times before. Their most recent meeting (just last week) reviewed details of the
current system events, ad request processing, and process participants. Arturo left that meet-
ing with pages of notes and sample forms and reports from the current system. Arturo had
telephoned Lei several times since that meeting to ask additional questions.

Arturo began the review by saying, “The materials and information that you gave me last
week took me quite awhile to absorb, but I think I was able to understand and document all
of the system activities or use cases that we discussed. The purpose of this meeting is to ensure
that the processing requirements that I’ve written down are complete and accurate. Let’s start
with a few of the diagrams that I’ve created.”

Arturo laid out three diagrams on the table. Lei looked at them briefly and said, “I’ve
never seen diagrams like this before—they look like blueprints for playing a game of marbles.
And I thought the entity-relationship diagrams were strange!”

Arturo replied, “I expect this review will go slowly because this is your first look at this
style of documentation. I’ll explain how to interpret the diagrams as we go along. Ask as
many questions as you like. The quality of our work depends on your understanding the dia-
grams, so don’t be shy.”

Arturo continued, “The pictures are called data flow diagrams, or DFDs for short. They
divide your system into processing functions represented by the rectangles with rounded-off
corners. The arrows show data movement among processes and between processes and files.”
Lei pointed to a square on one of the diagrams and said, “I assume that this is a company pur-
chasing ad space?”

Arturo replied, “Yes, the squares represent people or organizations that supply inputs or
expect output data from the system.”

Lei said, “I think I can get the hang of this. I recognize most of the names that you’ve used
for the processes and data. I’m not sure what these other symbols are—they’re named for
things that we store in our manual files and database, but they don’t seem to correspond
exactly to our system.”

“They don’t,” Arturo replied. “They’re entities from the entity-relationship diagram that
we developed a couple of weeks ago. But let’s skip over those for the moment. Why don’t we
walk through the processing sequence for booking an ad, and we’ll discuss the entities as we
get to them?”

Arturo and Lei continued reviewing the DFDs, and the next thing they knew, over an hour
had passed. Several pages of Arturo’s notepad had been filled, and 25 corrections and comments
were noted in red on the data flow diagrams. Lei said, “My brain feels completely drained. I don’t
think that I can do any more of this today.”

Arturo replied, “You’ve given me plenty of things to work on, so let’s call it quits for now.
Can we meet for two hours at nine o’clock on Thursday?”

Lei replied, “Yes, I’m free then. So, will you be bringing more data flow diagrams, or do
you have something even weirder up your sleeve?”

Arturo smiled and said, “The toughest stuff is behind us, but you should expect a few
more surprises.”

SAN DIEGO PERIODICALS: FOLLOWING THE DATA FLOW

C6696_06_CTP.4c 1/28/08 8:22 AM Page 203

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

OVERVIEW

Chapter 5 described two key concepts associated with modeling system requirements in both
the traditional and the object-oriented (OO) approaches to information systems development:
events that trigger use cases and things in the users’ work domain. In this chapter, the focus
turns to the details of what the system does when an event occurs: activities and interactions
between computer processes and data.

This chapter describes the traditional structured approach to representing activities and
interactions. We describe and present the diagrams and other models of the traditional
approach, and we provide examples from the Rocky Mountain Outfitters customer support sys-
tem to show how each model is related. Chapter 7 describes details of the OO approach to rep-
resenting activities and interactions.

Modeling activities and interactions is a difficult process with either the traditional or OO
approach. Building models is a challenging and time-consuming task. Activities and interac-
tions must be specified in exacting detail. Analysts and users must jointly evaluate model
completeness, correctness, and quality. As illustrated in the accompanying RMO progress
memo, coordinating the efforts of project participants and building a consensus about
detailed system requirements are complex project management activities (see memo).

204 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

C6696_06_CTP.4c 1/28/08 8:22 AM Page 204

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 6 The Traditional Approach to Requirements ♦ 205

TRADITIONAL AND OBJECT-ORIENTED VIEWS OF ACTIVITIES/USE CASES

The traditional and OO approaches to system development differ in how a system’s response to
an event is modeled and implemented. The traditional approach views a system as a collection
of processes, some performed by people and some performed by computers. Traditional com-
puter processes are much like procedural computer programs—they contain instructions that
execute in a sequence. When the process executes, it interacts with stored data, reading data val-
ues and then writing other data values back to the data file. The process might also interact with
people, such as when an instruction asks the user to input a value or it displays information to
the user on the computer screen. The traditional approach to systems, then, involves processes,
stored data, inputs, and outputs. When modeling what the system does in response to an event,
the traditional approach includes processing models that emphasize these system features.

In contrast, the OO approach views a system as a collection of interacting objects. The
objects are based on the things in the problem domain discussed in Chapter 5. Objects are
capable of behaviors (called methods) that allow them to interact with each other and with
people using the system. One object asks another object to do something by sending it a mes-
sage. There are no conventional computer processes or data files per se. Objects carry out the
activities and remember the data values. When modeling what the system does in response to
an event, the OO approach includes models that show objects, their behavior, and their inter-
actions with other objects.

Figure 6-1 summarizes the differences between traditional and OO approaches to systems.
Because of these differences, the traditional and OO approaches to requirements employ dif-
ferent models, as summarized in Figure 6-2. The remainder of this chapter explores the tradi-
tional models on the left side of Figure 6-2.

Traditional Approach

System is a collection of processes
Processes interact with data entities
Processes accept inputs and produce outputs

OO Approach

System is a collection of interacting objects
Objects interact with people and each other
Objects send and respond to messages

Figure 6-1

Traditional versus OO

approaches

DATA FLOW DIAGRAMS

The traditional approach to information system development describes activities as processes
carried out by people or computers. A graphical model that has proven to be quite valuable
for modeling processes is the data flow diagram. There are other process models, such as the
activity diagrams used with business process reengineering, but the data flow diagram is the
most commonly used process model.

C6696_06_CTP.4c 1/28/08 8:22 AM Page 205

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

A data flow diagram (DFD) is a graphical system model that shows all of the main
requirements for an information system in one diagram: inputs and outputs, processes, and
data storage. Everyone working on a development project can see all aspects of the system
working together at once with the DFD. That is one reason for its popularity. The DFD is also
easy to read because it is a graphical model and because there are only five symbols to learn
(see Figure 6-3). End users, management, and all information systems workers typically can
read and interpret the DFD with minimal training.

Figure 6-4 shows an example of a data flow diagram representing a portion of the Rocky
Mountain Outfitters (RMO) customer support system. The square is an external agent,
Customer, the source and destination for some data outside the system. The rectangle with
rounded corners is a process named Look up item availability that can also be referred to by its
number, 1. A process defines rules for transforming inputs to outputs. The lines with arrows
are data flows. Figure 6-4 shows two data flows between Customer and process 1: a process
input named Item inquiry and a process output named Item availability details. The final
symbol—the flat, open-ended rectangle—is a data store. Each data store represents a file or
part of a database that stores information about a data entity. In this example, data flows
(lines with arrows) point from the data stores to the process, meaning that the process looks
up information in the data stores named Catalog, Product item, and Inventory item.

You might recognize that the process in Figure 6-4 corresponds to a use case in the event
table for RMO shown in Chapter 5 (see Figure 5-12). The event was Customer wants to check
item availability, the trigger was Item inquiry, the source was Customer, the response was Item
availability details, and the destination for the response was Customer. Therefore, the data
flow diagram shows the system use case in response to this one event in graphical form.

206 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Events, use
cases, and
event table

Things

Context
diagram

DFD fragments

Data flow
definitions

Process
descriptions

Entity-
relationship

diagram (ERD)

Class
diagram

Object-Oriented
Approach

Traditional
Approach

Other
traditional

models

Use case
diagrams

Use case
descriptions

System
sequence
diagrams

Activity
diagrams

State machine
diagrams

Figure 6-2

Requirements models for

the traditional and OO

approaches

data flow diagram

(DFD)
a diagram that
represents system
requirements as
processes, external
agents, data flows, and
data stores

external agent
a person or organization,
outside the system
boundary, that supplies
data inputs or accepts
data outputs

process
a symbol on a DFD that
represents an algorithm
or procedure by which
data inputs are
transformed into data
outputs

data flow
an arrow on a DFD that
represents data
movement among
processes, data stores,
and external agents

C6696_06_CTP.4c 1/28/08 8:22 AM Page 206

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 6 The Traditional Approach to Requirements ♦ 207

But another piece of information on the DFD is not in the event table: the data stores con-
taining information about an item’s availability. Each data store in Figure 6-4 represents a
data entity from the entity-relationship diagram (ERD) shown in Chapter 5 (see Figure 5-29).
The process on the DFD uses information that we provided by including these data entities
and their attributes in the ERD for the system. Therefore, the data flow diagram integrates pro-
cessing triggered by events with the data entities modeled using the ERD. Figure 6-5 summa-
rizes the correspondences among components of the DFD, events described in the event
table, and entities defined in the ERD.

Process

Data flow

External agent

Data store

Real-time link

Step-by-step instructions are
followed that transform inputs
into outputs (a computer or
person or both doing the work).

Data flowing from place to
place, such as an input or
output to a process.

The source or destination of
data outside the system.

Data at rest, being stored for
later use. Usually corresponds
to a data entity on an entity-
relationship diagram.

Communication back and forth
between an external agent and
a process as the process is
executing (e.g., credit card
verification).

id

Figure 6-3

Data flow diagram

symbols

Customer Look
up item

availability

1

Product item

Inventory item

CatalogItem
inquiry

Item
availability

details

Figure 6-4

A DFD showing the

process Look up item
availability (a DFD

fragment from the

RMO case)

When employing the traditional approach, identify use cases and then
model the details of each use case with a data flow diagram fragment.

BEST PRACTICE

data store
a place where data is
held pending future
access by one or more
processes

C6696_06_CTP.4c 1/28/08 8:22 AM Page 207

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

DATA FLOW DIAGRAMS AND LEVELS OF ABSTRACTION

Many different types of data flow diagrams are produced to show system requirements. The
example just described is a DFD fragment, showing one process in response to one event.
Other data flow diagrams show the processing at either a higher level (a more general view of
the system) or at a lower level (a more detailed view of one process). These differing views of
the system (high level versus low level) are called levels of abstraction.

Data flow diagrams can show either higher-level or lower-level views of the system. The
high-level processes on one DFD can be decomposed into separate lower-level, detailed
DFDs. Processes on the detailed DFDs can also be decomposed into additional diagrams to
provide multiple levels of abstraction.

Figure 6-6 shows how DFDs at each level of detail provide additional information about
one process at the next higher level. The topmost DFD shows the most abstract representa-
tion of the course registration system as a single process. The middle DFD shows internal
details of a context diagram process. The bottom DFD shows internal details of process 1 in
the middle DFD. Each DFD abstraction level is described further in the following sections.

Context Diagram

A context diagram is a DFD that describes the most abstract view of a system. All external
agents and all data flows into and out of the system are shown in one diagram, with the entire
system represented as one process. The topmost DFD in Figure 6-6 is a context diagram for a
simple university course registration system that interacts with three external agents:
Academic department, Student, and Faculty member. Academic departments supply informa-
tion on offered courses, students request enrollment in offered courses, and faculty members
receive class lists when the registration period is complete.

A context diagram clearly shows the system boundary. The system scope is defined by what
is represented within the single process and what is represented as external agents. External
agents that supply or receive data from the system are outside the system scope, and everything
else is inside the system scope. The context diagram does not usually show data stores because
all of the system’s data stores are considered to be within the system scope (that is, part of the
internal implementation of the process that represents the system). However, data stores may
be shown when they are shared by the system being modeled and another system.

208 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Customer Look
up item

availability

1

Product item

Inventory item

Catalog

External agent, data flows, and the
process come from information about

the event in the event table

Data stores come from
the entity-relationship

diagram

Destination Response

Use caseTriggerSource

Item
inquiry

Item
availability

details

Figure 6-5

The DFD integrates the

event table and the ERD

level of

abstraction
any modeling technique
that breaks the system
into a hierarchical set of
increasingly more
detailed models

context diagram
a DFD that summarizes
all processing activity
within the system in a
single process symbol

C6696_06_CTP.4c 1/28/08 8:22 AM Page 208

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 6 The Traditional Approach to Requirements ♦ 209

Course
registration

system

Enroll
student

2

Produce
class
list

3

Schedule
course

1

Course enrollment

Student

Offered course

Enrollment
request

Schedule

Class list

Choose
days and

times

1.1

Assign
faculty

1.2

Offered course

Assign
rooms

1.3

Available rooms

Course

Available
faculty

Context Diagram

Academic
department

Faculty
member

Class list
Student

Schedule

Enrollment
request

Schedule data

Diagram 0

Academic
department

Student

Faculty
member

Schedule
data

Diagram 1

Academic
department

Figure 6-6

Layers of DFD

abstraction for a

course registration

system

The context diagram is usually created in parallel with the event table described in
Chapter 5. Each trigger for an external event becomes an input data flow, and the source
becomes an external agent. Each response becomes an output data flow, and the destination
becomes an external agent. Triggers for temporal events are not data flows, so there are no
input data flows for temporal events. Note that the context diagram DFD can be created
directly from the event table. The two models provide alternative views of the same system
requirements information.

C6696_06_CTP.4c 1/28/08 8:22 AM Page 209

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

DFD Fragments

A DFD fragment is created for each use case triggered by an event in the event table. Each DFD
fragment is a self-contained model showing how the system responds to a single event. The
analyst usually creates DFD fragments one at a time, focusing attention on each part of the sys-
tem. The DFD fragments are drawn after the event table and context diagram are complete.

Figure 6-7 shows the three DFD fragments for the simple course registration system. Each
DFD fragment represents all processing for a use case triggered by an event within a single process
symbol. The fragments show details of interactions among the process, external agents, and inter-
nal data stores. The data stores used on a DFD fragment represent entities on the ERD. Each DFD
fragment shows only those data stores that are actually needed to respond to the event.

210 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Schedule
data

Class listFaculty
member

Academic
department

Student

Enrollment
request

Schedule

Offered course

Student

Offered course

Course enrollment

Student

Offered course

Course enrollment

Schedule
course

Enroll
student

2

Produce
class
list

3

1

Figure 6-7

Three DFD fragments for

the course registration

system

The Event-Partitioned System Model

All of the DFD fragments for a system or subsystem can be combined on a single DFD called
the event-partitioned system model, or diagram 0. Figure 6-8 shows how the three course
registration system DFD fragments shown in Figure 6-7 are combined to create diagram 0.

Diagram 0 is used primarily as a presentation tool. It summarizes an entire system or sub-
system in greater detail than does a context diagram. However, analysts often avoid develop-
ing diagram 0 because:

• The information content duplicates the set of DFD fragments.
• The diagram is often complex and unwieldy, particularly for large systems that respond to

many events.

As we’ll discuss later in the chapter, redundancy and complexity are two DFD characteristics
that analysts should avoid whenever possible.

DFD fragment
a DFD that represents
the system response to
one event within a single
process symbol

event-partitioned

system model, or

diagram 0
a DFD that models
system requirements
using a single process
for each event in a
system or subsystem

C6696_06_CTP.4c 1/28/08 8:22 AM Page 210

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 6 The Traditional Approach to Requirements ♦ 211

RMO DATA FLOW DIAGRAMS

Figure 6-9 shows a context diagram for the Rocky Mountain Outfitters customer support sys-
tem. Normally, data flows and external agents on the context diagram are taken directly from
the event table as discussed previously, but because the RMO customer support system responds
to 20 events, this figure combines data flows for some events for simplicity. In a smaller system
example with 10 to 15 events, you should include all data flows on the context diagram.

When a system responds to many events, it is commonly divided into subsystems, and a
context diagram is created for each subsystem. Figure 6-10 divides the RMO customer support

Enroll
student

2

Produce
class
list

3

Schedule
course

1

Course enrollment

Student

Offered course

Enrollment
request

Schedule

Class list

Class listFaculty
member

Student

Offered course

Course enrollment

Produce
class
list

3

DFD fragment 1

Diagram 0

Academic
department

Student

Faculty
member

Schedule
data

Class listFaculty
member

Student

Offered course

Course enrollment

Produce
class
list

3

DFD fragment 2

Class listFaculty
member

Student

Offered course

Course enrollment

Produce
class
list

3

DFD fragment 3

Combine
DFD fragments

to create
diagram 0

Figure 6-8

Combining DFD

fragments to create the

event-partitioned system

model for the course

registration system

C6696_06_CTP.4c 1/28/08 8:22 AM Page 211

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

system into subsystems based on use case similarities, including interactions with external
agents, interactions with data stores, and similarities in required processing. Figure 6-11
shows the context diagram for the order-entry subsystem. Note that all data flows from the
event table for this subsystem are shown on the DFD.

212 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Customer
support
system

Credit
bureau

Accounting

Credit
info

Prospective customer

activity report

Promotion

package details

Catalog activity report

Catalog and

promotion details

Order, return, and inquiry details

Catalog and promotion materials

Transaction

Transaction
summary

report

Order, back-order, and
fulfillment details

Order, adjustment, and

fulfillment reports
Management

Bank

MerchandisingMarketing

Shipping

Customer details

Customer

Figure 6-9

A context diagram for

the RMO customer

support system

C6696_06_CTP.4c 1/28/08 8:22 AM Page 212

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 6 The Traditional Approach to Requirements ♦ 213

Order-entry subsystem

Look up item availability
Create new order
Update order
Produce order summary reports
Produce transaction summary reports

Order fulfillment subsystem

Look up order status
Record order fulfillment
Record back order
Create order return
Produce fulfillment summary report

Customer maintenance subsystem

Provide catalog information
Produce prospective customer activity reports
Update customer account
Distribute promotional package
Create customer charge adjustment
Produce customer adjustment reports

 Catalog maintenance subsystem

Update catalog
Create special product promotion
Create new catalog
Produce catalog activity reports

Figure 6-10

RMO subsystems and

use cases for each

subsystem

Order-entry
subsystem

Accounting

Credit
info

Transaction

Management

Bank Shipping

Customer

Credit
bureau

Order confirmation

Order change

Item availability inquiry

Order details

Order change details

Transaction
summary report

Order summary reports
Order

Item availability response

Change confirmation

Figure 6-11

A context diagram for the

RMO order-entry

subsystem

C6696_06_CTP.4c 1/28/08 8:22 AM Page 213

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 6-12 shows the DFD fragments for the RMO order-entry subsystem. Note that there
are five DFD fragments, one for each order-entry subsystem use case listed in Figure 6-10.

Similarly, Figure 6-13 shows the RMO order-entry subsystem diagram 0, the result of com-
bining the DFD fragments from Figure 6-12. To simplify the diagram and make it more read-
able, the seven data stores in Figure 6-12 are collapsed into a single data store in Figure 6-13.
Recall that diagram 0 is just used as a presentation aid. The DFD fragments show which
processes interact with which individual data stores.

214 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Order
confirmationCustomer

Item
inquiry

Item
availability

details
Shipping

Order
details

New order

Customer

Credit
bureau

Credit
info

Bank

Transaction

Change
confirmation

Shipping

Order
change
details

Order
change request

Customer

Credit
bureau

Credit
info

Bank

Transaction

Management

Order
summary
reports

Accounting

Transaction
summary
reports

Order

Order item

Order transaction

Produce
transaction
summary
reports

5

Produce
order

summary
reports

4

Order

Order item

Order transaction

Product item

Return item

Shipment

Customer

Inventory item

Order

Order item

Order transaction

Product item

Update
order

3

Customer

Inventory item

Order

Order item

Order transaction

Product item

Create
new
order

2

Catalog

Product item

Inventory item

Look up
item

availability

1

Figure 6-12

DFD fragments for the

RMO order-entry

subsystem

Decomposition to See One Activity’s Detail

Some DFD fragments involve a lot of processing that the analyst needs to explore in more detail.
As with any modeling step, further decomposition helps the analyst learn more about the
requirements while also producing needed documentation. Figure 6-14 shows an example of a
more detailed diagram for RMO DFD fragment 2, Create new order. It is named diagram 2 because
it shows the “insides” of process 2. The subprocesses are numbered 2.1, 2.2, 2.3, and 2.4. The
numbering system does not necessarily imply sequence of subprocess execution, though.

The diagram decomposes process 2 into four subprocesses: Record customer information,
Record order, Process order transaction, and Produce confirmation. These subprocesses are viewed as
the four major steps required to complete the activity. This decomposition is just one way to
divide up the work. Another analyst might arrive at a different solution.

The first step begins when the customer provides the information making up the New
order data flow. The New order data flow contains all of the information about the customer
and the items the customer wants to order. If the customer is new, process 2.1 stores the cus-
tomer information in the data store named Customer (creating a new customer record or
updating existing customer information as required). Remember that the data store repre-
sents the customer data entity on the ERD developed in Chapter 5 (see Figure 5-29).
Process 2.1 then sends the rest of the information about the order, a data flow named Order
details, on to process 2.2.

C6696_06_CTP.4c 1/28/08 8:22 AM Page 214

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 6 The Traditional Approach to Requirements ♦ 215

Process 2.2 takes the Order details data flow and creates a new order record by adding
data to the Order data store. Then for each item ordered, the stock on hand and the current
price are looked up in the Product item and Inventory item data stores. If adequate stock is
on hand, an order item record is created for that item, and the stock on hand for the inven-
tory item record is changed. If three items are ordered, one order record is created and three
order item records are created.

Process 2.2 adds up the total amount due for the order (price times quantity for each
item) and sends the data flow named Transaction details to process 2.3 to record the transac-
tion. Transaction details include the order number, amount, and credit card information.
Process 2.3 needs a real-time link to a credit bureau to get a credit authorization for the cus-
tomer’s credit card. This needs to be a real-time link rather than a data flow because data
needs to flow back and forth rapidly while the process is executing. If the credit card is
approved, a record of the transaction is created in the Order transaction data store, and a data
flow for the transaction goes directly to the bank.

Create new
order

2

Produce
order

summary
reports

4

Update
order

3

Produce
transaction
summary
reports

5

Look up
item

availability

1

Transaction

Credit
info

Credit info

Transaction

Transaction
summary
reports

Shipping

Catalog
Customer
Order

Management Credit
bureauBank

Order
summary
reports

Order change request

Change confirmation

New order

Order details

Customer
Item inquiry

Item availability details

Order change details

Order confirmation

Order item
Product item
Inventory item
Order transaction

Accounting

Figure 6-13

An event-partitioned

model of the order-entry

subsystem (diagram 0)

C6696_06_CTP.4c 1/28/08 8:22 AM Page 215

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The final process produces the order confirmation for the customer and the order details
that go to shipping. Using the order number, process 2.4 looks up data on the Order, the
Customer, and each Order item (plus the item description from the Product item) and pro-
duces the required outputs.

PHYSICAL AND LOGICAL DFDS

A DFD can be a physical system model, a logical system model, or a blend of the two. If the
DFD is a logical model, it assumes that the system might be implemented with any technol-
ogy, as described in Chapter 4. If the DFD is a physical model, one or more assumptions
about implementation technology will be embedded in the DFD. These assumptions can take
many forms and might be very difficult to spot.

Consider whether diagram 2 in Figure 6-14 is a logical model. First, is it clear what type of
computer is doing the processing? Could it be a desktop system? A centralized mainframe sys-
tem? A networked client/server system? Or, could the entire process as just described be car-
ried out by people without any computer at all? Similarly, are the data stores sequential
computer files? Are they tables in a relational database? Or are they files of paper in a file cab-
inet? How does the system get the data flow New order from the customer so it can be
processed? By clicking check boxes and list boxes in a Windows application? Or on a Web
page? Or by manually filling out a form that a clerk types into the system? Or by talking to
the clerk over the phone? Or by talking to a speech recognition program over the phone?

216 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Diagram 2: Create new order

Customer

Record
customer

information

2.1
Shipping

Customer

Order

Order item

Product item

Inventory item

Order transaction

Produce
confirmation

2.4

Record
order

2.2

Process
order

transaction

2.3

Credit
bureau Bank

Transaction
details

Order ID

Order
details

Order
confirmation

New order

Transaction

Order
details

Credit info

Figure 6-14

A detailed diagram for

Create new order
(diagram 2)

C6696_06_CTP.4c 1/28/08 8:22 AM Page 216

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 6 The Traditional Approach to Requirements ♦ 217

All of the alternatives described are possible, and if the model is a logical model, you
should not be able to tell how the system is implemented. At the same time, the processing
requirements (what must go on) should be fairly detailed, down to indicating what attribute
values are needed. The model could be even more detailed and still be a logical model.

Now consider whether the DFD in Figure 6-15 is a physical system model by comparing it
with diagram 1 in Figure 6-6. A number of elements indicate assumptions about implemen-
tation technology, including:

• Technology-specific processes
• Actor-specific process names
• Technology- or actor-specific process orders
• Redundant processes, data flows, and files

The most obvious technology assumption is embedded in the name of process 1.1. Making
copies is an inherently manual task, which implies that the data store Old schedules and the data
flows into and out of process 1.1 are paper. It is possible that the data store and flows are elec-
tronic, but if so, the question arises why a process would be needed to make electronic copies.

Old schedules Offered course
Make

copies for
department

chairs

1.1

Chair
modifies
schedule

1.2

Chair
incorporates

faculty
preferences

1.3

Chair
incorporates

feedback

1.4

Assoc. dean
assigns
reserved

rooms

1.5

Reserved room

General room

University
scheduling

assigns
more rooms

1.6

University
scheduling

prints
schedule

1.8

Faculty
member

Assoc. dean
incorporates

more
feedback

1.7

Student

Previous year
schedule

Previous year schedule copy (one
for each department chair)

Proposed schedule w/o
faculty assignments

Proposed
schedule

Chair proposed
schedule

Proposed
schedule

Student-recommended
changes

Proposed schedule w/o
faculty assignments

Teaching preferences

Proposed
schedule Faculty-

recommended
changes

Assoc. dean-
proposed
schedule

University-
proposed
schedule

Student-
recommended

changes

Faculty-
recommended

changes

University-proposed
schedule

University-
proposed
schedule

Final
schedule

Figure 6-15

A physical DFD for

scheduling courses

(resist the temptation to

create physical DFDs

during analysis)

C6696_06_CTP.4c 1/28/08 8:22 AM Page 217

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Many of the process names include actors in the system. References to Chair, Assoc. dean,
and University scheduling all indicate that a particular individual or department performs a
process. The sequential flow of data among the processes is a by-product of the person or
department that carries out each process. One can imagine alternate implementations with
fewer processes, different process orders, or different assignment of processes to individuals
and departments. The DFD clearly models one very specific set of decisions about process
ordering and responsibility.

The DFD also includes processes with similar or redundant processing logic. For example,
faculty input is accepted early, but faculty members later perform error checking twice (the
data flows from processes 1.4 and 1.7). Also, rooms are assigned at two different times from
two different data stores (Reserved room for process 1.5, and General room for process 1.6).
As before, these features indicate very specific assumptions about the technology and division
of responsibility. The redundant error checking indicates that it is possible for previous
processes to make mistakes. A system implemented with perfect technology needs no internal
error checking. The partitioning of room assignment between two files and processes may be
related to technology (for example, no one process could successfully assign all rooms at
once), or it could indicate a historic division of responsibility for room assignment.

Inexperienced analysts often develop DFDs such as the one in Figure 6-15. The path to
developing such a model is simple: Model everything the current system does exactly the way
it does it. The problem with this approach is that design assumptions and technology limita-
tions of the old system can become inadvertently embedded in the new system. This problem
is most prevalent when analysis and design are performed by different persons or teams. The
designer(s) may not realize that some of the “requirements” embedded in the DFDs are sim-
ply reflections of the way things are now, not the way they necessarily should be in the future.

Physical DFDs are sometimes developed and used during the last stages of analysis or
early stages of design. They are useful models for describing alternate implementations of a
system prior to developing more detailed design models. But analysts should avoid creating
physical DFDs during all analysis activities, except when generating alternatives. Even during
that activity, analysts should clearly label physical DFDs as such so readers know that the
model represents one possible implementation of the logical system requirements.

EVALUATING DFD QUALITY

A high-quality set of DFDs is readable, is internally consistent, and accurately represents sys-
tem requirements. Accuracy of representation is determined primarily by consulting users and
other knowledgeable stakeholders. A project team can ensure readability and internal consis-
tency by applying a few simple rules to DFD construction. Analysts can apply these rules
while developing the DFDs or during a separate quality check after preparing DFD drafts.

Minimizing Complexity

People have a limited ability to manipulate complex information. If too much information is
presented at once, people experience a phenomenon called information overload. When
information overload occurs, a person has difficulty in understanding. The key to avoiding
information overload is to divide information into small and relatively independent subsets.
Each subset should contain a comprehensible amount of information that people can exam-
ine and understand in isolation.

A layered set of DFDs is an example of dividing a large set of information into small, inde-
pendent subsets. Each DFD can be examined in isolation. The reader can find additional
detail about a specific process by moving down to the next level, or find information about
how a DFD relates to other DFDs by examining the next-higher-level DFD.

An analyst can avoid information overload within any single DFD by following two
simple rules of DFD construction:

• 7 ± 2
• Interface minimization

218 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

information

overload
difficulty in
understanding that
occurs when a reader
receives too much
information at one time

C6696_06_CTP.4c 1/28/08 8:22 AM Page 218

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 6 The Traditional Approach to Requirements ♦ 219

The rule of 7 ± 2 (also known as Miller’s Number) derives from psychology research,
which shows that the number of information “chunks” that a person can remember and
manipulate at one time varies between five and nine. A larger number of chunks causes infor-
mation overload. Information chunks can be many things, including names, words in a list,
digits, or components of a picture.

Some applications of the rule of 7 ± 2 to DFDs include the following:

• A single DFD should have no more than 7 ± 2 processes.
• No more than 7 ± 2 data flows should enter or leave a process, data store, or data

element on a single DFD.

These rules are general guidelines, not unbreakable laws. DFDs that violate these rules may still
be readable, but violations should be considered a warning of potential problems.

Minimization of interfaces is directly related to the rule of 7 ± 2. An interface is a con-
nection to some other part of a problem or description. As with information chunks, the
number of connections that a person can remember and manipulate is limited, so the
number of connections should be kept to a minimum. Processes on a DFD represent
chunks of business or processing logic. They are related to other processes, entities, and
data stores by data flows. A single process with a large number of interfaces (data flows)
may be too complex to understand. This complexity may show up directly on a process
decomposition as a violation of the rule of 7 ± 2. An analyst can usually correct the prob-
lem by dividing the process into two or more subprocesses, each of which should have
fewer interfaces.

Pairs or groups of processes with a large number of data flows between them are another
violation of the interface minimization rule. Such a condition usually indicates a poor parti-
tioning of processing tasks among the processes. The way to fix the problem is to reallocate
the processing tasks so that fewer interfaces are required. The best division of work among
processes is the simplest, and the simplest division is one that requires the fewest interfaces
among processes.

Ensuring Data Flow Consistency

An analyst can often detect errors and omissions in a set of DFDs by looking for specific types
of inconsistency. Three common and easily identifiable consistency errors are as follows:

• Differences in data flow content between a process and its process decomposition
• Data outflows without corresponding data inflows
• Data inflows without corresponding outflows

A process decomposition shows the internal details of a higher-level process in a more
detailed form. In most cases, the data content of flows to and from a process at one DFD level
should be equivalent to the content of data flows to and from all processes in a decomposi-
tion. This equivalency is called balancing, and the higher-level DFD and the process decom-
position DFD are said to be “in balance.”

Note the use of the term data content in the previous paragraph. Data flow names can vary
among DFD levels for a number of reasons, including decomposition of one combined data
flow into several smaller flows. Thus, the analyst must be careful to look at the components of
data flows, not just data flow names. For this reason, detailed analysis of balancing should
not be undertaken until data flows have been fully defined.

Unbalanced DFDs may be acceptable when the imbalance is due to data flows that were
ignored at the higher levels. For example, diagram 0 for a large system usually ignores details
of error handling, such as when an item is ordered but is later determined to be out of stock
and discontinued by its manufacturer. A process called Fulfill order on diagram 0 would not
have any data flows associated with this condition. In the process decomposition of Fulfill
order, the analyst might add a process and data flows to handle discontinued items.

Another type of DFD inconsistency can occur between the data inflows and outflows of a
single process or data store. By definition, a process transforms data inflows into data outflows.

rule of 7 ± 2
the rule of model design
that limits the number of
model components or
connections among
components to no more
than nine

minimization of

interfaces
a principle of model
design that seeks
simplicity by limiting the
number of connections
among model
components

balancing
equivalence of data
content between data
flows entering and
leaving a process and
data flows entering and
leaving a process
decomposition DFD

C6696_06_CTP.4c 1/28/08 8:22 AM Page 219

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

In a logical DFD, data should not be needlessly passed into a process. The following consistency
rules can be derived from these facts:

• All data that flows into a process must flow out of the process or be used to generate data
that flows out of the process.

• All data that flows out of a process must have flowed into the process or have been gener-
ated from data that flowed into the process.

Figure 6-16 shows an example that violates the first rule. Compare Figure 6-16 with the
first DFD fragment in Figure 6-12, and note the difference in the data inflows to the process.
Looking up item availability requires only information to identify the item and access to cor-
responding data stores. In Figure 6-16, excess data input (an entire order) flows into the
process, and the process accesses more data stores than needed to generate the data outflow
Item availability details. A process such as the one shown in Figure 6-16 is sometimes called a
black hole because some or all of the data that enters never leaves.

220 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Customer
Check
 item

availability

1

Return item

Product item

Order transaction

Order item

Order

Catalog

New
order

Item
availability

details

Figure 6-16

A process with

unnecessary

data input—a black hole

Figure 6-17 shows an example that violates the second rule. Compare Figure 6-17 with
the bottom DFD fragment in Figure 6-7, and note the difference in the data inflows to the
process. In Figure 6-17, insufficient data enters the process to produce the data output.
Required data inputs from the Offered course and Course enrollment are missing. A process
such as the one shown in Figure 6-17 is sometimes called a miracle because data emerges
from the process without any apparent source.

Faculty
member

Produce
class
list

3

Student
Faculty
member

Produce
class
list

3

Class list

Figure 6-17

A process with an

impossible data output—

a miracle

Analysts sometimes can spot black holes and miracles simply by examining the DFD. In
other cases, close examination of the data dictionary or process descriptions is required. In
Figure 6-18, data elements A, B, and C flow into the process but do not flow out. Data ele-
ment A is used to determine what formula to apply to recompute the value of X, so that data

black hole
a process or data store
with a data input that is
never used to produce a
data output

miracle
a process or data store
with a data element that
is created out of nothing

C6696_06_CTP.4c 1/28/08 8:22 AM Page 220

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 6 The Traditional Approach to Requirements ♦ 221

element is a necessary input. However, data elements B and C play no role in generating
process output and thus should be eliminated as unnecessary inflows.

In Figure 6-19, data elements A, B, and Y flow out of the process. Data element A flows into
the process. Data element Y is computed by an algorithm based on data element A. However,
data element B does not flow into the process and is not computed by internal processing logic.
Thus, data element B indicates either an error in the data outflow (B should be eliminated) or
an omission in the internal processing logic (the rule that determines B is missing).

Note that both consistency rules apply to data stores as well as processes. Any data element
that is read from a data store must have been previously written to that data store. Similarly, any
data element that is written to a data store eventually must be read from the data store.
Examining the consistency of data flows to and from a data store is complicated by the fact that
a data element may flow into and out of a data store on completely different DFDs.

Compute
X

Process description

If A>5 Then
 X=X*1.05
Else
 X=X*1.10
Endif

XA,B,C,X

Figure 6-18

A process with

unnecessary data input

Compute
Y

Process description

If A>5 Then
 Y=100
Else
 Y=250
Endif

A,B,YA

Figure 6-19

A process with an

impossible

data output

Evaluating data flow consistency is a straightforward but tedious process. Fortunately, most
analysis modeling tools automatically perform data flow consistency checking. But those tools
place rigorous requirements on the analyst to specify the internal logic of processes precisely.
Without precise process descriptions, it is impossible for the tool (or a human being) to know
what data elements are used as input or generated as output by internal processing logic.

DOCUMENTATION OF DFD COMPONENTS

In the traditional approach, data flow diagrams show all three types of internal system
components—processes, data flows, and data stores—on one diagram, but additional details
about each component need to be described. First, each lowest-level process needs to be

C6696_06_CTP.4c 1/28/08 8:22 AM Page 221

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

described in detail. In addition, the analyst needs to define each data flow in terms of the data
elements it contains. Data stores also need to be defined in terms of the data elements.
Finally, the analyst also needs to define each data element.

PROCESS DESCRIPTIONS

Each process on a DFD must be defined formally. There are several options for process defini-
tion, including one that has already been discussed—process decomposition. As discussed
previously, in a process decomposition, a higher-level process is formally defined by a DFD
that contains lower-level processes. These lower-level processes may in turn be further decom-
posed into even lower-level DFDs.

Eventually a point is reached at which a process doesn’t need to be defined further by a
DFD. This point occurs when a process becomes so simple that it can be described adequately
by other methods—structured English, decision tables, or decision trees. With each method,
the process is described as an algorithm, and an analyst chooses the most appropriate presen-
tation format by determining which is most compact, readable, and unambiguous. In most
cases, structured English is the preferred method.

Structured English uses brief statements to describe a process very carefully. Structured
English looks a bit like programming statements, but without references to computer concepts.
Rules of structured programming are followed, and indentation is used for clarity. For exam-
ple, a simple set of instructions for processing ballots after a vote is shown in Figure 6-20. Some
statements are simply instructions. Other statements repeat instructions. Still other statements
direct the program to execute one set of instructions or the other. The procedure always starts
at the top and ends at the bottom. Therefore, the rules of structured programming apply. Note,
though, that a process described by structured English is not necessarily a computer program—
it might be done by a person—so it is a logical model. It is unambiguous, so anyone following
the instructions will arrive at the same result.

222 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Process Ballots Procedure

Collect all ballots
Place all ballots in a stack
Set Yes count and No count to zero
Repeat for each ballot in the stack
 If Yes is checked then
 Add one to Yes count
 Else
 Add one to No count
 Endif
 Place ballot on counted ballot stack
Endrepeat
If Yes count is greater than No count then
 Declare Yes the winner
Else
 Declare No the winner
Endif
Store the counted ballot stack in a safe place
End Process Ballots Procedure

Figure 6-20

A structured English

example

An example of a process description for Rocky Mountain Outfitters is shown in Figure 6-21.
Note how the process description provides more specific details about what the process does. If
one process description method becomes too complex, the analyst should choose another.
Excess length (for example, more than 20 lines) or multiple levels of indentation (indicating
complex decision logic) indicate that a structured English description may be too complex. An
analyst can sometimes address excess indentation by converting the description to an equiva-
lent decision table or decision tree. In other cases, a process decomposition may be required.

structured

English
a method of writing
process specifications
that combines structured
programming techniques
with narrative English

C6696_06_CTP.4c 1/28/08 8:22 AM Page 222

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 6 The Traditional Approach to Requirements ♦ 223

Structured English is well suited to describing processes with many sequential processing
steps and relatively simple control logic (such as a single loop or an if-then-else statement).
Structured English is not well suited for describing processes with the following characteristics:

• Complex decision logic
• Few (or no) sequential processing steps

Decision logic is complex when multiple decision variables and a large number of possi-
ble combinations of those variables need to be considered. When a process with complex
decision logic is described with structured English, the result is typically a long and difficult-
to-read description. For example, consider the structured English description for calculating
shipping costs shown in Figure 6-22. Note that the description is relatively long and consists
mostly of control structures (if, else, and endif statements).

Decision tables and decision trees can summarize complex decision logic more con-
cisely than structured English. Figures 6-23 and 6-24 show a decision table and decision tree
that represent the same logic as the structured English example in Figure 6-22. Both incorpo-
rate decision logic into the structure of the table or tree to make the descriptions more read-
able than their structured English equivalent. The decision table is more compact, but the
decision tree is easier to read. Sometimes an analyst needs to describe a process all three ways
before deciding which approach describes a particular process best.

The following steps are used to construct a decision table:

1. Identify each decision variable and its allowable values (or value ranges).
2. Compute the number of decision variable combinations as the product of the num-

ber of values (or value ranges) of each decision variable.
3. Construct a table with one more column than the number of decision variable com-

binations computed in step 2 (the extra column is for decision variable names and
process action or computation descriptions). The table should have a row for each
decision variable and a row for each process action or computation.

Process 2.1 - Record Customer Information

Ask if customer has an account (or has made a previous order)
If customer has an account then
 Ask for identification information
 Query database with identifying information

Copy query response data to Order details
Else

Create an empty Customer record in the database
Ask customer for Customer attributes
Update empty Customer record with Customer attributes

Endif
Ask customer for order information for first item
While more order items Do

Update Order details with order information
Endwhile

CustomerCustomer Record
customer

information

2.1

Order
details

New
order

Figure 6-21

RMO process 2.1 (Record
customer information) and

its structured English

process description

decision table
a tabular representation
of processing logic
containing decision
variables, decision
variable values, and
actions or formulas

decision tree
a graphical description of
process logic that uses
lines organized like
branches of a tree

C6696_06_CTP.4c 1/28/08 8:22 AM Page 223

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

224 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

If YTD purchases > $250 then
If number of items ordered < 4 then

If delivery date is next day then
 delivery charge is $25

Endif
If delivery date is second day then

 delivery charge is $10
Endif
If delivery date is seventh day then

 delivery charge is $1.50 per item
Endif

 Else
If delivery date is next day then

 delivery charge is $6 per item
Endif
If delivery date is second day then

 delivery charge is $2.50 per item
Endif
If delivery date is seventh day then

 delivery charge is zero (free)
Endif

Endif
Else

If number of items ordered < 4 then
If delivery date is next day then

 delivery charge is $35
Endif
If delivery date is second day then

 delivery charge is $15
Endif
If delivery date is seventh day then

 delivery charge is $10
Endif

 Else
If delivery date is next day then

 delivery charge is $7.50 per item
Endif
If delivery date is second day then

 delivery charge is $3.50 per item
Endif
If delivery date is seventh day then

 delivery charge is $2.50 per item
Endif

Endif
Endif

Figure 6-22

A structured English

process description for

determining delivery

charges

YES NO

7th2nd 7th2nd 7th2nd 7th2nd

Number of Items (N)

Delivery Day

Shipping Charge ($)

Next

N 3 N 4

25 10 N * 1.50

Next Next Next

N * 6.00 N * 2.50 Free 35 15 10 N * 7.50

N 4N 3

N * 3.50 N * 2.50

YTD purchases > $250

4. Assign the decision variable with the fewest values (or value ranges) to the first row
of the table. Put the decision variable name in the first column. Divide the remain-
ing columns into sets of columns for each decision variable value (or value range).

5. Choose the next decision variable with the fewest values (or value ranges) for the sec-
ond row. Put the variable’s name in the first column. Compute the number of column
groups as the product of the number of values (or value ranges) of this variable and all

Figure 6-23

A decision table for

calculating shipping

charges

C6696_06_CTP.4c 1/28/08 8:22 AM Page 224

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 6 The Traditional Approach to Requirements ♦ 225

the variables above it in the table. Divide the remaining columns into the computed
number of groups, and insert values (or value ranges) in a regular pattern.

6. Continue inserting rows as instructed in step 5 until all decision variables have been
included in the table.

7. Add a row for each calculation or action. For each calculation cell, insert the appro-
priate constant value or formula for the combination of decision variable values that
appear above the cell in the same column. For each action cell, place a check mark in
the cell if that action is performed when the decision variables have the values
shown in the column above the cell.

Now let’s follow these steps to show how the decision table in Figure 6-23 was constructed.
There are three decision variables: year to date (YTD) purchases, number of items ordered, and
delivery day. YTD purchases has two relevant ranges: less than $250, and greater than or equal
to $250. Note that decision variable ranges must be mutually exclusive and collectively exhaus-
tive. Number of items ordered also has two relevant ranges: less than or equal to three, and
greater than or equal to four. Delivery day has three possible values: next day, second day, and
seventh day. There are 2 × 2 × 3 = 12 combinations of values, so there are 13 columns in the
table to allow for a decision variable name, the formula, and the action names.

Both YTD purchases and number of items have two relevant value ranges, so either can
occupy the first row. We chose YTD purchases. It has two value ranges, so we created two groups
of 12 ÷ 2 = 6 columns, and labeled one for each possible value. The next row is for number of
items. It has two ranges, so we need four groups of three columns—that is, 12 ÷ 2 value ranges
for number of items ÷ 2 value ranges for YTD purchases. We insert the value ranges for number
of items into the column groups in a regular pattern, as shown in the sample figure. The delivery
day is now inserted into the table. Because it is the last decision variable, we don’t need to group
any columns beneath it. We simply insert the values of the delivery date into individual columns
in a regular pattern, as we did for the other decision variables.

The final step is to insert the row containing formulas and values for the shipping charges.
Each cell contains a value or formula for the combination of decision variable values in the

YTD purchases Number of items

purchased (N)

Delivery

day

Delivery charge

($)

25

10

N x 1.50

N x 6.00

N x 2.50

Free

35

15

10

N x 7.50

N x 3.50

N x 2.50

Yes

No

Next
2nd

7th

Next
2nd

7th

Next
2nd

7th

Next
2nd

7th

3

4

3

4

$250

Figure 6-24

A decision tree for

calculating

shipping charges

C6696_06_CTP.4c 1/28/08 8:22 AM Page 225

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Functional requirements documentation for the traditional approach
includes (1) an ERD with attributes, (2) the set of DFDs (context DFD, DFD
fragments, and any needed detailed DFDs), (3) process descriptions, and (4)
data flow definitions, data store definitions, and data element definitions.

BEST PRACTICE

columns above. For example, shipping is free for customers with YTD purchases greater than
$250, orders of more than three items, and seventh-day delivery. The shipping charge is $35
for customers with YTD purchases less than $250, an order of three items or fewer, and next-
day delivery.

If the decision table is used to represent a process that implements one or more
actions—instead of value calculations, as in the previous example—then the table must con-
tain a row for each action. Cells in these rows are checkmarked to indicate which actions are
performed under which conditions. Figure 6-25 shows a simple example of this type of table.
Two action rows are included, and the action is performed if a check mark appears in the cell
immediately below the decision variable values. For example, if the customer is new and the
shipment contains an item back-ordered more than 25 days, then the shipment is expedited
and the detailed return instructions are included in the container. If the customer isn’t new and
the order contains no items back-ordered more than 25 days, then neither action is taken.

226 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

New customer

Item back order ≥ 25 days

Include detailed return instructions

Expedite delivery

Yes No

No

✓

Yes

✓

✓

Yes No

✓

Figure 6-25

A simple decision table

with multiple action rows

You can construct a decision tree using almost the same steps as listed previously for con-
structing a decision table. The primary difference is that rows in a decision table are columns in
a decision tree, and vice versa. To see this for yourself, draw an imaginary line through the table
in Figure 6-23 from the top-left to bottom-right. Then flip the table along the imaginary line and
compare the structure of the flipped table to the decision tree in Figure 6-24. The only other sig-
nificant difference between a table and a tree is that a tree uses labeled branches instead of
grouped columns to represent decision variable values.

DATA FLOW DEFINITIONS

A data flow is a collection of data elements, so data flow definitions list all the elements. For
example, a simplified New order data flow (to process 2.1 in Figure 6-14) consists of a cus-
tomer name, credit card number, and list of catalog item numbers and quantities. Some of
these elements are actually structures of other elements, such as a customer name consisting
of first name, middle initial, and last name. The system stores most of these data elements, so
they coincide with the attributes of data entities included in the ERD.

Sometimes data flow definitions contain a more complex structure. In the New order
example, each data flow consists of many catalog items and quantities (a repeating group). It
is important to document this structure. The notations for data flow definitions vary. One
approach is simply to list the data elements, as shown in Figure 6-26. The elements that can
have many values are indicated. Another approach uses an algebraic notation such as that
shown in Figure 6-27. The data flow “equals” or “consists of” one element plus another ele-
ment, and so on. Groups of elements that can have many values are enclosed in curly braces.
This example shows New order “equals” the customer name “plus” customer address “plus”

data flow

definition
a textual description of a
data flow’s content and
internal structure

C6696_06_CTP.4c 1/28/08 8:22 AM Page 226

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 6 The Traditional Approach to Requirements ♦ 227

credit card information “plus” “one or more” inventory item number and quantity. In this
example, the customer name can be defined separately as a structure of elements.

Figures 6-28 and 6-29 show a complex report and its corresponding data flow definition.
The structure of the report is a repeating group of products with an embedded repeating
group of inventory items. The data flow definition captures this structure by embedding the
item repeating group within one set of curly braces and the product repeating group within
the outermost set of curly braces.

DATA STORE DEFINITIONS

Because a data store on the DFD represents a data entity on the ERD, no separate definition is
typically needed (except perhaps a note referring the reader to the ERD). If data stores are not
linked to an ERD, the analyst simply defines the data store as a collection of elements (possi-
bly with a structure) in the same way that data flows are defined.

DATA ELEMENT DEFINITIONS

Data element definitions describe a data type, such as string, integer, floating point, or Boolean.
Each element should also be described to indicate specifically what it represents. Sometimes these
descriptions are very specific. A date of sale might be defined as the date the payment for the order
was received. Alternately, the date of sale might be the date an order is placed. Sometimes different
departments in the same company have different definitions for the same element, so it is very
important for the analyst to confirm exactly what the element means to users.

Other parts of a data element definition vary depending on the type of data. A length is
usually defined for a string. For example, a middle initial might be one character maxi-
mum, but how long should a first name be? Numeric values usually have a minimum and
maximum value that can be defined as a valid range. Sometimes specific values are allowed
for the element, such as valid codes. If the element is a code, it is important to define the
valid codes and their meaning. For example, code A might mean ship immediately, code B
might mean hold for one day, and code C might mean hold shipment pending confirma-
tion. Some sample data element definitions are shown in Figure 6-30.

Analysts need to maintain a central store of all these definitions as a project reference and to
ensure consistency. A data dictionary is a repository for definitions of data flows, data stores, and
data elements. A data dictionary may be a simple loose-leaf notebook or word-processing file in
smaller development projects. In larger projects, a project management or documentation tool
usually holds the data dictionary. The data dictionary may also hold process descriptions.

Customer-Name
Customer-Address
Credit-Card-Information
Item-Number
Quantity

Figure 6-26

Data flow definitions

simply listing elements

New-Order = Customer-Name + Customer-Address +
Credit-Card-Information +

1
{ Item-Number + Quantity }N

Figure 6-27

Algebraic notation for

data flow definition

(New-Order)

data dictionary
a repository for
definitions of data
flows, data elements,
and data stores

C6696_06_CTP.4c 1/28/08 8:22 AM Page 227

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

228 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Rocky Mountain Outfitters — Products and Items

ID Name Season Category Supplier DiscontinuedUnit Price Special Special Price

Description Outdoor Nylon Jacket with Lining
RM0125 Outdoor Field Spr/Fall Mens C 8201 $39.00 $0.00 No

Size Color Style Units in Stock Reorder Level Units on Order
Large
Large
Large
Large
Medium
Medium
Medium
Medium
Small
Small
Small
Small
Xlarge
Xlarge
Xlarge
Xlarge

Blue
Green
Red
Yellow
Blue
Green
Red
Yellow
Blue
Green
Red
Yellow
Blue
Green
Red
Yellow

1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500

150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150

ID Name Season Category Supplier DiscontinuedUnit Price Special Special Price

Description Hiking Walkers with Patterned Tread Durable Uppers
RM0125 Hiking Walkers All Footwear 7993 $49.95 $0.00 No

Size Color Style Units in Stock Reorder Level Units on Order

10
10
11
11
12
12
13
13
7
7
8
8
9
9

Brown
Tan
Brown
Tan
Brown
Tan
Brown
Tan
Brown
Tan
Brown
Tan
Brown
Tan

1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000

100
100
100
100
100
100
100
100
100
100
100
100
100
100

Figure 6-28

A sample report produced

by the RMO customer

support system

DFD SUMMARY

Figure 6-31 shows each of the components of a traditional analysis model—an entity-
relationship diagram, data flow diagrams, process definitions, and data definitions. The four
components form an interlocking set of specifications for most system requirements. The data
flow diagram provides the highest-level view of the system, summarizing processes, external
agents, data stores, and the flow of data among them. Each of the other components describes
some aspect of the data flow diagram in greater detail.

The models described thus far were developed in the 1970s and 1980s as part of the tradi-
tional structured analysis methodology (see Yourdon 1989 in the “Further Resources” sec-
tion). They were designed to document completely the logical requirements of a system.

C6696_06_CTP.4c 1/28/08 8:22 AM Page 228

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 6 The Traditional Approach to Requirements ♦ 229

products–and–items–report =

 N
1
{ product–id + product–name + season + category +
 supplier + unit–price + special

+ special–price +

 discontinued + description +
 N

1
{ size + color + style + units–in–stock +

 reorder–level + units–on–order
 }
 }

Figure 6-29

A data flow definition for

the RMO products and

items report

units-in-stock =
 a positive integer

supplier =
 a four digit numeric code

unit-price =
 a positive real number accurate to two decimal places,
 always in U.S. dollars

description =
 a text field containing a maximum of 50 printable characters

special =
 a coded field with one of the following values
 0: item is not “on special”
 1: item is “on special”

Figure 6-30

Data element definitions

Entity-
relationship

diagram

Data
flow

diagrams

Process
definitions

Data
definitions

Figure 6-31

The components of a

traditional systems

analysis model

C6696_06_CTP.4c 1/28/08 8:22 AM Page 229

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

However, some analysts choose to augment the structured models with models borrowed
from other methodologies. Such models may be used to describe information not captured
by the structured models. Or they may be used to present similar information in a slightly
different form. The remainder of this chapter describes some of these “borrowed” models and
ways they can be used to augment the traditional structured analysis models.

LOCATIONS AND COMMUNICATION THROUGH NETWORKS

Because structured systems analysis concentrates on logical modeling, physical issues such as
processing locations and networks are sometimes ignored during analysis. However, a great
deal of information about process, data, and user distribution is needed during the early
stages of design. Examples include the following:

• Number of locations of users
• Processing and data access requirements of users at specific locations
• Volume and timing of processing and data access requests

Gathering location information during analysis enables analysts to make better decisions dur-
ing the last two analysis activities—Generate and evaluate alternatives and Review recommendations
with management. Location information is also useful in many design activities, including Design
and integrate the network, Design the application architecture, and Design and integrate the database.

The first step in gathering location information is to identify and describe the locations where
work is being done or where it will be performed. Possible locations include business offices,
warehouses, and manufacturing facilities, and less obvious locations such as customer or sup-
plier offices, employee homes, hotel rooms, and automobiles. All of these locations should be
listed, and a location diagram should be drawn to summarize the locations graphically. A loca-
tion diagram for Rocky Mountain Outfitters is shown in Figure 6-32. The location diagram shows
the analyst what network connections might be required, but it also has the added benefit of
reminding everyone that users at all locations should be consulted about the system.

The next step is to list the functions that are performed by users at each location. Using
the event table, the analyst can list where each activity is performed. Figure 6-33 shows an
activity-location matrix that summarizes this information. Each row is a system activity, and
each column represents a location. Many activities are performed at multiple locations.

Recall that Rocky Mountain Outfitters also has a system project under way for the inven-
tory management system. The inventory management system will involve many activities at
the manufacturing facilities, but the customer support system will not. In addition, RMO has
a plan for integrating the system at the retail stores with the inventory management system,
but not with the customer support system. Therefore, these locations are not shown on the
activity-location matrix.

230 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

location diagram
a diagram or map that
identifies all of the
processing locations of a
system

activity-location

matrix
a table that describes the
relationship between
processes and the
locations in which they
are performed

C6696_06_CTP.4c 1/28/08 8:22 AM Page 230

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 6 The Traditional Approach to Requirements ♦ 231

activity-data

matrix
a table that describes
stored data entities, the
locations from which
they are accessed, and
the nature of the
accesses

AZ
NM

COUT

NV

CA

WY

ID

OR

MT

WA

Manufacturing

Warehouse

Mail-order center

Headquarters

Phone-order
center

Data center

Retail storeM

W

F

H

P

D

R

F
W P

M D
R

H

R

W

F
W

Salt Lake City

Park City

Portland

Denver

Albuquerque

Provo

Figure 6-32

The Rocky Mountain

Outfitters location

diagram

Other matrices can be created to highlight access requirements. One approach is to
list activities and data entities (or classes of objects) in an activity-data matrix. This
matrix shows which activities require access to the data or objects. This information can
be found on the DFD fragments for the traditional approach and on the sequence dia-
grams for the OO approach. In either approach, creating a matrix to summarize this
information can be useful.

Figure 6-34 shows an activity-data matrix for Rocky Mountain Outfitters. The cells of the
matrix show additional information to clarify what the activity does to the data. The letter C
means the activity creates new data, R means the activity reads data, U means the activity
updates data, and D means the activity might delete data. The acronym CRUD (create, read,
update, and delete) is often used to describe this type of matrix.

CRUD
acronym of create, read,
update, and delete

C6696_06_CTP.4c 1/28/08 8:22 AM Page 231

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

232 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

ACTIVITY LOCATION

Corporate Distribution Mail-order Phone sales Customer
offices warehouses (Provo) (Salt Lake City) direct
(Park City) (Salt Lake City, interaction

Albuquerque, (Anticipated)
Portland)

Look up item availability X X X X X

Create new order X X X

Update order X X

Look up order status X X X X

Record order fulfillment X

Record back order X

Create order return X

Provide catalog info X X X

Update customer account X X X X

Distribute promotional package X

Create customer charge X
adjustment

Update catalog X

Create special product promotion X

Create new catalog X

Figure 6-33

Activity-location matrix

for the Rocky Mountain

Outfitters customer

support system

C6696_06_CTP.4c 1/28/08 8:22 AM Page 232

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 6 The Traditional Approach to Requirements ♦ 233

Figure 6-34

Rocky Mountain

Outfitters

activity-data matrix

A
CT

IV
IT

IE
S

D
AT

A
 E

N
TI

TI
ES

C
a

ta
lo

g
C

u
s

to
m

e
r

In
v

e
n

to
ry

O

rd
e

r
O

rd
e

r
O

rd
e

r
P

a
c

k
a

g
e

P
ro

d
u

c
t

R
e

tu
rn

S
h

ip
m

e
n

t
S

h
ip

p
e

r
it

e
m

it
e

m
tr

a
n

s
a

c
ti

o
n

it
e

m
it

e
m

L
oo

k
u

p
it

em
 a

va
ila

bi
lit

y
R

C
re

at
e

n
ew

 o
rd

er
C

R
U

R
U

C
C

C
R

R
C

R

U
pd

at
e

or
de

r
R

U
R

U
R

U
D

R
U

D
R

U
D

R
R

C
R

U
D

R

L
oo

k
u

p
or

de
r

st
at

u
s

R
R

R
R

R
R

R
ec

or
d

or
de

r
fu

lf
ill

m
en

t
R

U
R

U

R
ec

or
d

ba
ck

 o
rd

er
R

U
C

R
U

C
re

at
e

or
de

r
re

tu
rn

C
R

U
R

U
C

C

P
ro

vi
de

 c
at

al
og

 in
fo

R
R

R
R

U
pd

at
e

cu
st

om
er

 a
cc

ou
n

t
C

R
U

D

D
is

tr
ib

u
te

 p
ro

m
ot

io
n

al
 p

ac
ka

ge
R

R
R

R
R

C
re

at
e

cu
st

om
er

 c
h

ar
ge

 a
dj

u
st

m
en

t
R

U
C

R
U

D

U
pd

at
e

ca
ta

lo
g

R
U

R
R

U
R

C
re

at
e

sp
ec

ia
l p

ro
du

ct
 p

ro
m

ot
io

n
R

R
R

R

C
re

at
e

n
ew

 c
at

al
og

C
R

C
R

U
R

C
 =

 C
re

at
es

 n
ew

 d
at

a,
R

 =
 R

ea
ds

 e
xi

st
in

g
da

ta
,

U
 =

 U
pd

at
es

 e
xi

st
in

g
da

ta
,

D
 =

 D
el

et
es

 e
xi

st
in

g
da

ta

C6696_06_CTP.4c 1/28/08 8:22 AM Page 233

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

SUMMARY
Data flow diagrams (DFDs) are used in combination with the event table and entity-relationship diagram (ERD) to
model system requirements. DFDs model a system as a set of processes, data flows, external agents, and data stores.
DFDs are relatively easy to read because they graphically represent key features of the system using a small set of
symbols. Because there are many features to be represented, many types of DFDs are developed, including context
diagrams, DFD fragments, subsystem DFDs, event-partitioned DFDs, and process decomposition DFDs.

Each process, data flow, and data store requires a detailed definition. Analysts may define processes in a num-
ber of ways, including a structured English process specification, a decision table, a decision tree, or a process
decomposition DFD. Process decomposition DFDs are used when internal process complexity is too great to allow
the creation of a readable, one-page definition by any other means. Data flows are defined in terms of their compo-
nent data elements and their internal structure. Data elements may be further defined in terms of their type and
allowable content. Data stores correspond to entities on the ERD, and thus require no additional definition.

The location diagram, activity-location matrix, and activity-data matrix describe important information about sys-
tem locations. The location diagram summarizes geographic locations where the system is to be used. The activity-
location matrix describes which processes are implemented at which locations. The activity-data matrix summarizes
where and how each data store is used.

We’ve now covered all of the models that are used to document system requirements in the traditional approach
to systems analysis. Chapter 7 covers the models used to document system requirements in the OO approach to sys-
tems analysis. Chapter 8 covers the transition from systems analysis to systems design.

KEY TERMS

activity-data matrix, p. 231

activity-location matrix, p. 230

balancing, p. 219

black hole, p. 220

context diagram, p. 208

CRUD, p. 231

data dictionary, p. 227

data flow, p. 206

data flow definition, p. 226

data flow diagram (DFD), p. 206

data store, p. 207

decision table, p. 223

decision tree, p. 223

DFD fragment, p. 210

event-partitioned system model, or diagram 0, p. 210

external agent, p. 206

information overload, p. 218

level of abstraction, p. 208

location diagram, p. 230

minimization of interfaces, p. 219

miracle, p. 220

process, p. 206

rule of 7 ± 2, p. 219

structured English, p. 222

REVIEW QUESTIONS

1. List at least three different types of DFDs. What is each dia-

gram type used to represent?

2. List the five component parts (symbols) of a DFD. Briefly

describe what each symbol represents.

3. How does an analyst determine whether a person or orga-

nization should be represented on a DFD as an external

agent or by one or more processes?

4. Processes on an event-partitioned DFD can be described by a

detailed DFD or a process specification. How does an analyst

determine which is the most appropriate form of description?

5. Describe how each column of an event table is represented

on a DFD (that is, what symbols are used?).

6. How are entities from the ERD represented on a DFD? How

are relationships from the ERD represented on a DFD?

7. What features may be present on a physical DFD that

should never be present on a logical DFD?

8. What DFD characteristics does an analyst examine when

evaluating DFD quality?

9. What is a black hole? What is a miracle? How can each

be detected?

10. Why might an analyst describe a process with a decision

table or tree instead of structured English?

11. What is an activity-location matrix? How is it related to DFDs?

12. What is an activity-data matrix? How is it related to DFDs

and the ERD?

234 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

C6696_06_CTP.4c 1/28/08 8:22 AM Page 234

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

THINKING CRITICALLY

1. Assume that you are preparing a DFD to describe the

process of creating, approving, and closing a mortgage

loan by a mortgage broker. Should the broker be repre-

sented as an external agent or by one or more processes?

Why? What about the closing agent, the credit bureau,

and the bank that issues the mortgage note?

2. Examine the course registration system described in

Figure 6-6. Are there any other processes that would be

required to implement a fully functioning system? Hint:

Black holes and miracles may indicate processing steps

that were left out of the DFD.

3. Assume that the transaction summary report for the RMO

order-entry subsystem (see process 5 in Figure 6-12) contains

a listing of every order that was created during a date range

entered by the user. The report title page contains the report

name, the date range, and the date and time the report was

prepared. For each order, the report lists the order number,

order date, order total, and form of payment. Within

each order, the report lists all order items and returns, includ-

ing item number, quantity ordered (or returned), and price.

Report totals include the sum of all order totals, average

order total, average item price, and average return price.

Write a data flow definition entry for the report, and write

a process specification for the process that produces

the report.

4. Create an activity-data (CRUD) matrix for the course regis-

tration system in Figure 6-6.

EXPERIENTIAL EXERCISES

1. Develop a physical DFD that models the process of grocery
shopping, from the time you write down a shopping list
until the time you store purchased groceries in your home.
Construct your DFD as a linear sequence of processes. Now
develop a logical DFD to describe the same scenario. Try to
develop a diagram that is equally valid as a logical descrip-
tion of the way you currently buy groceries and as a logical
description of ways you might buy groceries without ever
leaving your home.

2. Consider the admissions requirements for a degree
program, major, or concentration at your school. Look up the

requirements in the school catalog and rewrite them in
structured English. Develop an equivalent decision table
and/or decision tree. Which is easier to understand? Why?

3. Get a copy of your school transcript. Write a data definition
that describes its contents. Write data element definitions
for the fields Grade, Credits, and Degree.

4. Define process 2 in Figure 6-7 as it is implemented at your
school. Use whatever combination of process decomposi-
tion and process specification is appropriate. If you develop
any process decomposition DFDs, be sure to define all
data flows.

CHAPTER 6 The Traditional Approach to Requirements ♦ 235

THE REAL ESTATE MULTIPLE LISTING SERVICE SYSTEM

Refer to the description of the Real Estate Multiple Listing Service

system in the Chapter 5 case studies. Use the event list and ERD for

that system as a starting point for the following exercises:

1. Draw a context DFD.

2. Draw an event-partitioned DFD.

3. Draw any required process decomposition DFDs.

STATE PATROL TICKET PROCESSING SYSTEM

Refer to the description of the State Patrol ticket processing system

in the Chapter 5 case studies. Use the event list and ERD for that

system as a starting point for the following exercises:

1. Draw a context DFD.

2. Draw an event-partitioned DFD.

3. Draw any required process decomposition DFDs.

4. Create data flow definitions for any data flows that are

fully described in the written system description.

RETHINKING ROCKY MOUNTAIN OUTFITTERS

This chapter contains many DFDs describing the RMO

order-entry subsystem but no DFDs describing the

RMO order fulfillment subsystem, customer mainte-

nance subsystem, or catalog maintenance subsystem

(see the subsystem event lists in Figure 6-10). Review the RMO

event table (Figure 5-12) and ERD (Figure 5-29) and perform the fol-

lowing tasks:

1. Develop DFD fragments for all of the events not docu-

mented in Figure 6-12.

2. Develop a single DFD that shows processing for all events,

using one process for each subsystem and showing all

CASE STUDIES

C6696_06_CTP.4c 1/28/08 8:22 AM Page 235

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

236 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

needed data stores. To simplify the diagram, place all exter-

nal agents along the outer edge, and duplicate them as

necessary to minimize long or crossing data flows. Place all

data stores in the middle of the diagram.

3. Develop a data flow definition for the RMO customer order

form in Figure 6-35.

FOCUSING ON RELIABLE PHARMACEUTICAL SERVICE

Continue your modeling efforts for the Reliable

Pharmaceutical Service case by performing the

following tasks:

1. Create a context diagram for the Reliable Pharmaceutical

case based on the system description in Chapter 1 and the

event table that you developed in Chapter 5.

2. Create DFD fragments for each event from the event table

and ERD that you developed in Chapter 5.

3. Create an event-partitioned model (diagram 0) by combin-

ing the DFD fragments you created for question 2.

4. Create a logical DFD showing the processing details for the

event Time to generate orders (shipments) based on the

description in Chapter 1. Pay careful attention to modeling

data movement and processing, not the movement and pro-

cessing of physical goods (for example, drugs). Create any

process descriptions and data definitions needed to fully spec-

ify system requirements.

5. Consider the problem of modeling the billing procedures

briefly described in Chapter 1. Should a physical DFD of

billing procedures be developed? Why, or why not?

Figure 6-35

RMO catalog order form

Rocky Mountain Outfitters—Customer Order Form

MERCHANDISE TOTAL

Regular FedEx shipping $4.50 per U.S. delivery address
(Items are sent within 24 hours for delivery in 2 to 4 days)

Please add $4.50 per each additional U.S. delivery address

Any additional freight charges

International Shipping (see shipping information on back)

$4.50

Total Monogramming charges ($5.00 per line per item)

Sales tax on merchandise delivered in Colorado and Utah

Name and address of person placing order.
(Please verify your mailing address and make correction below.)
Order date

Description

Name

Address Apt. no.

City State Zip

Phone: Day () Evening ()

Item no. Style Color Size
Sleeve
Length Qty Monogram Style

Price
Each Total

Method of Payment

Check/Money Order Gift Certificate(s) AMOUNT ENCLOSED $

Account Number

American Express MasterCard VISA

Signature

Other

Expiration Date

MO YR

Delivery Phone ()

FedEx Standard Overnight Service
Add $6.00 for delivery in 2 business days to confirm U.S. address*

Gift Order or Ship To: (Use only if different from address at left.)

Name

Address Apt. No

City State Zip

Gift Card Message

Gift Address for this Shipment Only Permanent Change of Address

C6696_06_CTP.4c 1/28/08 8:22 AM Page 236

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 6 The Traditional Approach to Requirements ♦ 237

FURTHER RESOURCES

J. Martin, Information Engineering: Book I Introduction.

Prentice Hall, 1988.

J. Martin, Information Engineering: Book II Planning and

Analysis. Prentice Hall, 1989.

Stephen M. McMenamin and John F. Palmer, Essential Systems

Analysis. Yourdon Press, 1984.

G. A. Miller, “The magical number seven, plus or minus two:

Some limits on our capacity for processing information.”

Psychological Review, volume 63 (1956), pp. 81–97.

Edward Yourdon, Modern Structured Analysis. Yourdon

Press, 1989.

C6696_06_CTP.4c 1/28/08 8:22 AM Page 237

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

238

THE OBJECT-ORIENTED APPROACH
TO REQUIREMENTS7
L E A R N I N G O B J E C T I V E S

After reading this chapter, you should be able to:

■ Understand the models and processes of defining object-oriented

requirements

■ Develop use case diagrams and activity diagrams

■ Develop system sequence diagrams

■ Develop state machine diagrams to model object behavior

■ Explain how use case descriptions and UML diagrams work together to define

functional requirements for the object-oriented approach

CHAPTER

C H A P T E R O U T L I N E

Object-Oriented Requirements

The System Activities—A Use Case/Scenario View

Identifying Inputs and Outputs—The System Sequence Diagram

Identifying Object Behavior—The State Machine Diagram

Integrating Object-Oriented Models

C6696_07_CTP.4c 1/28/08 8:22 AM Page 238

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 7 The Object-Oriented Approach to Requirements ♦ 239

Electronics Unlimited is a warehousing distributor that buys electronic equipment from vari-
ous suppliers and sells it to retailers throughout the United States and Canada. It has opera-
tions and warehouses in Los Angeles, Houston, Baltimore, Atlanta, New York, Denver, and
Minneapolis. Its customers range from large nationwide retailers, such as Target, to medium-
sized independent electronics stores.

Many of the larger retailers are moving toward integrated supply chains. Information sys-
tems used to be focused on processing internal data; however, today these retail chains want
suppliers to become part of a totally integrated supply chain system. In other words, the sys-
tems need to communicate between companies to make the supply chain more efficient.

To maintain its position as a leading wholesale distributor, Electronics Unlimited has to
convert its system to link both with its suppliers (the manufacturers of the electronic equip-
ment) and its customers (the retailers). It is developing a completely new system that uses
object-oriented techniques to provide these links. Object-oriented techniques facilitate
system-to-system interfaces by using predefined components and objects to accelerate the
development process. Fortunately, many of the system development staff have recently begun
learning about object-oriented development and are eager to apply the techniques and mod-
els to a system development project.

William Jones is explaining object-oriented development to the group of systems analysts
who are being trained in this approach. “We’re developing most of our new systems using
object-oriented principles. The complexity of the new system, along with its interactivity,
makes the object-oriented approach a natural way to develop requirements. It takes a little
different thought process than you may be used to, but the object-oriented models track very
closely with the new object-oriented programming languages.”

William continued, “This way of thinking about a system in terms of objects is very inter-
esting. It also is consistent with the object-oriented programming techniques you learned in
your programming classes. You probably first learned to think about objects when you devel-
oped screens for the user interface. All of the controls on the screen, such as buttons, text
boxes, and drop-down boxes, are objects. Each has its own set of trigger events that activate
its program functions.

“Now you just extend that same thought process so that you think of things like purchase
orders and employees as objects, too. We can call them problem domain or sometimes business
objects to differentiate them from screen objects such as windows and buttons. During analysis,
we have to find out all of the trigger events and methods associated with each business object.”

“How do we do that?” one of the analysts asked.
“You continue with your fact-finding activities and build a scenario for each business

process. The way the business objects interact with each other in the scenario determines how
you identify the initiating activity. We refer to those activities as the messages between objects.
The tricky part is that you need to think in terms of objects instead of just processes.
Sometimes it helps me to pretend I am an object. I will say, ‘I am a purchase order object.
What functions and services are other objects going to ask me to do?’ After you get the hang
of it, it works very well, and it is enlightening to see how the system requirements unfold as
you develop the diagrams.”

OVERVIEW

The basic objective of requirements definition is understanding—understanding users’ needs,
understanding how the business processes are carried out, and understanding how the system
will be used to support those business processes. As we indicated in Chapter 2, system devel-
opers use a set of tools and techniques to discover and understand the requirements for a new

ELECTRONICS UNLIMITED, INC. : INTEGRATING THE SUPPLY CHAIN

C6696_07_CTP.4c 1/28/08 8:22 AM Page 239

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

system. This activity is a key part of the systems analysis activities of the systems development
life cycle. In object-oriented development, the set of analysis activities is more specifically
referred to as object-oriented analysis (OOA). The first step in the process for developing this
understanding requires the fact-finding skills you learned in Chapter 4. Fact-finding activities
are also called discovery activities, and obviously discovery must precede understanding. In this
chapter, you learn to take discovery to the next level—to build understanding.

Chapter 4 introduced the concepts of models and modeling activities as a way to define
and document system requirements. The models introduced in Chapter 5 focus on two pri-
mary aspects of functional requirements: the use cases and the things involved in users’ work.
As you learned, use cases are triggered by events in the business’s environment to which the
system must respond. Those events are identified and documented in an event table. Use
cases are also identified with the user goal technique and the CRUD technique.

A new system also needs to record and store information about things involved in the
business processes. In a manual system, the information would be recorded on paper and
stored in a filing cabinet. In an automated system, the information is stored in electronic files
or a database. The information storage requirements of a system are documented either with
entity-relationship diagrams (ERDs) in the traditional approach or with domain model class
diagrams in the object-oriented approach.

In this chapter, you learn how to understand and define the requirements for a new sys-
tem using object-oriented analysis models and techniques. You should be aware that the line
between object-oriented analysis and object-oriented design is somewhat fuzzy because the
models that are built to define requirements during analysis are refined and extended to pro-
duce a systems design. Recall that we mentioned the object-oriented approach almost always
uses an iterative approach to development, which identifies some of the requirements, then
does some preliminary design and implementation, then iterates again and again through
requirements, design, and implementation. So, even though we do not focus here on the iter-
ative nature of requirements definition, it is a normal part of the object-oriented approach.
Chapters 11 and 12 extend the requirements into a complete object-oriented design that can
serve as the foundation for programming the new system.

OBJECT-ORIENTED REQUIREMENTS

As discussed in Chapter 4, one of the great benefits of using models to document require-
ments is that it helps you, as the system developer, to think clearly and carefully about the
details of the processing and information needs of the stakeholders. As you read this chapter
and work the exercises associated with it, you should pay careful attention to how the models
require you to search out and understand user needs. Because of the benefit derived from
developing models, object-oriented system requirements are specified and documented
through the process of building models.

The object-oriented (OO) modeling notation that we present in this textbook is based on
the Unified Modeling Language (UML) version 2.0. UML is the accepted, standard OO mod-
eling language of the industry. The UML standard is maintained by the Object Management
Group (OMG), which is a consortium of more than 800 software vendors, developers, and
organizations that have combined efforts to develop and foster uniformity in object-oriented
systems. Established in 1989, OMG’s mission is to promote the theory and practice of object
technology in the development of distributed computing systems. The OMG maintains and
approves any changes to the standards for OO modeling. As a result, UML standards continue
to evolve but will remain standardized for the benefit of system developers—and students.
More details about UML and the OMG can be found on the OMG Web site at www.omg.org.

240 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

C6696_07_CTP.4c 1/28/08 8:22 AM Page 240

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

http://www.omg.org

CHAPTER 7 The Object-Oriented Approach to Requirements ♦ 241

As shown in Figure 7-1, the system development process starts with the identification of
events that trigger elementary business processes called use cases, and things that are problem
domain classes involved in the elementary business process. The problem domain classes are
important in both the development of the new system itself as well as the design of the data-
base. New developers frequently ask which to define first, the use cases or the classes of
objects. In reality, both aspects are closely related and are usually defined together.
Experienced developers often move back and forth between identifying classes and use cases,
and they make several passes before completing a set of requirements. Do not be discouraged
if you find yourself changing your diagrams and models as you work to define requirements.

Events, use
cases, and
event table

Things

Context
diagram

DFD fragments

Data flow
definitions

Process
descriptions

Entity-
relationship

diagram (ERD)

Class
diagram

Object-Oriented
Approach

Traditional
Approach

Other
traditional

models

Use case
diagrams

Use case
descriptions

System
sequence
diagrams

Activity
diagrams

State machine
diagrams

Figure 7-1

Requirements diagrams

for traditional and object-

oriented models

The object-oriented approach requires several interrelated models to create a complete set
of specifications. Even though it might seem complex at first to have so many different types
of diagrams, as you use them, you will learn to appreciate how they all fit together like a puz-
zle to produce a complete specification. Essentially, the object-oriented approach “divides
and conquers” complex systems. Each model describes a different aspect of the system, so you
only focus on one aspect at a time. But you must learn all the different models and the way
they fit together. Later, at the end of the chapter, we discuss how all of the diagrams unite to
form a complete view of a system’s functional requirements. As a beginner with UML, you
should concentrate now on learning each new model and understanding its role in specifying
the total system.

C6696_07_CTP.4c 1/28/08 8:22 AM Page 241

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

This chapter focuses on a collection of models that can be used to capture system require-
ments based on use cases with the object-oriented approach. Called the use case model, it
includes use case diagrams, use case descriptions (discussed in Chapter 5), activity diagrams,
and system sequence diagrams. The purpose of a use case diagram is to identify the “uses,”
or use cases, of the new system—in other words, to identify how the system will be used. The
use case diagram can be derived directly from the column titled “Use case” in the event table.
A use case diagram is a convenient way to document the system activities. Sometimes a sin-
gle, comprehensive diagram is used to identify all use cases for an entire system. At other
times, a set of smaller use case diagrams is used.

Each use case must be described either in brief or fully developed detail, as discussed in
Chapter 5. Each use case can also be defined using an activity diagram. As you learned in
Chapter 4, activity diagrams can be used to describe any business processes done by people
in an organization. However, they are also used to describe processes that include both man-
ual and automated system activities, so they can be used to define a use case.

System sequence diagrams (SSDs) are used to define the inputs and outputs and the
sequence of interactions between the user and the system for a use case. They are used in con-
junction with detailed descriptions or with activity diagrams. In a sequence diagram, these
information flows in and out of a system are called messages. The users are identified, and
the detailed messages are described.

This chapter also focuses on the domain model, which describes classes of objects and
their states. The domain model class diagram (discussed in Chapter 5) is used to define the
classes of objects in the problem domain, and the state machine diagram introduced in this
chapter details possible object states. Some objects that are identified in the class diagram
have state or status conditions that need to be tracked, and the processes allowed for that
object depend on its status. A customer order may have several important status conditions
that control the processing of that order—for example, an order that is not complete should
not be shipped. A state machine diagram identifies these status conditions and specifies the
processes allowed. State machine diagrams are also used during design to identify various
states of the system itself and allowable events that can be processed. So, as with the class dia-
gram, state machine diagrams can be considered either an analysis tool or a design tool.

In many cases, analysts use all the models included in the use case model and the domain
model to completely define the system requirements. However, sometimes only two or three
models may be required to specify the requirements accurately.

THE SYSTEM ACTIVITIES—A USE CASE/SCENARIO VIEW

The objective of the use case model is to identify and define all of the elementary business
processes that the system must support. Analysts define the use cases at two levels—an
overview level and a detailed level. The event table and the use case diagrams provide an
overview of all the use cases for a system. Detailed information about each use case is
described with a use case description, an activity diagram, and a system sequence diagram, or
a combination of these models.

USE CASES AND ACTORS

A use case is an activity the system carries out, usually in response to a request by a user of the
system. You can think of a use case as a situation in which the system must accomplish some
goal of a user. For example, consider the RMO system. One of the processes that the RMO sys-
tem must perform is to process new customer orders. So, one use case for this system is Create
new order. Notice that the focus is on the automated system—on the activities that the system
must perform to create an order.

242 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

system sequence

diagram
a diagram showing the
sequence of messages
between an external
actor and the system
during a use case or
scenario

message
the communication
between objects within a
use case

domain model
a model that describes
classes of objects and
their states

state machine

diagram
a diagram showing the
life of an object in states
and transitions

use case model
a collection of models
that can be used to
capture system
requirements based on
use cases with the
object-oriented approach

use case diagram
a diagram to show the
various user roles and
how those roles use the
system

C6696_07_CTP.4c 1/28/08 8:22 AM Page 242

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 7 The Object-Oriented Approach to Requirements ♦ 243

Implied in all use cases is a person who uses the system. In UML, that person is called an
actor. An actor is always outside the automation boundary of the system but may be part of
the manual portion of the system. In this respect, an actor is not always the same as the source
of the event in the event table. A source of an event is the initiating person who supplied data,
such as a customer, and is usually external to the system, including the manual system. In
contrast, an actor in use case analysis is the person who is actually interacting with the com-
puter system itself. By defining actors that way—as those who interact with the system—we
can more precisely define the exact interactions to which the automated system must
respond. This tighter focus helps define the specific requirements of the automated system
itself—to refine them as we move from the event table to the use case details. One way to help
identify actors at the right level of detail is to assume that actors must have hands. Thinking
of actors as having hands encourages us to define actors as those who actually touch the auto-
mated system. But remember that some actors are not people. They can also be other systems
or other devices that receive services from the system.

Be sure that actors have direct contact with the automated system.

BEST PRACTICE

Another way to think of an actor is as a role. For example, in the RMO case, the use case
Create new order might involve an order clerk talking to the customer on the phone. Or, the
customer might be the actor if the customer places the order directly, through the Internet.
One final way to think about an actor and a use case is that a use case is a goal that the actor
wants to achieve. One way to state this goal is to say, “The order clerk uses the system to cre-
ate a new order.” Notice that in this sentence both the actor (the order clerk) and the use case
(Create a new order) are identified. In fact, stating the use cases in sentence form is a good
technique to understand the relationship between use cases and actors.

THE USE CASE DIAGRAM

Figure 7-2 shows how a use case is documented in a use case diagram. A simple stick figure is
used to represent an actor. The stick figure is given a name that characterizes the role the actor
is playing. The use case itself is symbolized by an oval with the name of the use case inside.
The connecting lines between actors and use cases indicate which actors invoke which use
cases. Although hands are not part of the standard UML notation, the actor in this figure is
drawn with hands to help you remember that this actor must have direct access to the auto-
mated system.

Stick figure called
an actor and
representing a role
 (for now, think
“has hands” to
remember the
direct contact with
the automated
system)

Order clerk

Create new
order

Connecting line to
show which actors
participate in which
use cases

Figure 7-2

A simple use case with

an actor

C6696_07_CTP.4c 1/28/08 8:22 AM Page 243

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

244 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

A use case diagram is a graphical model that summarizes the information about the actors
and use cases. To do use case analysis, a system developer looks at the system as a whole and
tries to identify all of its major uses.

Automation Boundary and Organization

Figure 7-3 expands the use case diagram shown in Figure 7-2 to include additional use cases
and additional actors. In this instance, both the order clerk and the customer are allowed to
access the system directly. As indicated by the relationship lines, each person actor can use
every use case. A rectangle is used to indicate an actor that is not a person. In this instance,
the Inventory system actor can invoke the use case Look up item availability. A boundary line is
also drawn around the entire set of use cases. This boundary is the automation boundary. It
denotes the boundary between the environment, where the actors reside, and the internal
components of the computer system.

Customer

Create new
order

Order clerk

Update order

«actor»
Inventory system

Automation
boundary

Look up item
availability

Figure 7-3

A use case diagram of

the Order-entry

subsystem for RMO,

showing a system

boundary

There are many ways to organize the use cases for ease of understanding and development.
One way is to show all use cases that are invoked by a particular actor—that is, from the user’s
viewpoint. This approach is often used during requirements definition because the systems
analyst may be working with a particular user and identifying all of the functions that user per-
forms with the system. Figure 7-4 illustrates this point of view, showing all of the use cases
invoked by the Customer actor. Analysts can expand this approach to include all the use cases
belonging to a particular department. During analysis, analysts focus on determining the user
requirements, so organizing the use cases from the user’s viewpoint is quite beneficial.

Another method of organizing use cases is from the viewpoint of a system and its subsys-
tems. Sometimes this type of organization mirrors the user departments—focusing on
accounting or warehouse operations one at a time, for example—but it does not have to do so.
Instead, the system developers might want to organize the use cases by a system’s subsystems
to group the development activities and team assignments. Figure 7-5 illustrates this approach,

C6696_07_CTP.4c 1/28/08 8:22 AM Page 244

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 7 The Object-Oriented Approach to Requirements ♦ 245

«Includes» Relationships

Frequently during the development of a use case diagram, it is reasonable for one use case to
use the services of a common subroutine. For example, two of the Order-entry subsystem use
cases are Create new order and Update order. Each of these use cases may need to validate the
customer account. A common subroutine may be defined to carry out this function, and it
becomes an additional use case. Figure 7-6 shows the additional use case, named Validate cus-
tomer account, which is used by both the other use cases. The relationship between these use
cases is denoted by the dashed connecting line with the arrow. The direction of the arrow
indicates which use case is included as a part of the major use case. The relationship is read
Create new order «includes» Validate customer account. Sometimes this relationship is referred to
as the «includes» relationship, or sometimes as the «uses» relationship.

Customer

Look up item
availability

Create new
order

Update order

Provide
catalog info

Look up order
status

Create order
return

Maintain
customer account

information

Figure 7-4

All use cases involving

the Customer actor

showing many of the RMO use cases organized by subsystem. In this figure, we introduce a
new notation, called a package. A package groups similar components together. The package
notation is a tabbed rectangle with the name of the package in the tab. In Figure 7-5, the
packages indicate subsystems. This figure contains four separate subsystems, each shown as a
package, and their corresponding use cases. Actors are duplicated to make the diagram easy to
read; however, use cases are not duplicated because each use case belongs to only one subsys-
tem. We discuss more details about packages and package diagrams in Chapters 11 and 12.

package
a symbol used to denote
a group of similar
elements

C6696_07_CTP.4c 1/28/08 8:22 AM Page 245

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

246 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Figure 7-6 also shows that Look up item availability can be part of an «includes» relation-
ship. So, an analyst can define two types of «includes» use cases: one that is a common inter-
nal subroutine, such as Validate customer account, and is not directly referenced by an external
actor, and one that is directly referenced by external actors. Look up item availability is an exam-
ple of the latter.

Update order
Produce

order summary
report

Produce
transaction
summary

report

Management

Customer

Shipping

Clerk

Look up order
status

Create order
return

Record back
order

Record order
fulfillment

Produce
order fulfillment

report

Customer

Provide
catalog

information

Maintain
customer account

information

Distribute
promotional

package

Create
customer charge

adjustment

Clerk

Marketing

Management

Produce
customer

adjustment
report

Order-entry subsystem

Customer

Look up item
availability

Order clerk

Create new
order

Order fulfillment subsystem

Customer maintenance subsystem

Catalog maintenance subsystem

Create new
catalog

Produce
catalog activity

report

Update
catalog

Merchandising

Create special
promotion

Maintain
product

information

Figure 7-5

A use case diagram of

the customer support

system organized by

subsystem

C6696_07_CTP.4c 1/28/08 8:22 AM Page 246

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 7 The Object-Oriented Approach to Requirements ♦ 247

The Use Case Diagram Compared with the Event Table

As indicated earlier, the event table and the use case diagram contain much of the same infor-
mation, and the event table is really a catalog of information about all the use cases. One of
the questions you might be asking yourself is, “If they are so similar, do I need to develop
both models?” In fact, for any given project, you might not develop both models. Some ana-
lysts prefer to start by listing use cases rather than events, and they move directly to the use
case diagram. The user goal technique and the CRUD technique are often used this way. The
event table can be used as the foundation for either traditional structured development or
object-oriented development, just as use case descriptions can be used for either approach.

However, some differences do exist between the two models. First, the point of view of each
is slightly different. An event table always focuses on the business processes. It does so by identi-
fying business events and external, initiating sources for those events. These external sources are
the ones that cause the business event to be initiated, and they can be somewhat removed from
the automated system. On the other hand, a use case diagram emphasizes the automated system.
Because it is concerned only with the automated system, the actors actually have contact with the
automated system and might not necessarily be the original initiators of the business event.

Another difference between the two models can be seen when identifying temporal and
state events. Because use cases are usually initiated by actors, temporal and state events are
often overlooked if the analyst does not carefully identify all events. This is a deficiency of use
case modeling if use cases are defined too narrowly. As discussed in Chapter 14, online sys-
tem menus typically include menu options representing each temporal event from the event
table so that such an event can be triggered by a user as well as being a purely temporal event.
Therefore, we recommend including a use case for each temporal and state event to ensure
these requirements are not overlooked.

It is important to remember that the analyst will be completing the event table and the
use case diagrams concurrently. The analyst will also continually refine and update events and
use cases. The refinements that occur usually involve adjustments to balance the scope of each
use case. For example, during the development of the event table, two events called Add new
customer and Update customer information may have been identified. From the system’s point
of view, the use case for both business events is almost the same because they both involve

Customer

Look up item
availability

Create new
order

Order clerk

Update order

Validate
customer
account

«includes»

«includes»

«includes»

«includes»

Figure 7-6

An example of the Order-

entry subsystem with

«includes» use cases

C6696_07_CTP.4c 1/28/08 8:22 AM Page 247

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

updating the customer file. A single use case could be defined to support both business
events. The use case could be named Maintain customer account information. It is common to
define a single use case to support multiple business events if the following three criteria are
met: First, essentially the same processing is occurring inside the automated system. Second,
essentially the same information is being updated. And third, essentially the same informa-
tion is input and output from the system. These conditions are frequently met for business
events that require basic file maintenance on a single, simple data file or table. Sometimes a
single event triggers very complex processing requirements, and it makes sense to divide the
system activity into two use cases to better manage complexity. In all of these situations, the
event table and use case diagram are both modified to keep the models synchronized.

DEVELOPING A USE CASE DIAGRAM

If a developer analyzed business processes and constructed an event table, he or she will use
the event table to identify use cases. After additional analysis, the developer may identify a
single event as a use case, combine several events to form a single use case if the processing
required seems similar, or identify multiple use cases if the processing seems complex.
Identification of multiple use cases usually occurs when they have the «includes» relationship
and two use cases are factored out of one large use case, or when an additional use case is
defined based on a common subroutine, as discussed previously.

Figure 7-5, which showed the customer support subsystems, was developed using this
approach. You will note that most of the use cases defined in the figure come directly from
the event table shown in Figure 5-12. In fact, the names of the use cases in Figure 7-5 come
from the description provided in the Use case column of the event table. There are a couple
of exceptions to this pattern. Because temporal events normally also can be initiated manu-
ally, we have used the option of identifying an external actor for each temporal use case. The
other exception is with event number 13, Customer updates account information. In this
instance, the use case definition is expanded to include all scenarios having to do with main-
taining customer information. The use case is titled Maintain customer account information to
denote that it will include additions, updates, and deletions. These examples show when the
use case diagram could refine the event table.

If an event table has not been created, the other starting point to develop a use case dia-
gram is to identify the actors and the elementary business processes with the user goal tech-
nique. To do so, you must remember two preconditions. First, you must make the system
boundary an automated system so that the actors you identify actually contact the system—
that is, have hands. Second, you must assume perfect technology. Be sure that the use cases
are based on business events and not technical activities like logging on to the system or
changing passwords. Given those preconditions, you can develop the use case diagram in two
steps, which are done in iteration.

1. Identify the actors of the system. Note that actors are actually roles played by users.
Instead of listing the actors as Bob, Mary, or Mr. Hendricks, you should identify the spe-
cific roles that these people play. Remember that the same person may play various roles
as he or she uses the system. Those roles become such titles as order clerk, department
manager, auditor, and so forth. It is important to be comprehensive and to identify every
possible role that will use the system. Other systems can also be actors of a system, as
indicated in Figure 7-3.

2. After the actor roles have been identified, the next step is to develop the list of goals those
roles have in the use of the automated system. A goal is a task performed by an actor to
accomplish some business function that adds value to the business. Goals are such tasks
as “process a sale,” “accept a return,” or “ship an order.” Goals are units of work that can
be identified and described. At the completion of the goal, the data of the system should
be stable for some time.

248 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

C6696_07_CTP.4c 1/28/08 8:22 AM Page 248

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 7 The Object-Oriented Approach to Requirements ♦ 249

These two steps are performed in brainstorming sessions with project team members and
users. There is no magical way to find or identify use cases. Even though the focus is on the
automated system, a thorough analysis of the business processes is required to understand all
ways that actors will need to use the system.

Another important technique that you should use when developing the use case diagram
directly is the CRUD technique, which compares the identified use cases with the domain
model class diagram. Analysts use the CRUD technique after making an initial use case diagram
to double-check their work. Recall that CRUD stands for create, read (or report), update, and
delete. The CRUD technique was first introduced in Chapter 5, and it is a technique originally
associated with Information Engineering (IE). The CRUD technique requires that every class in
the class diagram have sufficient use cases to support creating new object instances, reading or
reporting on those objects, updating those objects, and in many cases deleting object instances.
The use case may not be named create or update, but the underlying process should add a new
instance or update an existing instance. For example, a use case named Record payment does not
explicitly indicate that a new payment object is created, but a detailed description of the use case
will indicate that a new payment is created. The use case Create new order might create OrderItem
objects and update InventoryItem objects. In other cases, many of the use cases are named
beginning with the word maintain to cover routine additions, updates, reads, and deletions.
Keep in mind, though, that with integrated systems, one system might be responsible for creat-
ing objects and another system might only update them. The CRUD technique provides a cross-
check, not a final solution, and it also provides an opportunity to confirm important system
integration requirements that otherwise might not be obvious.

ACTIVITY DIAGRAMS FOR DESCRIBING USE CASES

In Chapter 5 you learned how to document each use case or scenario with written descrip-
tions. Use case descriptions can be brief, intermediate, or fully developed. Figure 7-7 repro-
duces a fully developed use case description for the use case Create new order, which was first
shown in Chapter 5. Recall that the template for fully developed use case descriptions
includes use case name, scenario, triggering event, brief description, actors, related use cases,
stakeholders, preconditions, postconditions, flow of activities, and exception conditions.

The other way to document a use case scenario is with an activity diagram. In Chapter 4,
you learned about activity diagrams as a form of workflow diagram. You learned that an activ-
ity diagram is an easily understood diagram to document the workflows of the business
processes. Activity diagrams are a standard UML diagram. In this instance, activity diagrams
are an effective technique to document the flow of activities for each use case scenario.

Figures 7-8 and 7-9 are the activity diagrams that document the same two scenarios as
shown in Chapter 5. In Figure 7-8, the customer interacts with the order clerk, who in turn uses
the system. Because the purpose of a use case is to specify the interaction of an actor (with
hands) with the system, the figure includes swimlanes for the Order Clerk and the Computer
System. However, to aid in understanding the total flow of activities for the scenario, the
Customer—the one who initiates the steps—is also included. Note that the Customer swimlane
is an optional addition in Figure 7-8 that simply aids in understanding the total workflow. We
also see a new use for the synchronization bar. It is used in this figure to define the end points
of a repeated section; that is, a loop. In Figure 7-9, the customer is the actor who interacts with
the computer system, so only two swimlanes are required to describe the steps in the scenario.

C6696_07_CTP.4c 1/28/08 8:22 AM Page 249

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

An activity diagram can be used to support any level of use case descriptions. As you can
see, activity diagrams are very similar to the two-column description in the fully developed
description. The benefit of creating an activity diagram is that it is more visual and makes it
easier to understand the overall flow of activity. These two instances show only the main flow
of activity—without the exception conditions. The exception conditions can also be shown
by adding more activity ovals. Early termination of the workflow can also be indicated by an
exit arrow going to an exception end activity. An exception end activity is depicted much the
same as a normal end activity, except that the circle encloses a large X instead of a black dot.

As a quick glance at Figures 7-8 and 7-9 demonstrates, the two scenarios of the Create new
order use case are quite different. Even though the scenarios carry out the same basic function,
the set of screens and options on the screens might be quite different for each. Activity diagrams
are also helpful in developing system sequence diagrams, as explained in the next section.

250 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Figure 7-7

Fully developed

description of the

telephone order scenario

for Create new order

C6696_07_CTP.4c 1/28/08 8:22 AM Page 250

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 7 The Object-Oriented Approach to Requirements ♦ 251

Customer Order Clerk Computer System

Contact RMO

Enter customer
information

Display customer
information/current

customer?

Initiate Maintain
customer

information
use case

Verify customer
information

correct

Start order

Create new

Add item
to order

order

Request item to
purchase

Enter item
information

End order

For each item

End for each

[No]

[Yes]

End order

Give payment
information

Verify payment/
Finalize order

Enter payment

Calculate
total due

Figure 7-8

Activity diagram of the

telephone order scenario

C6696_07_CTP.4c 1/28/08 8:22 AM Page 251

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

IDENTIFYING INPUTS AND OUTPUTS—THE SYSTEM SEQUENCE DIAGRAM

In the object-oriented approach, the flow of information is achieved through sending mes-
sages either to and from actors or back and forth between internal objects. A system sequence
diagram (SSD) is used to describe this flow of information into and out of the automated sys-
tem. So, an SSD documents the inputs and the outputs and identifies the interaction between
actors and the system. An SSD is a type of interaction diagram. In the following sections, and
in industry practice, we often use the terms interaction and message interchangeably.

SSD NOTATION

Figure 7-10 shows a generic SSD. As with a use case diagram, the stick figure represents an
actor—a person (or role) that interacts with the system. In a use case diagram, the actor “uses”
the system, but the emphasis in an SSD is on how the actor “interacts” with the system by

252 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Customer Computer System

Finalize orderEnter acceptance/
payment information

Display payment options

Update orderMake modifications

Display summaryIndicate end of order

End for each

Add item to order
Add desired item to

shopping car t

Display catalog itemSearch catalog/view item

For each item

Create order/display
catalog index

Log on/star t order

Connect to order page Display order page

First time customer?/link
to new customer page

Display new customer
page/initiate Maintain
customer information

use case

[new]

[existing]

[Yes]

[No]

Figure 7-9

Activity diagram of the

Web order scenario

interaction

diagram
either a communication
diagram or a sequence
diagram that shows the
interactions between
objects

C6696_07_CTP.4c 1/28/08 8:22 AM Page 252

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 7 The Object-Oriented Approach to Requirements ♦ 253

entering input data and receiving output data. The idea is the same with both diagrams; the
level of detail is different.

The box labeled :System is an object that represents the entire automated system. In SSDs
and all interaction diagrams, analysts use object notation instead of class notation. Object
notation indicates that the box refers to an individual object and not the class of all similar
objects. The notation is simply a rectangle with the name of the object underlined. The colon
before the underlined class name is a frequently used, but optional, part of the object nota-
tion. In an interaction diagram, the messages are sent and received by individual objects, not
by a class. In an SSD, the only object included is one representing the entire system.

Underneath the actor and the :System are vertical dashed lines called lifelines. A lifeline,
or object lifeline, is simply the extension of that object, either actor or object, throughout the
duration of the SSD. The arrows between the lifelines represent the messages that are sent or
received by the actor or the system. Each arrow has an origin and a destination. The origin of
the message is the actor or object that sends it, as indicated by the lifeline at the arrow’s tail.
Similarly, the destination actor or object of a message is indicated by the lifeline that is
touched by the arrowhead. The purpose of lifelines is to indicate the sequence of the mes-
sages sent and received by the actor and object. The sequence of messages is read from top to
bottom in the diagram.

A message is labeled to describe both the message’s purpose and any input data being
sent. The syntax of the message label has several options; the simplest forms are shown in
Figure 7-10. Remember that the arrows are used to represent both a message and input data.
But what is meant by the term message here? In a sequence diagram, a message is considered
to be an action that is invoked on the destination object, much like a command. Notice in
Figure 7-10 that the input message is called inquireOnItem. The clerk is sending a request, or
a message to the system, to find an item. The input data that is sent with the message is con-
tained within the parentheses, and in this case it is data to identify the particular item. The
syntax is simply the name of the message followed by the input parameters in parentheses.
This form of syntax is attached to a solid arrow.

inquireOnItem (catalogID, prodID, size)

item information

Clerk

:System

The object lifeline; shows
the “sequence”
top to bottom

Optional note to explain
something in a diagram

A returned value

The actor
interacting with
the system

An object
(underlined)

representing the
automated system

An input message

item information:
description, price, quantity

 of messages,

Figure 7-10

Sample system sequence

diagram (SSD)

The returned value has a slightly different format and meaning. Notice the arrow is a dashed
arrow. A dashed arrow is used to indicate a response or an answer and, as shown in the figure, it
immediately follows the initiating message. The format of the label is also different. Because it
is a response, only the data that is sent on the response is noted. There is no message requesting

lifeline, or object

lifeline
the vertical line under an
object on a sequence
diagram to show the
passage of time for the
object

C6696_07_CTP.4c 1/28/08 8:22 AM Page 253

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

a service, only the data being returned. In this case, a valid response might be a list of all the
information returned, such as description, price, and quantity of an item. However, an abbrevi-
ated version is also satisfactory. In this case, the information returned is named item informa-
tion. Additional documentation is required to show the details. In Figure 7-10, this additional
information is shown as a note. A note can be added to any UML diagram to add explanations.
The details of item information could also be documented in supporting narratives or even sim-
ply referenced by the attributes in the Customer class.

254 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

addItem (itemID, quantity)

Clerk

:System

Repeat everything
in the rectangle

Test condition for
repeatability

description, price, extendedPrice

* [another item] description, price, extendedPrice
: = addItem (itemID, quantity)

Clerk

:System

(a) Detailed notation

(b) Alternate notation

Loop for all items

Figure 7-11

Repeating message

(a) Detailed notation

(b) Alternate notation

Frequently, the same message is sent multiple times. For example, when an actor enters items
on an order, the message to add an item to an order may be sent multiple times. Figure 7-11(a)
illustrates the notation to show this repeating operation. The message and its return are located
inside a larger rectangle. In a smaller rectangle at the top of the large rectangle is the descriptive
text to control the behavior of the messages within the larger rectangle. The condition loop for all
items indicates that the messages in the box repeat many times or are associated with many
instances.

C6696_07_CTP.4c 1/28/08 8:22 AM Page 254

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 7 The Object-Oriented Approach to Requirements ♦ 255

Figure 7-11(b) shows an alternate notation. The square brackets and text inside them are called
a true/false condition for the messages. The asterisk (*) preceding the true/false condition indi-
cates that the message repeats as long as the true/false condition evaluates to true. Analysts use this
abbreviated notation for several reasons. First, a message and the returned data can be shown in
one step. Note that the return data is identified as a return value on the left side of an assignment
operator—the := sign. This alternative simply shows a value that is returned. Second, the true/false
condition is placed on the message itself. Note that in this example, the true/false condition is used
for the control of the loop. True/false conditions are also used to evaluate any type of test that
determines whether a message is sent. For example, [credit card payment] might be used to con-
trol whether a message is sent to the system to verify a credit-card number. Finally, an asterisk is
also placed on the message itself. So, for simple repeating messages, the alternate notation is
shorter. However, if several messages are included within the repeat or there are multiple messages,
each with its own true/false condition, the more detailed notation is more explicit and precise.

The complete notation for a message is the following:
* [true/false condition] return-value := message-name (parameter-list)

Any part of the message can be omitted. In brief, the notation components are the following:

• An asterisk (*) indicates repeating or looping of the message.
• Brackets [] indicate a true/false condition. It is a test for that message only. If it evaluates

to true, the message is sent. If it evaluates to false, the message is not sent.
• Message-name is the description of the requested service. It is omitted on dashed-line

return messages, which only show the return data parameters.
• Parameter-list (with parentheses on initiating messages and without parentheses on

return messages) shows the data that is passed with the message.
• Return-value on the same line as the message (requires :=) is used to describe data being

returned from the destination object to the source object in response to the message.

Develop SSDs carefully and correctly. They become critical components for
detailed design and user interface design.

BEST PRACTICE

DEVELOPING A SYSTEM SEQUENCE DIAGRAM

An SSD is normally used in conjunction with the use case descriptions to help document the
details of a single use case or scenario within a use case. To develop an SSD, you will need to
have a detailed description of the use case, either in the fully developed form, as shown in
Figure 7-7, or as activity diagrams, as shown in Figures 7-8 and 7-9. These two models iden-
tify the series of activities within a use case, but they do not explicitly identify the inputs and
outputs. An SSD will provide this explicit identification of inputs and outputs. One advan-
tage of using activity diagrams is that it is easy to identify when an input or output occurs.
Inputs and outputs occur whenever an arrow in an activity diagram goes from an external
actor to the computer system. Figure 7-12 is a simplified version of Figure 7-8 for the tele-
phone order scenario of the RMO Create new order use case. Obviously, the simplified version
has many things missing, but it allows us to focus on the process without having to consider
all of the complexity of the real world, and to focus on the basics of SSD development.

In this simplified activity diagram, there are three swimlanes: the Customer, the Order
Clerk, and the Computer System. Before beginning the SSD, you must first determine the sys-
tem boundary. In this instance, the system boundary coincides with the vertical line between
the Order Clerk swimlane and the Computer System swimlane. Because the purpose of the
SSD is to describe the inputs to and outputs from the automated computer system, only the
Order Clerk and the Computer System will be included in the SSD. It is not wrong to include
both actors in the SSD, but it is more focused to show only the system and the actor who
sends the inputs and receives the outputs.

true/false

condition
part of a message
between objects that is
evaluated prior to
transmission to
determine whether the
message can be sent

C6696_07_CTP.4c 1/28/08 8:22 AM Page 255

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The development of an SSD based on an activity diagram can be divided into four steps:

1. Identify the input messages. In Figure 7-12, there are three locations with a workflow
arrow crossing the boundary line between the clerk and the system. At each location that
the workflow crosses the automation boundary, input data is required; therefore, a mes-
sage is needed.

2. Describe the message from the external actor to the system using the message nota-
tion described earlier. In most cases, you will need a message name that describes the
service requested from the system and the input parameters being passed. Figure 7-13,
the SSD for the Create new order use case, illustrates the three messages. Notice that the
names of the messages reflect the services that the actor is requesting of the system:
startOrder, addItem, and completeOrder. Other names could also have been used. For
example, instead of addItem, the name could be enterItemInformation.
The other information required is the parameter list for each message. Determining
exactly which data items must be passed in is more difficult. In fact, developers fre-
quently find that determining the data parameters requires several iterations before a cor-
rect, complete list is obtained. The important principle for identifying data parameters is
to base it on the class diagram. In other words, the appropriate attributes from the classes
are listed as parameters. Looking at the attributes, along with an understanding of what
the system needs to do, will help you find the right attributes.
In the example of the first message, startOrder, the precondition for this use case states
that a customer should exist. A postcondition is that the order must be connected to the
customer. So, for this simplified version of the use case, the first message passes in the
accountNo, which is the identifier in the customer class. Other than the accountNo, no
other parameters are needed for the system to locate the existing customer details.

256 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Customer Order Clerk Computer System

Request
new order

Start order

Create new
order

Request item to
purchase

Enter item
information

Add item to order

Give payment
information

Finalize order

For each item

End for each

Enter payment
information

Figure 7-12

A simplified activity

diagram of the telephone

order scenario

C6696_07_CTP.4c 1/28/08 8:22 AM Page 256

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 7 The Object-Oriented Approach to Requirements ♦ 257

In the second message, addItem, parameters are needed to identify the item from the cat-
alog and the quantity to be purchased. The parameters catalogID, prodID, and size are
used to describe the inventory item that will be added to the order. The quantity field, of
course, simply identifies how many.
The third message, based on the activity diagram, enters the payment amount. This para-
meter corresponds to the amount attribute in the OrderTransaction class.

3. Identify and add any special conditions on the input messages, including iteration
and true/false conditions. In this instance, the iteration box and the true/false condition
associated with it are shown in square brackets.

4. Identify and add the output return messages. Remember, there are two options to show
return information: either as a return value on the message itself or as a separate return
message with a dashed-line arrow. The activity diagram can provide some clues about
return messages, but there is no standard rule that when a transition arrow in the work-
flow goes from the system to an external actor, an output always occurs. In Figure 7-12,
there are two arrows from the Computer System swimlane to the Customer swimlane.
However, in Figure 7-13, only one output message is required. The arrow from the Create
new order activity in Figure 7-12 does not require output data. In this instance, the only
output identified is on the middle message showing the details of the item added to the
order—the description, the price, and the extended price (the price times quantity). The
other messages could possibly have shown output information such as customer name
and address for the first input message, and order confirmation for the third one.

Order clerk

:System

startOrder (accountNo)

description, price, extendedPrice

addItem (catalogID, prodID, size, quantity)

completeOrder (paymentAmt)

Loop for all items

Figure 7-13

An SSD of the simplified

telephone order scenario

for the Create new order
use case

Remember that the objective is discovery and understanding, so you should be working
closely with users to define exactly how the workflow proceeds and exactly what information
needs to be passed in and provided as output. This is an iterative process, and you will proba-
bly need to refine these diagrams several times before they accurately reflect the needs of the
users. During Rocky Mountain Outfitters’ development project, Barbara Halifax, the project
manager, has reviewed many diagrams with the users (see Barbara’s status memo).

C6696_07_CTP.4c 1/28/08 8:22 AM Page 257

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Let’s now develop an SSD for the Web scenario of Create new order. Not only is this exam-
ple more complex, but it will highlight how to develop the requirements for deploying Web-
based systems. Refer to Figure 7-9 for the activity diagram of a Web-based order. Notice that
this workflow is fairly complex.

Figure 7-14 is the completed SSD for the Web-based scenario. In Figure 7-9, the workflow
crosses the automated system boundary from the Customer to the Computer System eight
times, some of which are optional flows. In Figure 7-14, the first message, with its response
message, begins the use case by requesting the new order page (requestNewOrder). The sys-
tem does not need input data to perform the processes requested by these two messages, so
no input parameters are required. The next input message is a request for the new customer
page (newCustomerPage). On this message, there is a true/false condition to test whether this
is a new customer. Thus, the message only fires if the new customer condition evaluates to
true. Because the objective of a sequence diagram is only to show the messages and not to
show processing logic, there is no message to show the branching out to another use case; a
simple note is added to remind the developers about that jump.

The third message just allows the user to actually start an order (beginOrder). The message
shows that the customer account number is an input parameter. When the user interface is
actually developed, this information may already be in the system because it may be on the
screen from adding a new customer. However, by showing it as an input parameter, the devel-
opers will know that it has to be available, either from the user or captured from another page.

The next process is one of adding items to the order. The activity diagram in Figure 7-9 shows
a loop to add items, which is captured by the iteration box. However, one of the activities in the
workflow is Search catalog/view item. Even though a loop is not explicitly shown, a search nor-
mally implies a loop of some type. So, on the input message to view a product in Figure 7-14, an
asterisk has been added for iteration. The iteration box and the asterisk on the input message

258 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

C6696_07_CTP.4c 1/28/08 8:22 AM Page 258

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 7 The Object-Oriented Approach to Requirements ♦ 259

orderPage

[newcustomer]newCustomerPage : = requestNewCustomer()

Customer

:System

beginOrder (accountNo)

requestNewOrder()

catalogIndex

Go to Maintain customer
information use case

* productImage : = viewProduct(prodID)

addConfirmation := addItem (prodID, size, quantity)

reviewOrder()

orderSummary

[modification required] changeItem (prodID, size, quantity)

orderSummary

acceptOrder()

paymentOptionsPage

enterPayment (creditCardNo)

orderConfirmationPage

Loop for all items

Figure 7-14

An SSD of the Web order

scenario for the Create
new order use case

create a nested loop condition. Note that on these two messages, the return-value method is used
to return data. The remaining messages and responses follow the activity diagram.

These first sections of the chapter have explained the set of models that are used in object-
oriented development to specify the processing aspects of the new system. The use case diagram
provides an overview of all of the events that must be supported. The scenario descriptions, as pro-
vided by written narratives or activity diagrams, give the details of the internal steps within each
use case. Precondition and postcondition statements help define the context for the use case—that
is, what must exist before and after processing. Finally, the system sequence diagram describes the
inputs and outputs that occur within a use case. Together, these models provide a comprehensive
description of the system processing requirements and give the foundation for system design.

Now that the use cases have been explained, let’s find out how to capture important
object status information.

C6696_07_CTP.4c 1/28/08 8:22 AM Page 259

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

IDENTIFYING OBJECT BEHAVIOR—THE STATE MACHINE DIAGRAM

Sometimes it is important for a computer system to maintain information about the status of
problem domain objects. For example, a customer might want to know whether a particular
order has been shipped. A manager might also ask about a customer order and might want to
know if it has been paid for. So, the system needs to be able to track the status of customer
orders. During requirements definition, analysts need to identify and document which
domain objects require status checking and what business rules determine valid status condi-
tions. Referring back to RMO, an example of a business rule is that a customer order should
not be shipped until it has been paid for.

The status condition for a real-world object is often referred to as the state of the object.
Defined precisely, a state of an object is a condition that occurs during its life when it satisfies
some criterion, performs some action, or waits for an event. For real-world objects, we equate
the state of an object with its status condition.

The naming convention for status conditions helps identify valid states. A state might
have a name of a simple condition such as On or In repair. Other states are more active, with
names consisting of gerunds or verb phrases such as Being shipped or Working. For example, a
specific Order object comes into existence when a customer orders something. Right after it is
created, the object is in a state such as Adding new order items, then a state of Waiting for items
to be shipped, and finally a state of Completed when all items have been shipped. If you find
yourself trying to use a noun to name a state, you probably have an incorrect idea about states
or object classes. The name of a state is not a noun itself; it is something that describes the
object (the noun).

States are described as semipermanent conditions because external events can interrupt a
state and cause the object to go to a new state. An object remains in a state until some event
causes it to move, or transition, to another state. A transition, then, is the movement of an
object from one state to another state. Transitioning is the mechanism that causes an object
to leave a state and change to a new state. States are semipermanent because transitions inter-
rupt them and cause them to end. Generally, transitions are considered to be short in dura-
tion, compared with states, and cannot be interrupted. The combination of states and
transitions between states provides the mechanisms that analysts use to capture business
rules. In our previous RMO example, we would say that a customer order must first be in a
Paid for state before it can transition to a Shipped state. This information is captured and docu-
mented in a UML diagram called a state machine diagram.

A state machine diagram can be developed for any problem domain classes that have
complex behavior or status conditions that need to be tracked. Not all classes will require a
state machine diagram, however. If an object in the problem domain class does not have sta-
tus conditions that must control the processing for that object, a state machine diagram is
probably not necessary. For example, in the RMO class diagram, a class such as Order may
need a state machine diagram. However, a class such as OrderTransaction probably does not.
An order transaction is created when the payment is made and then just sits there; it does not
need to track other conditions.

A state machine diagram is composed of ovals representing the states of an object and
arrows representing the transitions. Figure 7-15 illustrates a simple state machine diagram for
a printer. Because it is a little easier to learn about state machine diagrams by using tangible
items, we start with a few examples of computer hardware. After the basics are explained, we
will illustrate modeling of software objects in the problem domain. The starting point of a
state machine diagram is a black dot, which is called a pseudostate. The first shape after the
black dot is the first state of the printer. In this case, the printer begins in the Off state. A state
is represented by a rectangle with rounded corners (almost like an oval, but more squared),
with the name of the state placed inside.

260 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

state
a condition during an
object’s life when it
satisfies some criterion,
performs some action, or
waits for an event

transition
the movement of an
object from one state to
another state

pseudostate
the starting point of a
state machine diagram,
indicated by a black dot

C6696_07_CTP.4c 1/28/08 8:22 AM Page 260

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 7 The Object-Oriented Approach to Requirements ♦ 261

As shown in Figure 7-15, the arrow leaving the Off state is called a transition. The firing of
the transition causes the object to leave the Off state and make a transition to the On state.
After a transition begins, it runs to completion by taking the object to the new state, called
the destination state. A transition begins with an arrow from an origin state—the state prior
to the transition—to a destination state, and is labeled with a string to describe the compo-
nents of the transition.

Off On
onButtonPushed [Safety cover closed] / run self-test

State indicates a state
of being of the object.

Beginning pseudostate
denotes start of state
machine diagram.

offButtonPushed

Transition moves the object from the
origin state to the destination state.

Transition-name has trigger name,
guard, and action-expression.

Figure 7-15

Simple state machine

diagram for a printer

The transition label consists of three components:
transition-name (parameters, …) [guard-condition] / action-expression
In Figure 7-15, the transition-name is onButtonPushed. The transition is like a trigger that fires

or an event that occurs. The name should reflect the action of a triggering event. In Figure 7-15, no
parameters are being sent to the printer. The guard-condition is Safety cover closed. For the transi-
tion to fire, the guard must be true. The forward slash divides the firing mechanism from the
actions or processes. Action-expressions indicate some process that must occur before the transi-
tion is completed and the object arrives in the destination state. In this case, the printer will run a
self-test before it goes into the On state.

The transition-name is the name of a message event that triggers the transition and causes
the object to leave the origin state. Notice that the format is very similar to a message in a sys-
tem sequence diagram. In fact, you will find that the message event names and transition-
names use almost the same syntax. One other relationship exists between the messages and
the transitions; transitions are caused by messages coming to the object. The parameter por-
tion of the message name comes directly from the message parameters.

The guard-condition is a qualifier or test on the transition, and it is simply a true/false
condition that must be satisfied before the transition can fire. For a transition to fire, first the
trigger must occur, and then the guard must evaluate to true. Sometimes a transition has only
a guard-condition and no triggering event. In that case, the trigger is constantly firing, and
whenever the guard becomes true, the transition occurs.

Recall from the discussion of sequence diagrams that messages have a similar test, which
is called a true/false condition. This true/false condition is a test on the sending side of the mes-
sage, and before a message can be sent, the true/false condition must be true. In contrast, the
guard-condition is on the receiving side of the message. The message may be received, but the
transition fires only if the guard-condition is also true. This combination of tests, messages,
and transitions provides tremendous flexibility in defining complex behavior.

destination state
for a particular
transition, the state to
which an object moves
after the completion of a
transition

origin state
for a particular
transition, the original
state of an object from
which the transition
occurs

message event
the trigger for a
transition, which causes
the object to leave the
origin state

guard-condition
a true/false test to see
whether a transition
can fire

C6696_07_CTP.4c 1/28/08 8:22 AM Page 261

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The action-expression is a procedural expression that executes when the transition fires.
In other words, it describes the action to be performed. Any of the three components—
transition-name, guard-condition, or action-expression—may be empty. If either the transi-
tion-name or the guard-condition is empty, it automatically evaluates to true. Either of them
may also be complex, with AND and OR connectives.

COMPOSITE STATES AND CONCURRENCY

Before teaching you how to develop a state machine diagram, we need to introduce one other
type of state—a composite state. In the real world, it is very common for an object to be in
multiple states at the same time. For example, when the printer in Figure 7-15 is in the on
state, it might also be doing other things. Sometimes it is printing, sometimes it is just sitting
idle, and when it is first turned on it usually goes through some self-checking steps. All of
these conditions occur while it is on and can be considered simultaneous states. The condi-
tion of being in more than one state at a time is called concurrency, or concurrent states.
One way to show this is with a synchronization bar and concurrent paths, as in activity dia-
grams (see Figure 4-16). So, we could split a transition with a synchronization bar so that one
path goes to the On state, and the other path goes to the Idle, Printing, and Self-check states.
We define a path as a sequential set of connected states and transitions.

Another way to show concurrent states is to have states nested inside other, higher-level,
states. These higher-level states are called composite states.

A composite state represents a higher level of abstraction and can contain nested states
and transition paths. Figure 7-16, which is an extension of Figure 7-15, illustrates this idea for
a printer. The printer is not only in the On state, but is concurrently also in either an Idle or
Working state. The rounded rectangle for the On state is divided into two compartments. The
top compartment contains the name, and the lower compartment contains the nested states
and transition paths.

When the printer enters the On state, it automatically begins at the nested black dot and
moves to the Idle state. So, the printer is in both the On state and the Idle state. When the print
message is received, the printer makes the transition to the Working state but also remains in
the On state. Some new notation is also introduced for the Working state. In this instance, the
lower compartment contains the action-expressions; that is, the activities that occur while the
printer is in the Working state.

262 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Idle Working

Load and print sheets

On

print(document)

[finished]

Figure 7-16

Sample composite states

for the printer object

action-expression
a description of the
activities performed as
part of a transition

concurrency, or

concurrent state
the condition of being in
more than one state at
a time

path
a sequential set of
connected states and
transitions

composite state
a state containing other
states and transitions
(that is, a path)

C6696_07_CTP.4c 1/28/08 8:22 AM Page 262

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 7 The Object-Oriented Approach to Requirements ♦ 263

We can extend this idea of composite states and concurrency one step further by allowing
multiple paths within a composite state. Perhaps an object has entire sets of states and transi-
tions—multiple paths—that are active concurrently. To document concurrent multiple paths
for a single object, we draw a composite state with the lower portion divided into multiple
compartments, one for each concurrent path of behavior. For example, imagine a printer that
has an input bin to hold the paper. This printer also cycles between two states in its work cycle
of Idle and Working. We may want to describe two separate paths, one representing the states
of the input paper tray and the other the states of the printing mechanism. The first path will
have states of Empty, Full, and Low. The second path will contain the two states Idle and
Working. These two paths are independent—the movement between states in one compart-
ment is completely independent of movement between states in the other compartment.

As before, there are two ways to document this concurrent behavior. First, we could use a
synchronization bar with one path becoming three paths. Second, we can use a composite
state. Figure 7-17 extends the printer example from Figure 7-16. In this example, there are two
concurrent paths within the composite state. The upper concurrent path represents the paper
tray part of the printer. The two paths are completely independent, and the printer moves
through the states and transitions in each path independently. When the Off button is
pushed, the printer leaves the On state. Obviously, when the printer leaves the On state, it also
leaves all of the paths in the nested states. It does not matter whether the printer is in a state
or in the middle of a transition. When the Off button is pushed, all activity is stopped, and
the printer exits the On state. Now that you know the basic notation of state machine dia-
grams, we turn next to how to develop a state machine diagram.

Empty

On

fill ()

trayEmpty ()

Full Low

WorkingIdle

fill ()

lowMsg ()

print(document)

Load and print sheets

Off
onButtonPushed ()

offButtonPushed ()

[finished]

Figure 7-17

Concurrent paths for a

printer in the On state

RULES FOR DEVELOPING STATE MACHINE DIAGRAMS

State machine diagram development follows a set of rules. The rules help you to develop state
machine diagrams for classes in the problem domain. Usually the primary challenge in build-
ing a state machine diagram is to identify the right states for the object. It might be helpful to
pretend that you are the object itself. It is easy to pretend to be a customer but a little more
difficult to say, “I am an order,” or, “I am a shipment. How do I come into existence? What

C6696_07_CTP.4c 1/28/08 8:22 AM Page 263

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

states am I in?” However, if you can begin to think this way, it will help you develop state
machine diagrams.

The other major area of difficulty for new analysts is to identify and handle composite
states with nested threads. Usually the primary cause of this difficulty is a lack of experience
in thinking about concurrent behavior. The best solution is to remember that developing state
machine diagrams is an iterative behavior, more so than developing any other type of dia-
gram. Analysts seldom get a state machine diagram right the first time. They always draw it
and then refine it again and again. Also, remember that when you are defining requirements,
you are only getting a general idea of the behavior of an object. During design, as you build
detailed sequence diagrams, you will have an opportunity to refine and correct important
state machine diagrams.

Finally, don’t forget to ask about an exception condition—especially when you see the
words verify or check. Normally, there will be two transitions out of states that verify some-
thing—one for acceptance and one for rejection.

Here is a list of steps that will help you get started in developing state machine diagrams:

1. Review the class diagram and select the classes that will require state machine dia-
grams. Remember, we normally include only those that have multiple status conditions
that are important for the system to track. Then begin with the classes that appear to have
the simplest state machine diagrams, such as the OrderItem class for RMO, discussed later.

2. For each selected class in the group, make a list of all the status conditions you can
identify. At this point, simply brainstorm. If you are working on a team, have a brain-
storming session with the whole team. Remember that you are defining states of being of
the software classes. However, these states must also reflect the states for the real-world
objects that are represented in software. Sometimes it is helpful to think of the physical
object, identify states of the physical object, then translate those that are appropriate into
corresponding system states or status conditions. It is also helpful to think of the life of
the object. How does it come into existence in the system? When and how is it deleted
from the system? Does it have active states? Does it have inactive states? Does it have
states in which it is waiting? Think of activities done to the object or by the object. Often,
the object will be in a particular state as these actions are occurring.

3. Begin building state machine diagram fragments by identifying the transitions that
cause an object to leave the identified state. For example, if an Order is in a state of
Ready to be shipped, then a transition such as beginShipping will cause the Order to leave
that state.

4. Sequence these state-transition combinations in the correct order. Then aggregate
these combinations into larger fragments. As the fragments are being aggregated into
larger paths, it is natural to begin to look for a natural life cycle for the object. Continue
to build longer paths in the state machine diagram by combining the fragments.

5. Review the paths and look for independent, concurrent paths. When an item can be in
two states concurrently, there are two possibilities. The two states may be on independent
paths, as in the printer example of Working and Full. This occurs when the states and
paths are independent, and one can change without affecting the other. Alternately, one
state may be a composite state, so the two states should be nested, one inside the other.
One way to identify a candidate for a composite state is to determine whether it is con-
current with several other states and whether these other states depend on the original
state. For example, the On state has several other states and paths that can occur while the
printer is in the On state, and those states depend on the printer being in the On state.

6. Look for additional transitions. Often, during a first iteration, several of the possible
combinations of state-transition-state are missed. One method to identify them is to take
every paired combination of states and ask whether there is a valid transition between the
states. Test for transitions in both directions.

264 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

C6696_07_CTP.4c 1/28/08 8:22 AM Page 264

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 7 The Object-Oriented Approach to Requirements ♦ 265

7. Expand each transition with the appropriate message event, guard-condition, and
action-expression. Include with each state appropriate action-expressions. Much of this
work may have been done as the state machine diagram fragments were being built.

8. Review and test each state machine diagram. We test state machine diagrams by review-
ing them carefully. Review each of your state machine diagrams by doing the following:
a. Make sure your states are really states of the object in the class. Ensure that the names

of states truly describe states of being of the object.
b. Follow the life cycle of an object from its coming into existence to its being deleted

from the system. Be sure that all possible combinations are covered and that the paths
on the state machine diagram are accurate.

c. Be sure your diagram covers all exception conditions, as well as the normal expected
flow of behavior.

d. Look again for concurrent behavior (multiple paths) and the possibility of nested
paths (composite states).

DEVELOPING RMO STATE MACHINE DIAGRAMS

Let’s practice these steps by developing two state machine diagrams for RMO. Step 1 is to
review the domain class diagram and select the classes that may have status conditions that
need to be tracked. In this case, we select the Order and OrderItem classes. We assume that
customers will want to know the status of their orders and the status of individual items on
the order. Other classes that are candidates for state machine diagrams are InventoryItem, to
track in-stock or out-of-stock items; Shipment, to track arrivals; and possibly Customer, to
track active and inactive customers. For our purposes here, we focus on the Order and
OrderItem classes. We use the OrderItem class because it is simpler, and it is always best to
start with the simplest class. Also, it is a dependent class—it depends on Order. Finally, it is
best to use a bottom-up approach, starting with the lower items on a hierarchy, which usually
have less ripple effect.

Developing the OrderItem State Machine Diagram

Start by identifying the possible status conditions that might be of interest. Some necessary
status conditions are Ready to be shipped, On back order, and Shipped. An interesting question
comes to mind at this point: Can an order item be partially shipped? In other words, if the
customer ordered 10 of a single item, but there are only five in inventory, should RMO ship
those five and put the other five on back order? You should see the ramifications of this deci-
sion. The system and the database would need to be designed to track and monitor detailed
information to support this capability. The domain class diagram for RMO (see Figure 5-38)
indicates that an OrderItem can be associated with either zero (not yet shipped) shipments
or one (totally shipped) shipment. Based on the current specification, the definition does not
allow partial shipments of OrderItems.

This is just another example of the benefit of building models. Had we not been develop-
ing the state machine diagram model, this question might never have been asked. The devel-
opment of detailed models and diagrams is one of the most important activities that a system
developer can perform. It forces analysts to ask fundamental questions. Sometimes new sys-
tem developers think that model development is a waste of time, especially for small systems.
However, truly understanding the users’ needs before writing the program always saves time
in the long run.

The next step is to identify exit transitions for each of the status conditions. Figure 7-18 is
a table showing the states that have been defined and the exit transitions for each of those
states. One additional state has been added to the list, Newly added, which covers the condi-
tion that occurs when an item has been added to the order, but the order is not complete or
paid for, so the item is not ready for shipping.

C6696_07_CTP.4c 1/28/08 8:22 AM Page 265

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

266 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

State Transition causing exit from state

Newly added finishedAdding

Ready to ship shipItem

On back order itemArrived

Shipped No exit transition defined

Figure 7-18

States and exit

transitions for OrderItem

The fourth step is to combine the state-transition pairs into fragments and to build a state
machine diagram with the states in the correct sequence. Figure 7-19 illustrates the partially
completed state machine diagram. The flow from beginning to end for OrderItem is quite
obvious. However, at least one transition seems to be missing. There should be some path to
allow entry into the On back order state, so we recognize that this first-cut state machine dia-
gram needs some refinement. We will fix that in a moment.

On back order itemArrived ()

Ready to shipNewly added
finishedAdding ()

Shipped
shipItem ()

Figure 7-19

Partial state machine

diagram for OrderItem

The fifth step is to look for concurrent paths. In this case, it does not appear that an
OrderItem can be in any two of the identified states at the same time. Of course, because we
chose to begin with a simple state machine diagram, that was expected.

The sixth step is to look for additional transitions. This step is where we flesh out other
necessary transitions. The first addition is to have a transition from Newly added to On back
order. To continue, examine every pair of states to see whether there are other possible combi-
nations. In particular, look for backward transitions. For example, can an OrderItem go from
Ready to ship to On back order? This would happen if the shipping clerk found that there were
not enough items in the warehouse, even though the system indicated that there should have
been. Other backward loops, such as from Shipped to Ready to ship, or from On back order to
Newly added, do not make sense and are not included.

The seventh step is to complete all the transitions with correct names, guard-conditions,
and action-expressions. Two new transition-names are added. The first is the transition from
the beginning black dot to the Newly added state. That transition causes the creation, or in sys-
tem terms the instantiation, of a new OrderItem object. It is given the same name as the mes-
sage into the system that adds it—addItem (). The final transition is the one that causes the
order item to be removed from the system. This transition goes from the Shipped state to a
final circled black dot, which is a final pseudostate. On the assumption that it is archived to a
backup tape when it is deleted from the active system, that transition is named archive ().

Action-expressions are added to the transitions to indicate any special action that is initi-
ated by the object or on the object. In this case, only one action is required. When an item
that was Ready to ship moves to On back order, the system should initiate a new purchase order
to the supplier to buy more items. So, on the markBackOrdered () transition, an action-
expression is noted to place a purchase order. Figure 7-20 illustrates the final state machine
diagram for OrderItem.

C6696_07_CTP.4c 1/28/08 8:22 AM Page 266

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 7 The Object-Oriented Approach to Requirements ♦ 267

State Exit transition

Open for item adds completeOrder

Ready for shipping beginShipping

In shipping shippingComplete

Waiting for back orders backOrdersArrive

Shipped paymentCleared

Closed archive

Figure 7-21

States and exit

transitions for Order

On back order
itemArrived ()

finishedAdding () shipItem ()
Ready to ship

addItem ()

markBackOrdered ()

markBackOrdered ()
/ place purchase order

archive ()
Newly added Shipped

Figure 7-20

Final state machine

diagram for OrderItem

The final step, reviewing and testing the state machine diagram, is the quality-review step.
It is always tempting to omit this step; however, a good project manager ensures that the sys-
tems analysts have time in the schedule to do a quick quality check of their models. A walk-
through at this point in the project is very appropriate.

Developing the Order State Machine Diagram

An Order object is a little more complex than the OrderItem objects. In this example, you will
see some additional features of state machine diagrams that support more complex objects.

Figure 7-21 is a table of the defined states and exit transitions that, on first iteration,
appear to be required. Reading from top to bottom, the states describe the life cycle of an
order (for example, the status conditions). First, an Order comes into existence and is ready
to have items added to it—Open for item adds. The users in RMO indicated that they wanted
an order to remain in this state for 24 hours in case the customer wanted to add more items.
After all the items are added, the order is Ready for shipping. Next, it goes to shipping and is in
the In shipping state. At this point, it is not quite clear how In shipping and Waiting for back
orders relate to each other. That relationship will have to be sorted out as the state machine
diagram is being built. Finally, the order is Shipped, and after the payment clears, it is Closed.

In step 4, fragments are built and combined to yield the first-cut state machine diagram.
Figure 7-22 illustrates the first-cut state machine diagram. The state machine diagram built
from the fragments appears to be correct for the most part. However, we note some problems
with the Waiting for back orders state.

After some analysis, we decide that being In shipping and Waiting for back orders are con-
current states. And another state is needed, called Being shipped, for the state in which the
shipping clerk is actively shipping items. One way to show the life of an order is to put it in
the In shipping state when shipping begins. It also enters the Being shipped state at that point.
The order can cycle between Being shipped and Waiting for back orders. The exit out of the com-
posite state only occurs from the Being shipped state, which is inside the In shipping state.
Obviously, upon leaving the inside state, the order also leaves the composite In shipping state.

C6696_07_CTP.4c 1/28/08 8:22 AM Page 267

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

268 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Waiting for
back orders

backOrdersArrive()

paymentCleared ()
Closed

completeOrder ()

archive ()

Ready for
shipping

Open for item
adds

beginShipping ()
In shipping

Shipped

shippingComplete ()

Figure 7-22

First-cut state machine

diagram for Order

Open for item adds

shippingCurrent () [backorders exist]

completeOrder ()

archive ()

Ready for
shipping

beginShipping ()

startOrder ()

addItem ()

In shipping

Being shipped

backOrdersArrive ()

Shipped

Waiting for
back orders

Closed

shippingComplete ()

paymentCleared ()

Figure 7-23

Second-cut state

machine diagram for

Order

As we go through steps 5, 6, and 7, we note that new transitions must be added. The cre-
ation transition from the initial pseudostate is required. Also, transitions must be included to
show when items are being added and when they are being shipped. Usually we put these
looping activities on transitions that leave a state and return to the same state. In this case, the
transition is called addItem (). Note how it leaves the Open for item adds state and returns to
the same state. Figure 7-23 takes the state machine diagram to this level of completion.

C6696_07_CTP.4c 1/28/08 8:22 AM Page 268

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 7 The Object-Oriented Approach to Requirements ♦ 269

The benefit of developing a state machine diagram for an object, even a business object, is
that it helps to capture and clarify business rules. From the state machine diagram, we can see
that shipping cannot commence while the order is in the Open for item adds state. New items
cannot be added to the order after it has been placed in the Ready for shipping state. The order
is not considered shipped until all items are shipped. If the order has the status of In shipping,
we know that it is either actively being worked on or waiting for back orders.

As always, the benefits of careful model building help us gain a true understanding of the
system requirements. Let’s now look at the big picture and pull the different models into a
whole to see how they fit together.

INTEGRATING OBJECT-ORIENTED MODELS

The diagrams described in this chapter allow analysts to completely specify the system
requirements. If you were developing a system using a waterfall systems development life
cycle, you would develop the complete set of diagrams to represent all system requirements
before continuing with design. However, because you are using an iterative approach, you
would only construct the diagrams that are necessary for a given iteration. A complete use
case diagram would be important to get an idea of the total scope of the new system. But the
supporting details included in use case descriptions, activity diagrams, and system sequence
diagrams need only be done for use cases in the specific iteration.

Developing and integrating models are critical to ensure that you
understand the business requirements.

BEST PRACTICE

The domain model class diagram is a special case. Much like the entire use case diagram,
the domain model class diagram should be as complete as possible for the entire system, as
shown for RMO in Chapter 5. The number of problem domain classes for the system provides
an additional indicator of the total scope of the system. Refinement and actual implementa-
tion of many classes will wait for later iterations, but the domain model should be fairly com-
plete. The domain model is necessary to identify all of the domain classes that are required in
the new system. Although we do not focus on database design in this chapter, the domain
model is also used to design the database.

Throughout the chapter, you have seen how the construction of a diagram depends on
information provided by another diagram. You have also seen that the development of a new
diagram often helps refine and correct a previous diagram. You should also have noted that
the development of detailed diagrams is critical to gain a thorough understanding of the user
requirements. Figure 7-24 illustrates the primary relationships among the requirements mod-
els for OO development. The use case diagram and other diagrams on the left are used to cap-
ture the processes of the new system. The class diagram and its dependent diagrams capture
information about the classes for the new system. The solid arrows represent major depen-
dencies, and the dashed arrows show a minor dependency. The dependencies generally flow
from top to bottom, but some arrows have two heads to illustrate that influence goes in both
directions.

C6696_07_CTP.4c 1/28/08 8:22 AM Page 269

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Note that the use case diagram and the problem model domain class diagram are the pri-
mary models from which others draw information. You should develop those two diagrams
as completely as possible. In this chapter, we noted that a CRUD analysis performed between
the class diagram and use case diagram helps ensure that they are as complete as possible.
The detailed descriptions, either in narrative format or in activity diagrams, are important
internal documentation of the use cases and must completely support the use case diagram.
Internal descriptions such as preconditions and postconditions use information from the
class diagram. These detailed descriptions are also important for development of system
sequence diagrams. So, the detailed descriptions, activity diagrams, and system sequence dia-
grams must all be consistent with regard to the steps of a particular use case. As you progress
in developing the system, and especially as you begin doing detailed system design, you will
find that understanding the relationships among these models is an important element in the
quality of your models.

270 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Use case
descriptions

System sequence
diagrams

State machine
diagrams

Activity
diagrams

Use case
diagrams

Problem domain
class diagram

Figure 7-24

Relationships among OO

requirements models

C6696_07_CTP.4c 1/28/08 8:22 AM Page 270

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

SUMMARY
The object-oriented approach has a complete set of diagrams that together document the user’s needs and
define the system requirements. These requirements are specified using the following models:

• Domain model: class diagrams and state machine diagrams
• Use case model: use case diagrams, detailed models (description format or activity diagram), and

system sequence diagrams (SSDs)

A use case diagram documents the various ways that the system can be used. It can be developed inde-
pendently or in conjunction with the event table, where one event triggers one use case. A use case diagram
consists of actors, use cases, and connecting lines. A use case identifies a single function that the system sup-
ports. An actor represents a role of someone or something that uses the system. The connecting lines indicate
which actors invoke which use cases. Use cases can also invoke other use cases as a common subroutine. This
type of connection between use cases is called the «includes» relationship.

The internal activities of a use case are first described by an internal flow of activities. It is possible to have
several different internal flows, which represent different scenarios of the same use case. Thus, a use case may
have several scenarios. These details are documented either in use case descriptions or with activity diagrams.

Another diagram that provides more details of the use case’s processing requirements is a system sequence
diagram, or SSD. An SSD documents the inputs and outputs of the system. The scope of each SSD is usually a
use case or a scenario within a use case. The components of an SSD are the actor—the same actor identified in
the use case—and the system. The system is treated as a black box, in that the internal processing is not
addressed. Messages, which represent the inputs, are sent from the actor to the system. Output messages are
returned from the system to the actor. The sequence of messages is indicated from top to bottom.

The domain model class diagram continues to be refined when defining requirements. The behavior of
business objects represented in the class diagram is an aspect of the requirements that is also studied and
modeled. The state machine diagram is used to model object states and state transitions that occur in a use
case. All of the models discussed in this chapter are interrelated, and information in one model explains infor-
mation in others.

KEY TERMS

action-expression, p. 262

composite state, p. 262

concurrency, or concurrent state, p. 262

destination state, p. 261

domain model, p. 242

guard-condition, p. 261

interaction diagram, p. 252

lifeline, or object lifeline, p. 253

message, p. 242

message event, p. 261

origin state, p. 261

package, p. 245

path, p. 262

pseudostate, p. 260

state, p. 260

state machine diagram, p. 242

system sequence diagram, p. 242

transition, p. 260

true/false condition, p. 255

use case diagram, p. 242

use case model, p. 242

REVIEW QUESTIONS

1. What is the OMG?

2. What is UML? What type of modeling is it used for?

3. What are the four basic parts of a use case model? What is

its purpose or objective?

CHAPTER 7 The Object-Oriented Approach to Requirements ♦ 271

C6696_07_CTP.4c 1/28/08 8:22 AM Page 271

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

272 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

4. What are the two basic parts of the domain model? What

is its purpose or objective?

5. What is the difference between a use case description and

an activity diagram?

6. What is the «includes» relationship used for?

7. What is the difference in the focus on the boundary condi-

tion of a use case diagram and an event table?

8. With regard to a use case, what is an activity diagram

used for?

9. What is the purpose of a system sequence diagram? What

symbols are used in a system sequence diagram?

10. What are the steps required to develop a system sequence

diagram?

11. What is the purpose of a state machine diagram?

12. List the primary steps for developing a state machine

diagram.

13. List the elements that make up a transition description.

Which elements are optional?

14. What is a composite state? What is it used for?

15. What is meant by the term path?

16. What is the purpose of a guard-condition?

17. Identify the models explained in this chapter and their rela-

tionship to each other.

THINKING CRITICALLY

1. To review your skills in developing a class diagram, develop

a domain model class diagram, including associations and

multiplicities, based on the following narrative.

This case is a simplified (initial draft) version of a new

system for the University Library. Of course, the library sys-

tem must keep track of books. Information is maintained

both about book titles and the individual book copies. Book

titles maintain information about title, author, publisher,

and catalog number. Individual copies maintain copy num-

ber, edition, publication year, ISBN, book status (whether it

is on the shelf or loaned out), and date due back in.

The library also keeps track of its patrons. Because it is

a university library, there are several types of patrons, each

with different privileges. There are faculty patrons, gradu-

ate student patrons, and undergraduate student patrons.

Basic information about all patrons is name, address, and

telephone number. For faculty patrons, additional informa-

tion is office address and telephone number. For graduate

students, information such as graduate program and advi-

sor information is maintained. For undergraduate students,

program and total credit hours are maintained.

The library also keeps information about library loans.

A library loan is a somewhat abstract object. A loan occurs

when a patron approaches the circulation desk with a

stack of books to check out. Over time a patron can have

many loans. A loan can have many physical books associ-

ated with it. (And a physical book can be on many loans

over a period of time. Information about past loans is kept

in the database.) So, in this case, an association class

should probably be created for loaned books.

If a patron wants a book that is already checked out,

the patron can put that title on reserve. This is another

class that does not represent a concrete object. Each reser-

vation is for only one title and one patron. Information

such as date reserved, priority, and date fulfilled is main-

tained. When a book is fulfilled, the system associates it

with the loan on which it was checked out.

2. Develop a use case diagram for the university library system.

Part a. Based on the following descriptions, list the use

cases and actors.

Patrons have access to the library information to search for

book titles and to see whether a book is available. A patron

can also reserve a title if all copies are checked out. When

patrons bring books to the circulation desk, a clerk checks out

the books on a loan. Clerks also check books in. When books

are dropped in the return slot, clerks check in the books.

Stocking clerks keep track of the arrival of new books.

The managers in the library have their own activities.

They will print reports of book titles by category. They also

like to see (online) all overdue books. When books get

damaged or destroyed, managers delete information

about book copies. Managers also like to see what books

are on reserve.

Part b. Given your list of use cases and actors, develop a

use case diagram.

Part c. Given the domain model class diagram you devel-

oped in question 1, do a CRUD analysis and list any new

use cases you discover. Or, if you change the name of any

use cases, indicate that as well. In this case, patron infor-

mation can be accessed and downloaded from another

university database.

3. To review your skills in developing a class diagram, develop

a domain model class diagram, including associations and

multiplicities, based on the following narrative.

A clinic with three dentists and several dental hygienists

needs a system to help administer patient records. This sys-

tem does not keep any medical records. It only processes

patient administration.

C6696_07_CTP.4c 1/28/08 8:22 AM Page 272

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 7 The Object-Oriented Approach to Requirements ♦ 273

Each patient has a record with his or her name, date of

birth, gender, date of first visit, and date of last visit. Patient

records are grouped together under a household. A house-

hold has attributes such as name of head of household,

address, and telephone number. Each household is also

associated with an insurance carrier record. The insurance

carrier record contains name of insurance company,

address, billing contact person, and telephone number.

In the clinic, each dental staff person also has a record

that tracks who works with a patient (dentist, dental

hygienist, x-ray technician). Because the system focuses on

patient administration records, only minimal information is

kept about each dental staff person, such as name, address,

and telephone number. Information is maintained about

each office visit, such as date, insurance copay amount

(amount paid by the patient), paid code, and amount actu-

ally paid. Each visit is for a single patient, but, of course, a

patient will have many office visits in the system. During

each visit, more than one dental staff person may be

involved by doing a procedure. For example, the x-ray techni-

cian, dentist, and dental hygienist may all be involved on a

single visit. In fact, some dentists are specialists in such things

as crown work, and even multiple dentists may be involved

with a patient. For each staff person does procedure in a visit

combination (many-to-many), detailed information is kept

about the procedure. This information includes the type of

procedure, a description, the tooth involved, the copay

amount, the total charge, the amount paid, and the amount

the insurance company denied.

Finally, the system also keeps track of invoices. There

are two types of invoices: invoices to insurance companies

and invoices to heads of household. Both types of invoices

are fairly similar, listing each visit, the procedures involved,

the patient copay amount, and the total due. Obviously,

the totals for the insurance company are different from the

patient amounts owed. Even though an invoice is a report

(when printed), it also maintains some information such as

date sent, total amount, amount already paid, amount due

and the total received, date received, and total denied.

(Insurance companies do not always pay all they are billed.)

4. Develop a use case diagram for the dental clinic.

Part a. Based on the following descriptions, list the use

cases and actors.

The receptionist keeps track of patient and head-of-

household information, and will enter this information in

the system. The receptionist will also keep track of office

visits by the patients. Patient information is also entered

and maintained by the office business manager. In addi-

tion, the business manager maintains the information

about the dental staff.

The business manager also prints the invoices. Patient

invoices are printed monthly and sent to the head of

household. Insurance invoices are printed weekly. When

the invoices are printed, the business manager double-

checks a few invoices against information in the system to

make sure it is being aggregated correctly. She also enters

the payment information when it is received.

Dental staff are responsible for entering information

about the dental procedures they perform.

The business manager also prints an overdue invoice

report that shows heads of household who are behind on

their payments. Sometimes dentists like to see a list of the

procedures they performed during a week or month, and

they can request that report.

Part b. Given your list of use cases and actors, develop a

use case diagram.

Part c. Expand the use case diagram you have developed

based on a CRUD analysis of the class diagram you devel-

oped in the previous problem.

5. Interpret and explain the use case diagram in Figure 7-25.

Explain the various roles of those using the system and the

functions that each role requires. Explain the relationships

and the ways the use cases are related to each other.

6. Given the following narrative, do the following:

a. Develop an activity diagram for each scenario, and

b. Complete a fully developed use case description for

each scenario.

Quality Building Supply has two kinds of customers:

contractors and the general public. Sales to each are

slightly different.

A contractor buys materials by taking them to the con-

tractor’s checkout desk. The clerk enters the contractor’s

name into the system. The system displays the contractor’s

information, including current credit standing.

The clerk then opens up a new ticket (sale) for the con-

tractor. Next, the clerk scans in each item to be purchased.

The system finds the price of the item and adds the item to

the ticket. At the end of the purchase, the clerk indicates the

end of the sale. The system compares the total amount

against the contractor’s current credit limit and, if it is accept-

able, finalizes the sale. The system creates an electronic ticket

for the items, and the contractor’s credit limit is reduced by

the amount of the sale. Some contractors like to keep a

record of their purchases, so they request that the ticket

details be printed. Others aren’t interested in a printout.

A sale to the general public is simply entered into the

cash register, and a paper ticket is printed as the items are

identified. Payment can be by cash, check, or credit card.

The clerk must enter the type of payment to ensure that

the cash register balances at the end of the shift. For

credit-card payments, the system prints a credit-card

voucher that the customer must sign.

7. Given the following narrative, develop either an activity dia-

gram or a fully developed description for a use case of Add

a new vehicle to an existing policy in a car insurance system.

C6696_07_CTP.4c 1/28/08 8:22 AM Page 273

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

274 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

A customer calls a clerk at the insurance company and

gives his policy number. The clerk enters this information,

and the system displays the basic insurance policy. The

clerk then checks the information to make sure the premi-

ums are current and the policy is in force.

The customer gives the make, model, year, and vehicle

identification number (VIN) of the car to be added. The

clerk enters this information, and the system ensures that

the given data is valid. Next, the customer selects the types

of coverage desired and the amount of each. The clerk

enters the information, and the system records it and vali-

dates the requested amount against the policy limits. After

all of the coverages have been entered, the system ensures

the total coverage against all other ranges, including other

cars on the policy.

Finally, the customer must identify all drivers and the per-

centage of time they drive the car. If a new driver is to be

added, then another use case, Add new driver, is invoked.

At the end of the process, the system updates the policy,

calculates a new premium amount, and prints the updated

policy statement to be mailed to the policy owner.

8. Given the following list of classes and relationships for the

previous car insurance system, list the preconditions and

the postconditions for the Add a new vehicle to an existing

policy use case.

Classes in the system:

• Policy

• InsuredPerson

• InsuredVehicle

• Coverage

• StandardCoverage (lists standard insurance coverages

with prices by rating category)

• StandardVehicle (lists all types of vehicles ever made)

Relationships in the system:

• Policy has InsuredPersons (one to many)

• Policy has InsuredVehicles (one to many)

• Vehicle has Coverages (one to many)

• Coverage is a type of StandardCoverage

• Vehicle is a StandardVehicle

9. Develop a system sequence diagram based on the narra-

tive and your activity diagram for problem 6 in this section.

10. Develop a system sequence diagram based on the narra-

tive or your activity diagram for problem 7 in this section.

11. Review the cellular telephone state machine diagram in

Figure 7-26 and then answer the following questions. (Note

that this telephone has unique characteristics that are not

found in ordinary telephones. Base your answers only on

the state machine diagram.)

a. What happens to turn on the telephone?

b. What states does the telephone go into when it is

turned on?

c. What are the three ways that the telephone can be

turned off?

d. Can the telephone turn off in the middle of the

Active (Talking) state?

e. How can the telephone get to the Active (Talking) state?

f. Can the telephone be plugged in while someone

is talking?

Receiving
dock clerk

Enter new
inventory item

Shipping clerk«includes»

Enter receipt of
inventory

Update quantity
on hand

Enter a return

«includes»

«includes»

Purchasing
clerk

Ship items

Figure 7-25

A use case diagram for

the inventory system

C6696_07_CTP.4c 2/13/08 10:42 AM Page 274

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

switchOn ()

pluggedIn () [1/2 hour]

switchOff ()

plugIn () unplug ()

answer ()

hangUp ()

Off

Quiet

Plugged in

Dialing Connecting

Active
(Talking)Ringing

Charged Low warning Uncharged

Figure 7-26

Cellular telephone state

machine diagram

g. Can the telephone change battery states while some-

one is talking? Explain which movement is allowed,

and which is not allowed.

h. What states are concurrent with what other states?

Make a two-column table showing the concurrent

states.

12. Given the following description of a shipment by Union

Parcel Shipments, first identify all of the states and exit

transitions, then develop a state machine diagram.

A shipment is first recognized after it has been picked

up from a customer. After it is in the system, it is considered

to be active and in transit. Every time it goes through a

checkpoint, such as arrival at an intermediate destination, it

is scanned and a record is created indicating the time and

place of the checkpoint scan. The status changes when it is

placed on the delivery truck. It is still active, but now it is

also considered to have a status of delivery pending. Of

course, after it is delivered, the status changes again.

From time to time, a shipment has a destination that is

outside the area served by Union. In those cases, Union has

working relationships with other courier services. After a

package is handed off to another courier, it is noted as

being handed over. In those instances, a tracking number

for the new courier is recorded (if it is provided). Union also

asks the new courier to provide a status change notice

after the package has been delivered.

Unfortunately, from time to time a package gets lost. In

that case, it remains in an active state for two weeks but is

also marked as misplaced. If after two weeks the package

has not been found, it is considered lost. At that point, the

customer can initiate lost-package procedures to recover

any damages.

EXPERIENTIAL EXERCISES

1. The functionality required by Rocky Mountain Outfitters’

customer support system is also found in several real-world

companies. Based on your experience with online shopping

and shopping carts, build a use case diagram of functions

that a Web customer can perform (similar to Figure 7-4).

Web sites that you might refer to include L.L. Bean

(www.llbean.com/), Lands’ End (www.landsend.com/),

Amazon.com (www.amazon.com/), and Barnes and Noble

Booksellers (www.barnesandnoble.com/).

CHAPTER 7 The Object-Oriented Approach to Requirements ♦ 275

C6696_07_CTP.4c 1/28/08 8:22 AM Page 275

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

http://www.llbean.com/
http://www.landsend.com/
http://www.amazon.com/
http://www.barnesandnoble.com/

2. Create fully developed use case descriptions for each of

the use cases you defined in exercise 1.

3. Based on the flow of activities you developed in exercise 2,

develop system sequence diagrams for those same use

cases and scenarios. Add preconditions and postconditions

to each use case.

4. Analyze the information requirements of the Web site from

exercise 1. Doing a reverse CRUD analysis (going from the

use case diagram to the domain model class diagram) will

help you identify classes. Develop a domain model class

diagram.

5. Locate a company in your area that develops software.

Consulting companies or companies with a large staff of

information systems professionals tend to be more rigor-

ous in their approach to software development. Set up an

interview. Determine the development approaches that the

company uses. Many companies still use traditional

structured techniques combined with some object-

oriented development. In other companies, some projects

are structured, while other projects are object oriented.

Find out what kinds of modeling the company does for

requirements specification. Compare your findings with

the techniques taught in this chapter.

6. IBM Rational is a wholly owned subsidiary of IBM. The

authors of UML have also been executives in Rational.

Consequently, IBM Rational was an early leader in develop-

ing visual modeling tools to support UML and object-

oriented modeling. You can download an evaluation copy

of IBM Rational’s UML tool (IBM Rational Software

Architect) and use it to draw the RMO diagrams. This will

give you experience with a widely used industry tool.

Alternatively, your college or university can enroll in the

Seed program and provide copies of the tools in its labora-

tories. The URL is www-306.ibm.com/software/rational.

THE REAL ESTATE MULTIPLE LISTING SERVICE SYSTEM

Refer to the description of the Real Estate Multiple Listing Service

system in the Chapter 5 case studies. Using the event list and ERD

for that system as a starting point, develop the following object-ori-

ented models:

1. Convert your ERD to a domain class diagram.

2. Develop a use case diagram.

3. Create a fully developed use case description or an activity

diagram for each use case.

4. Develop a system sequence diagram for each use case.

THE STATE PATROL TICKET PROCESSING SYSTEM

Refer to the description of the State Patrol ticket processing system

in the Chapter 5 case studies. Using the event list and ERD for that

system as a starting point, develop the following object-oriented

models:

1. Convert your ERD to a class diagram.

2. Develop a use case diagram.

3. Create fully developed use case descriptions for two of the

primary use cases, such as Recording a traffic ticket and

Scheduling a court date.

4. Develop system sequence diagrams for those same use cases.

5. Develop a state machine diagram for a ticket.

THE DOWNTOWN VIDEOS RENTAL SYSTEM

DownTown Videos is a chain of 11 video stores scattered through-

out a major metropolitan area in the Midwest. The chain started

with a single store several years ago and has grown to its present

size. Paul Lowes, the owner of the chain, knows that competing

with the national chains will require a state-of-the-art movie rental

system. You have been asked to develop the system requirements

for the new system.
Each store has a stock of movies and video games for rent. For

this first iteration, just focus on the movies. It is important to keep
track of each movie title and to identify its category (classical,
drama, comedy, and so on), its rental type (new release, standard),
movie rating, and other general information such as producer,
release date, and cost. In addition to tracking each title, the busi-
ness must track individual copies to note their purchase date, their
condition, their type (VHS or DVD), and their rental status. User
functions must be provided to maintain this inventory information.

Customers, the lifeblood of the business, are also tracked.
DownTown considers each household to be a customer, so special
mailings and promotions are offered to each household. For any
given customer, several people may be authorized to rent videos
and games. The primary contact for each customer can also estab-
lish rental parameters for other members of the household. For
example, if a parent wants to limit a child’s rental authorization to
only PG and PG-13 movies, the system will track that.

Each time a movie is rented, the system must keep track of
which copies of which movies are rented; the rental date and time
and the return date and time; and the household and person rent-
ing the movie. Each rental is considered to be open until all of the
movies and games have been returned. Customers pay for rentals
when checking out videos at the store.

For this case, develop the following diagrams:

1. A domain model class diagram.

2. A use case diagram. Analyze user functions. Also do a

CRUD analysis based on the class diagram.

CASE STUDIES

276 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

C6696_07_CTP.4c 1/28/08 8:22 AM Page 276

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 7 The Object-Oriented Approach to Requirements ♦ 277

3. An activity diagram for each of the use cases that involve

renting and checking in movies, and each of the use cases

that maintain customer and family member information.

4. A system sequence diagram for each of the use cases from

problem 3.

5. A state machine diagram identifying the possible states

(status conditions) for a physical copy of a movie, based on

the use case descriptions provided earlier in the chapter

and your knowledge of how a video store might work.

THEEYESHAVEIT.COM BOOK EXCHANGE

TheEyesHaveIt.com Book Exchange is a type of e-business exchange

that does business entirely on the Internet. The company acts as a

clearinghouse for both buyers and sellers of used books.
To offer books for sale, a person must register with EyesHaveIt.

The person must provide a current physical address and telephone
number, as well as a current e-mail address. The system will then
maintain an open account for this person. Access to the system as a
seller is through a secure, authenticated portal.

A seller can list books on the system through a special Internet
form. Information required includes all of the pertinent information
about the book, its category, its general condition, and the asking
price. A seller may list as many books as desired. The system main-
tains an index of all books in the system so that buyers can use the
search engine to search for books. The search engine allows
searches by title, author, category, and keyword.

People who want to buy books come to the site and search for
the books they want. When they decide to buy, they must open an
account with a credit card to pay for the books. The system main-
tains all of this information on secure servers.

When a request to purchase is made, along with the payment,
TheEyesHaveIt.com sends an e-mail notice to the seller of the book that
was chosen. It also marks the book as sold. The system maintains an
open order until it receives notice that the books have been shipped.
After the seller receives notice that a listed book has been sold, the
seller must notify the buyer via e-mail within 48 hours that the purchase
is noted. Shipment of the order must be made within 24 hours after the
seller sends the notification e-mail. The seller sends a notification to
both the buyer and TheEyesHaveIt.com when the shipment is made.

After receiving notice of shipment, TheEyesHaveIt.com main-
tains the order in a shipped status. At the end of each month, a
check is mailed to each seller for the book orders that have been in
a shipped status for 30 days. The 30-day waiting period exists to
allow the buyer to notify TheEyesHaveIt.com if the shipment does
not arrive for some reason, or if the book is not in the same condi-
tion as advertised.

If they want, buyers can enter a service code for the seller. The
service code is an indication of how well the seller is servicing book
purchases. Some sellers are very active and use TheEyesHaveIt.com
as a major outlet for selling books. So, a service code is an impor-
tant indicator to potential buyers.

For this case, develop the following diagrams:

1. A domain model class diagram

2. A use case diagram

3. A fully developed description for two use cases such as

Add a seller and Record a book order

4. A system sequence diagram for each of the two use cases

in problem 3

RETHINKING ROCKY MOUNTAIN OUTFITTERS

The event table for RMO is shown in Figure 5-12.

Based on this event table, the use case diagram in

Figure 7-5 was developed. The chapter illustrates

detailed models (activity and system sequence dia-

grams) for Create new order.
Using the information provided in the RMO case descriptions

and the figures in the book (Figures 5-12 and 7-5), create a fully
developed use case description and system sequence diagram for
each of the following Customer actor use cases: (1) Update order
and (2) Create order return. Now do the same for both of the
Shipping actor use cases.

FOCUSING ON RELIABLE PHARMACEUTICAL SERVICE

Previous chapters have described the activities

and processes of Reliable Pharmaceutical

Service. Use the previous descriptions, particu-

larly the basic description in Chapter 1 and the detailed descriptions

from Chapter 5, as well as the following additional description of

the case, to develop object-oriented requirements models.

Company processes (for use case development):

There are several points in the order-fulfillment process at which

information must be recorded in the system. Obviously, new orders

must be recorded. Case manifests must be printed at the start of

each shift. In fact, because a prescription itself may take a fairly long

time to be completely used, as in the case of long-standing prescrip-

tions, information must be entered into the system each time a

medication is sent (prescription fulfillment), noting the quantity of

medication that was sent and which pharmacist filled the prescrip-

tion for that shift.
As explained in Chapter 5, basic information about all of the

patients, nursing homes, staff, insurance companies, and so forth
must also be recorded in the system.

Information requirements (for class diagram requirements):

Reliable needs to know about the patients, the nursing home, and

the nursing-home unit where each patient resides. Each nursing

home has at least one but possibly many units. A patient is assigned

to a specific unit.
Prescriptions are rather complex entities. They contain basic

information such as ID number, original date of order, drug, unit of
dosage (pill, teaspoon, suppository), size of dosage (milligrams,
number of teaspoons), frequency or period of dosage (daily, twice a
day, every other day, every 4 hours), and special considerations (take
with food, take before meals). In addition, there are several types of
prescriptions, each with unique characteristics. Some orders are for
a single, one-time-only prescription. Some orders are for a certain

C6696_07_CTP.4c 1/28/08 8:22 AM Page 277

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

278 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

number of dosages (pills). Some orders are for a time period (start
date, end date). Information about the prescription order must be
maintained. An order occurs when the nursing home phones in the
needed prescriptions. Because prescriptions may last for an
extended period of time, a prescription is a separate entity from the
order itself. The system records which employee accepted and
entered the original order.

The system also has basic data about all drugs. Each drug has
generic information such as name, chemical, and manufacturer.
However, more detailed information for each type of dosage, such
as the size of each pill, is also kept. A single drug may have many
different dosage sizes and types.

In addition, information about the fulfillment of orders must
also be maintained. For example, on a prescription for a number of
pills, the system must keep a record of each time a pill or a number
of pills is dispensed. A record is also maintained of which pharma-
cist or assistant fulfilled the order. Assume all prescriptions are dis-
pensed only as needed for a 12-hour shift.

Basic data is kept about prescription payers, such as name, address,
and contact person. For this first iteration, do not worry about billing or
payments. Those capabilities may be added in a later iteration.

Based on your previous work, the cases from prior chapters,
and the description here, do the following:

1. Refine and extend the domain model class diagram you

developed in Chapter 5 as necessary.

2. Develop a use case diagram. Base it directly on the event

table you created for Chapter 5. Be sure to include a CRUD

analysis with your class diagram from question 1 and dis-

cuss what additional use cases might be needed based on

your CRUD analysis.

3. Develop an activity diagram for each use case related to

entering new orders, creating case manifests, and fulfilling

orders. You should have at least three activity diagrams.

Write a fully developed use case description for each of

these use cases.

4. Develop a system sequence diagram for each use case you

developed in question 3.

5. Develop a state machine diagram for an order.

C6696_07_CTP.4c 1/28/08 8:22 AM Page 278

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 7 The Object-Oriented Approach to Requirements ♦ 279

FURTHER RESOURCES

Grady Booch, James Rumbaugh, and Ivar Jacobson, The Unified

Modeling Language User Guide. Addison-Wesley, 1999.

E. Reed Doke, J.W. Satzinger, and S.R. Williams, Object-Oriented

Application Development Using Java. Course Technology, 2002.

Hans-Erik Eriksson, Magnus Penker, Brian Lyons, and David

Fado, UML 2 Toolkit. John Wiley & Sons, 2004.

Martin Fowler, UML Distilled Third Edition: A Brief Guide to the

Standard Object Modeling Language. Addison-Wesley, 2004.

Ivar Jacobson, Grady Booch, and James Rumbaugh, The Unified

Software Development Process. Addison-Wesley, 1999.

Philippe Kruchten, The Rational Unified Process, An

Introduction (3rd Edition). Addison-Wesley, 2005.

Craig Larman, Applying UML and Patterns: An Introduction to

Object-Oriented Analysis and Design and the Unified Process, 3rd

Edition. Prentice-Hall, 2005.

Object Management Group, UML 2.0 Superstructure

Specification, 2004.

James Rumbaugh, Ivar Jacobson, Grady Booch, The Unified

Modeling Language Reference Manual. Addison-Wesley, 1999.

C6696_07_CTP.4c 1/28/08 8:22 AM Page 279

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

280

EVALUATING ALTERNATIVES FOR
REQUIREMENTS, ENVIRONMENT,
AND IMPLEMENTATION8
L E A R N I N G O B J E C T I V E S

After reading this chapter, you should be able to:

■ Prioritize the system requirements based on the desired scope and level of

automation for the new system

■ Describe the strategic decisions that integrate the application deployment

environment and the design approach for the new system

■ Determine alternative approaches for system implementation

■ Evaluate and select an implementation approach based on the needs and

resources of the organization

■ Describe key elements of a request for proposal (RFP) and evaluate vendors’

proposals for outsourced alternatives

■ Develop a professional presentation of findings to management

CHAPTER

C H A P T E R O U T L I N E

Project Management Perspective

Deciding on Scope and Level of Automation

Defining the Application Deployment Environment

Choosing Implementation Alternatives

Contracting with Vendors

Presenting the Results and Making the Decisions

C6696_08_CTP.4c 1/28/08 8:23 AM Page 280

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 8 Evaluating Alternatives for Requirements, Environment, and Implementation ♦ 281

TROPIC FISH TALES: NETTING THE RIGHT SYSTEM

Robert Holmes wasn’t exactly sure how to proceed with his project. He had six proposals
from software vendors to develop an Internet-based ordering system for his company, Tropic
Fish Tales. He and his project team had to figure out some way to make a meaningful com-
parison among the proposals to determine which alternative best fit the needs of the
company. Then he had to make a presentation of his analysis and recommendations.

The problem was that none of the six proposals was the same. He and his team had spent
a tremendous amount of time developing a request for proposal (RFP) that they had sent to
several firms providing custom solutions. They had worked hard on the RFP to make sure that
it contained a very precise definition of business requirements. Even with this well-designed
RFP, none of the six proposals looked the same. He was going to have to devise a method to
do a fair comparison among the proposals. Otherwise, how would he know which solution
was the best for Tropic Fish Tales?

His company had made an early decision to develop an RFP and obtain outside assistance
with the development. The project appeared to be pretty large, and the information system
staff was quite small and inexperienced. The least-expensive solution was from a company
that had a standard off-the-shelf ordering system. The advantage was that it would be quick
and fairly inexpensive to install and get working. However, the disadvantage was that it did
not quite fit all of the requirements. Robert wasn’t sure how important the missing function-
ality was to his company. The system could be made to work with some modifications to
work procedures and forms.

At the other end of the spectrum was a proposal for a completely new state-of-the-art sys-
tem for Internet sales, with electronic interfaces to suppliers and shippers. This system was a
complete electronic commerce solution with fully automated support. The proposal also
indicated that substantial transaction, customer, and order history information would be
retained and available in real time. The system also contained automated inventory manage-
ment functions. Although the system had more capability than the company really needed, it
would certainly bring Tropic Fish Tales to the forefront of high-technology solutions. Robert
wondered whether the company could afford the price, however, which was about three times
the cost of the low-cost solution.

The other proposals ranged between the two extremes. One company proposed to develop a
system from the ground up, working very closely with Robert’s firm to ensure that the system fit
the requirements perfectly. Another company had a base system that it proposed to modify. The
base system was for a different industry and was not currently Internet based, so substantial
modifications would be necessary. One solution ran only on UNIX machines. Even though the
system appeared to have most of the desired functionality, it would take some work to modify it
for a Windows server network, which is the current environment for the company.

Robert was scheduled to meet Bill Williams, the director of information systems, later in
the day. He hoped Bill would have some suggestions about how to address this problem.

OVERVIEW

As we discussed in previous chapters, the six major analysis activities of system development
are the following:

• Gather information
• Define system requirements
• Prototype for feasibility and discovery
• Prioritize requirements
• Generate and evaluate alternatives
• Review recommendations with management

C6696_08_CTP.4c 1/28/08 8:23 AM Page 281

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

You have already learned about fact finding, defining system requirements, and prototyping activ-
ities. You learned how to define system requirements using either a traditional approach or an
object-oriented approach. This chapter explains the last three analysis activities—that is, the tran-
sitional activities that refocus the project from discovery and analysis to solutions and design.
These final activities are pivotal in the project; they set the direction for the design and imple-
mentation of the solution system.

We first discuss the project management orientation that underlies all three activities.
Recall from Chapter 3 that one of the major responsibilities of the project manager is to
define and control the scope of the new system. The objective of prioritizing the requirements
is to define the scope of the system precisely, and the scope directly affects the project cost
and schedule, which are also the project manager’s responsibility. Evaluating implementation
alternatives guides the rest of the project. The outcome of these final activities determines the
detailed schedule for the final phases of the project.

Next, we discuss evaluating and prioritizing the system requirements. It is normal during
analysis to uncover many more requirements and needs than can reasonably be included
within the system, so the development team must categorize and prioritize the requirements
to determine what to include. Frequently, two or three alternative combinations of require-
ments will be developed, along with their required resources, and then an oversight commit-
tee of executives, users, and technical managers decides which approach is most viable. This
chapter discusses various strategies for prioritizing requirements and selecting a scope and
level of automation.

Then we discuss the various alternatives for the production environment, including alter-
natives for the hardware configuration and operating systems. The existing or planned envi-
ronment for the new system is a critical consideration—that is, what hardware, system
software, networks, and standards will support the new system? The chapter contains a brief
overview of choices and constraints for the deployment and development environments. We
also demonstrate the important points to consider in the environment by discussing them in
the context of Rocky Mountain Outfitters and its new system.

Next, we discuss the alternatives for design and implementation. The focus is on the vari-
ous options for actually building and installing the system. After the system scope is deter-
mined and a decision on the environment has been made, several alternative methods of
development are reviewed. These alternatives can range from building the new system com-
pletely from scratch to buying a system from someone else to outsourcing the entire develop-
ment and daily operation. We review the most popular alternatives and discuss steps used to
make a selection. Included within this discussion are instructions on how to develop and use
a request for proposal (RFP).

Although we present these activities as the last three activities associated with analysis, in
most cases they are done in parallel with other analysis activities. In predictive types of pro-
jects the requirements can be prioritized as detailed specifications are developed. Ongoing
consideration and evaluation of the deployment environment, including hardware and sys-
tem software, is done early in the project. For adaptive types of projects, decisions about over-
all capability are made early. Detailed decisions about the exact nature of the various
functions can be deferred until later in the project. However, deployment environment deci-
sions must be made early in the project because early iterations will implement portions of
the system. Hence, even though the textbook presents them as final analysis activities, they
are actually parallel activities for analysis.

Finally, this chapter discusses the concepts associated with presenting initial findings to
upper management with recommendations in order to obtain approval and funding for the
remainder of the project. In predictive projects, this decision milestone may be a major mile-
stone and may only need to be done once. For adaptive projects, milestones may be encoun-
tered on several occasions, which require corresponding evaluation, presentation, and
decisions.

282 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

C6696_08_CTP.4c 1/28/08 8:23 AM Page 282

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 8 Evaluating Alternatives for Requirements, Environment, and Implementation ♦ 283

PROJECT MANAGEMENT PERSPECTIVE

In Chapter 3 we saw that the activities during project planning required the project manager’s
heavy involvement. The analysis activities described in this chapter are no different in that
regard. But in addition to a management component, they also have a critical technical
requirement. Thus, both the project manager and senior technical members of the project
team must work together to complete these activities successfully.

System development projects come in all sizes and complexities and vary in the level of their
formality. One effective technique for managing large or complex projects is to develop decision
metrics—systems to measure the alternatives and to evaluate them based on their relative scores.
Other projects are smaller and less complex and can use more informal techniques with fewer
metrics. In this chapter, we discuss several techniques to help in evaluating alternatives.

In Chapter 3, and in Appendix A on the textbook's Web site, nine knowledge areas of project
management are identified: scope, time, cost, quality, human resources, communications, risk, pro-
curement, and integration. The three activities of prioritizing requirements, evaluating alternatives,
and reviewing recommendations with management involve seven of the nine knowledge areas.

A project’s scope is directly affected by the priorities established for the system require-
ments. While prioritizing requirements, the project manager precisely defines the functions
that will be included in the project and sets a baseline, which he or she can use to control and
direct the rest of the project. A firm list of functions that users and project staff have agreed to
can control the scope of the project and keep it manageable. If no firm decisions are ever
made about what should be in the new system, it is almost impossible for the project man-
ager to control the size of the project.

The schedule, which is part of project time management, is further developed at this time,
as decisions are made about the scope, environment, and implementation. In fact, in many
projects, the schedule is not completed until these decisions are made. For example, if the
team decides to purchase components for the new system or to hire outside programmers,
the project schedule must reflect those decisions.

Project cost management involves both estimating the project costs and controlling them.
Costs and schedule profoundly affect decisions regarding a project’s scope, environment, and
implementation. Frequently, a project manager must recalculate the cost/benefit ratio to con-
firm a project’s financial feasibility. On many projects, a go/no-go decision is made at this
stage of analysis—when the project manager recalculates costs and benefits.

Presenting findings to the oversight committee is a key responsibility of a project man-
ager. Project communications management involves collecting and explaining all of the key
decisions, feasibility analyses, risks, benefits, schedules, and costs to the stakeholders who are
funding the project.

As the team makes decisions, particularly technical decisions about environment and
implementation, the project manager must determine and evaluate the various risks associ-
ated with each alternative. A complete risk analysis and feasibility assessment is done for each
of the alternatives being considered. Because key project decisions are being made, it is
important for the project manager to conduct a thorough risk analysis.

As implementation alternatives are evaluated, the project manager begins activities associ-
ated with procurement management. Vendors must be identified and evaluated. Requests for
proposals are developed, and proposals are evaluated. Contract negotiations may even begin.
An effective project manager must have good procurement skills to ensure that reliable and
professional vendor relationships are established and good purchase decisions are made.

Finally, even though specific tasks might not be directly associated with project quality
management, it should be obvious that quality is the objective of all activities.

Project management runs throughout a project’s lifetime, but the two times when project
management tasks are most prevalent are during the initial planning activities and during the
evaluation of system alternatives. The skills of the project manager are most evident as critical
decisions and project directions are established.

C6696_08_CTP.4c 1/28/08 8:23 AM Page 283

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The decisions affecting requirements, environment, and implementation approach are made
together because they are interdependent. In the following sections, we treat each topic separately,
but in reality they are all intertwined. First, we address the requirements and project scope.

DECIDING ON SCOPE AND LEVEL OF AUTOMATION

Prioritizing requirements includes tasks to define both the scope and the level of automation for
the new system. Scope and level of automation are two very closely related aspects of the new
application system. The scope of the system defines which business functions will be included in
the system. For example, in the current Rocky Mountain Outfitters (RMO) point-of-sale system,
the scope includes handling mail and telephone sales, but not Internet sales. The level of automa-
tion is how much computer support exists for the functions that are included. In the new system,
a very low level of automation for telephone sales would be to require telephone clerks to use
printed catalogs at their desks to verify customer requests. The system would then support only
simple data entry of the order information. A higher level of automation for telephone sales
would be to have the catalog and customer information online so that telephone clerks get auto-
mated entry and verification of inventory items and customer name and address information.

CONTROLLING A PROJECT’S SCOPE

One common problem with development projects is scope creep. As the name implies, the
development team may receive requests to add new system functions after the requirements
have been defined and decisions finalized. One way to help control this problem is by for-
malizing the process to identify, categorize, and prioritize the functions that will be included
within the new system so that everyone agrees to and signs off on system functions. In
Chapter 5, you learned that the event table describes all of the business events that the system
must support. Continuing to use the event table to control which business functions will be
supported by the new system is an effective technique to control the project’s scope.

During analysis, users usually request many more business functions than the schedule
and budget can allow. The team needs to decide which functions are critical and must be
included and which can be deferred until later. A common approach to determine the scope
is to list each requested function and rate its importance, using such categories as “manda-
tory,” “important,” and “desirable.” Determining the priority of each function is usually done
in conjunction with a description of the level of automation for each function.

Remember that predictive projects are better adapted to applications that are fairly well
defined. Thus, scope decisions are usually made and even finalized fairly early in the project.
A scope decision milestone, with accompanying presentation, is often completed as require-
ments are finalized. Adaptive projects, however, often require partial decisions at various
points during the life of the project. In many ways, scope decisions, which are dispersed
throughout the project, make it much more difficult to control the scope in adaptive projects.
It is too easy to spend scarce resources such as time, money, and human effort on capabilities
that are less important to the organization's business need and hence to the project.

DETERMINING THE LEVEL OF AUTOMATION

The level of automation describes the support the system will provide for each function. For
most functions of an application system, at least three levels of automation can be defined:
low, middle, and high. At the lowest level, the computer system only provides simple record
keeping. Data input screens allow employees to capture information and insert it into a data-
base. Simple field edits and validation of input data are also included. For example, a low
level of automation for an order-entry function has a data-entry screen to enter customer and
order information. The system date may be used for the order date. The user manually enters
each line item for the order. The system might or might not automatically calculate the price.

284 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

C6696_08_CTP.4c 1/28/08 8:23 AM Page 284

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 8 Evaluating Alternatives for Requirements, Environment, and Implementation ♦ 285

Usually, stock on hand and anticipated shipment dates cannot be verified. At the end of order
entry, the information is stored in the database and the function is concluded.

Analysts also define a middle-range level of automation for each function, which may be
a single midrange point or various midrange alternatives. Usually, the midrange alternative is
a combination of features from the high-level and the low-level automation alternatives.
Analysts make their best guess of what is necessary and what is justified at the current stage of
technology and within the budget.

A high level of automation occurs when the system takes over, as much as possible, the pro-
cessing of a function. Usually, it is more difficult for an analyst to define high-end automation
than low-end automation because low-end automation is basically an automated version of a
current manual procedure. However, generating a high-level automation alternative requires
brainstorming and thinking “outside the box” to create new processes and procedures. Business
Process Management is a discipline whose objective is to evaluate the effectiveness of current
business processes with the potential of eliminating or completely revamping workflows into
highly efficient processes. Often radical approaches are designed that provide dramatic increases
in processing speeds and levels of service. In almost all cases, well-designed computer systems
with high levels of automation are necessary to achieve "order of magnitude" improvements.

Figure 8-1 is a table that contains both scoping and level of automation information for
each function of the RMO customer support system. The figure contains all of the business
events from the original event table (see Figure 5-12) as well as seven new functions that were
identified during systems analysis. The objective of this table is to identify all of the potential
events and functions that the new system needs to perform. Each business function is priori-
tized as mandatory, important, or desirable. Users and clients prioritize the functions based
on the needs of the business and the objectives of the new system. For example, if one objec-
tive of the system is to increase customer support, functions that allow RMO to respond to
customer requests will be mandatory functions, at least at some level of automation.

Functions (expanded Priority (mandatory, Low-end Medium (most High-end automation
from event list) important, desirable) automation probable) automation (medium level plus

. . . when + appears)

Check item availability Important Periodic listing Real-time; internal + Sales prompting
of quantity and Web
on hand

Place order Mandatory Clerk data Clerk real-time and + Promotion
entry customer via Web prompting and stock-

out alternatives

Change or cancel order Important Clerk Clerk real-time and Clerk real-time and
overnight customer via Web customer via Web up to

for 24 hours shipment

Check order status Important Clerk Clerk real-time and + Automatic notification
overnight customer via Web

Fulfill order Mandatory Print pull Pull list, shipping Automated warehouse
list and label, real-time update Real-time update
shipping label

Create back order Important Clerk data Real-time + System automatic
entry and notify supplier

Return item Important Clerk data Real-time, clerk update Automatic inventory
entry restock, and customer and account update

Mail catalog Mandatory Print labels Personalize cover letter + Personalize
throughout

Correct customer Important Data entry Real-time + Automatic from activity
account

Send promotional Important Print labels Personalized cover page Personalized based on
material buying history

Figure 8-1

RMO’s CSS functions

with priorities and three

levels of automation

C6696_08_CTP.4c 1/28/08 8:23 AM Page 285

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

286 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Functions (expanded Priority (mandatory, Low-end Medium (most High-end automation
from event list) important, desirable) automation probable) automation (medium level plus

. . . when + appears)

Adjust customer charges Mandatory Data entry Real-time update + Automatic from activity

Update catalog Mandatory Data entry Real-time + Automatic suggestions
from sales history

Create promotional Important Data entry Real-time Recommendations
materials based on sales history

Create new catalog Mandatory Record keeping Record keeping of Digital scan and page
of products, products, prices, pictures, layout
prices, and and layouts
so on

System Reports

Produce order summary Important Printed on Online view and real-time Data visualization tools
reports request

Produce activity reports Important Printed on Online view and real-time Data visualization tools
request

Produce transaction Important Printed on Online view and real-time Data visualization tools
summary reports request

Produce customer Important Printed on Online view and real-time Data visualization tools
adjustment report request

Produce fulfillment Important Printed on Online view and real-time Data visualization tools
reports request

Produce catalog activity Important Printed on Online view and real-time Data visualization tools
reports request

Newly Identified Events

Maintain customer Important Archive files Archive, printed Automatic, real-time
purchase history with summary promotional notices for sales prompting

reports

Provide ongoing feed Desirable Printed Daily update Real-time and trend
to manufacturing reports analysis

Provide EDI feed to Desirable Printed Daily update Real-time and trend
suppliers from sales data reports and analysis

history

Tie in to shipper system Desirable No link Daily update and e-mail Automatic feed and
notification to customer shipment tracking via

Web link

Perform data ware- Desirable Trend analysis Trend analysis, data
housing and conduct visualization tools
data analysis

Prompt automated sales Desirable Based on promotions Based on sales
promotions and history

Conduct expanded sales Desirable Printed reports Data visualization tools
analysis with DSS

Figure 8-1 cont.

RMO’s CSS functions

with priorities and three

levels of automation

The table also includes various levels of automation for each function. The analysts do
not attempt to describe every characteristic of each level of automation in the table.
Supporting descriptions will describe each cell in more detail. The table provides an overview
of the functions, the priority of each, and the various methods to implement each function at
the different levels of automation.

C6696_08_CTP.4c 1/28/08 8:23 AM Page 286

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 8 Evaluating Alternatives for Requirements, Environment, and Implementation ♦ 287

Let’s take the order-entry function within RMO as an example. We start by identifying the
best customer service possible. We ask the question, “Why does a customer need to be able to
order exactly what she wants at the most convenient time?” Also, “What does a customer
want to know about her order at the time she has finished ordering?” (Normally, we would
try to reengineer the entire process and would also ask questions such as, “When, or how
soon, does the customer want to receive the items she has ordered?” But let’s limit our discus-
sion only to the order-entry component of the process.)

To answer the order-entry questions, RMO staff decide that they want to provide their
online customers all the benefits of catalog shopping: convenience, the ability to order any-
time of day or night, no crowds, the ability to order from home, wide selection, simplicity of
ordering, and privacy. RMO also wants to provide, as much as it is feasible, the benefits of
store shopping: being able to inspect the items; trying them on and comparing sizes, colors,
and patterns; having items and related accessories near each other; examining several prod-
ucts together for match and compatibility; and so forth.

Given the stated desires, a high-end system might have the following characteristics:

• Customers can access the catalog online, with full-color, three-dimensional pictures. For
more technical products, the catalog should include detailed descriptions and diagrams
showing their construction and other details. This service can be provided for Internet cus-
tomers through the Web. For telephone customers, the catalog can be provided through
the phone line, directly to a television set.

• The catalog is also interactive and allows the customer to combine several items with
graphical imaging that displays them together (for example, showing a shirt, jacket, and
shorts on a simulated person).

• The user interface to the catalog and order system is either voice activated or keypad
activated.

• The system should make suggestions of related items that customers may need or desire
to purchase at the same time.

• The system should verify that all items are in stock and establish a firm time when shipment
will occur. (The fulfillment portion of the system should support shipment within 24 hours
or less or, even better, guarantee same-day delivery.)

• Items not in stock should be immediately ordered from the manufacturer or other supply
source (the system will immediately send the transaction to the other systems), enabling
RMO to ensure delivery to the customer at a future date.

• Payment is verified online, just as in a store.
• The customer can see a history of all prior orders and can check the status of any individ-

ual order either with the telephone or on the Web.

Interestingly, all of these capabilities can be supported with current technology. The question,
of course, is whether RMO can justify the cost at this time. In any event, we have defined high-
end automation for the order-entry portion of the new system.

SELECTING ALTERNATIVES

After the identified functions have been prioritized and the levels of automation have been ana-
lyzed, the project team reviews all the alternatives. Preliminary decisions might have been made
based on individual need or importance, but the entire group of alternatives is normally evalu-
ated together. This provides a more global, or “big picture,” view of the proposed system. This is
true of both predictive and adaptive projects. Adaptive projects may have less detail at this point,
but an overall view of system scope is important for any type of new development. In recent
years, companies have been building new systems to gain competitive advantage in the market-
place. In addition, more and more companies are entering into e-commerce ventures on both
the supply and delivery sides. By establishing more global and strategic criteria, companies can

C6696_08_CTP.4c 1/28/08 8:23 AM Page 287

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

make better long-term decisions for their new systems. The following list identifies some of the
key criteria that are used:

• Strategic Plan. The initial decision to develop a new information system is frequently an
outgrowth of a long-term strategic plan. As discussed previously, strategic planning occurs
both for the long-term organizational strategy and for information technology to support
organizational plans. As decisions are made concerning individual capabilities of the new
system, the strategic plan is frequently used as a global measuring rod. For example, if an
organization’s long-term goal is to develop a supply chain system with automatic inter-
faces between itself and its suppliers, the system must be designed to support these inter-
faces even though they might not be implemented in a first phase.

• Economic Feasibility. Obviously, higher levels of automation require substantially more
funds to implement. Frequently, development teams generate several groups of capabili-
ties and levels of automation and then project costs to develop those different packages.
With more detailed information about requirements and assessments of the difficulty of
developing certain capabilities, a more accurate cost/benefit analysis can be generated.

• Schedule and Resource Feasibility. Including more advanced features in a system not only
costs more but also lengthens the schedule. One effective method to minimize the imme-
diate impact on a project is to plan for future system upgrades. All commercial software
developers work this way, and it is a viable alternative for in-house development. A new
system often has less capability than the organization ultimately desires. But as users gain
experience with the new system and information systems staff learn from past experience,
together they can enhance the system until they achieve the desired level of automation.

• Technological Feasibility. Not only must project teams review the technical feasibility of
desired alternatives, but they must also carefully consider whether the organization has
in-house expertise to develop and implement the system. Frequently, organizations hire
additional staff or contract with outside resources to obtain technical expertise. Usually it
is more prudent to select alternatives that do not require pushing the state of the art. Yet,
some companies with substantial funds and broad access to resources do so. For cutting-
edge projects, a detailed risk analysis is critical.

• Operational, Organizational, and Cultural Feasibility. Changes in business processes
also involve risk—risk that must be managed. Broader scope and higher levels of automa-
tion usually require organizations to reengineer their business functions and manual
processes. Benefits can be substantial and dramatic; however, users need support for the
change to maintain morale and commitment to the new system. Typically, information
systems staff underestimate the difficulties of changing people’s work procedures and job
activities. For that reason, it is usually a good idea to involve people who have been
trained in organizational behavior to assist in managing changes.

288 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Feasibility factors—economic feasibility, schedule feasibility, resource
feasibility, technological feasibility, organizational feasibility, and,
increasingly, risk—are used to evaluate the initial feasibility of a project and
the feasibility of each alternative.

BEST PRACTICE

C6696_08_CTP.4c 1/28/08 8:23 AM Page 288

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 8 Evaluating Alternatives for Requirements, Environment, and Implementation ♦ 289

EVALUATING ALTERNATIVES FOR RMO

Rocky Mountain Outfitters is in the preliminary stages of selecting functions and
automation levels for the customer support system. A final decision depends on the alterna-
tives the development team chooses for implementation. We explore those alternatives next.

Based on preliminary budget and resource availability, the project team at RMO deter-
mined that it is possible to include all functions that were categorized as either mandatory or
important in the table in Figure 8-1. For each of those functions, the team does a detailed
analysis for the desired level of automation. Fundamental decisions about level of automa-
tion affect several functions at the same time. For example, three levels of automation affect
Check item availability, Place order, Change or cancel order, and so forth. The three basic alterna-
tives listed in Figure 8-1 are (1) data entry of information with overnight processing, (2) real-
time entry for both employee clerks and for customers via the Web, and (3) the same system
as the medium level with added sales prompting based on promotions and even personal
customer purchase history. In fact, these three alternatives could even be divided into more
alternatives, such as Web versus no Web and sales prompting for promotions but not pur-
chase history. A fundamental decision on the automation level will then need to be consis-
tent across the listed functions.

Figure 8-2 lists the functions and shows by shading which functions are to be included
and at what level of automation. The low level of automation was not acceptable to RMO
management. Most of the current systems already provided that level of automation. At first,
RMO management thought that the medium level of automation was sufficient for the first
version of the system. It also did not put undue strain on the budget. However, upon further
discussion and consideration, RMO decided to move into high-end automation as rapidly as
possible. The technical support group was able to show that current trends in hardware
advances, such as processing speeds and storage capabilities, would allow RMO to acquire
sufficient computing capabilities to support many advanced functions. In this instance, the
excellent working relationship between Barbara Halifax, the project manager, and the techni-
cal support group helped to configure a solution that moved RMO forward. As shown in the
figure, RMO management chose the high-end alternative for many of the functions.
Management felt that company growth and competitive advantage would depend on sophis-
ticated and advanced sales support provided by the high-end automation.

Of the seven newly identified functions, RMO management decided to include three in
the project—two of which are at the high-end level of automation. The first addition is to pre-
pare for the high-end support by including the function to maintain customer history and
use it to develop special promotions. Feasibility analysis indicates that this alternative does
not require substantial increases in cost or length of the project schedule.

The second addition is a more rapid update of inventory levels to the manufacturing facil-
ities. The cost/benefit analysis of this alternative indicates an immediate return by a reduction
of back orders and stock-outs.

The third addition is a subsystem to provide more sophisticated analysis of sales trends.
This subsystem will utilize the database of sales orders and time series data based on cus-
tomer histories. Thus, it builds on the data being included for individual customers. It was
difficult for the project team to calculate a precise cost/benefit ratio for this new capability,
but the sales manager convinced the oversight committee that the capability was critical to
the future competitiveness of RMO. So, resources will be dedicated to add this capability. This
subsystem is somewhat independent, so to minimize its impact on the schedule, the project
team will implement the subsystem several months after the rest of the system.

C6696_08_CTP.4c 1/28/08 8:23 AM Page 289

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

290 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Functions (expanded Priority (mandatory, Low-end Medium (most High-end automation
from event list) important, desirable) automation probable) automation (medium level plus

. . . when + appears)

Check item availability Important Periodic listing Real-time: internal + Sales prompting
of quantity and Web
on hand

Place order Mandatory Clerk data Clerk real-time and + Promotion prompting
entry customer via Web and stock-out

alternatives

Change or cancel order Important Clerk Clerk real-time and Clerk real-time and
overnight customer via Web customer via Web up to

for 24 hours shipment

Check order status Important Clerk Clerk real-time and + Automatic notification
overnignt customer via Web

Fulfill order Mandatory Print pull list Pull list, shipping Automated warehouse
and shipping label, real-time update Real-time update
label

Create back order Important Clerk data Real-time + System automatic
entry and notify supplier

Return item Important Clerk data Real-time, clerk update Automatic inventory
entry restock, and customer and account update

Mail catalog Mandatory Print labels Personalize cover letter + Personalize
throughout

Correct customer account Important Data entry Real-time + Automatic from activity

Send promotional material Important Print labels Personalized cover page Personalized based on
buying history

Adjust customer charges Mandatory Data entry Real-time update + Automatic from activity

Update catalog Mandatory Data entry Real-time + Automatic suggestions
from sales history

Create promotional Important Data entry Real-time Recommendations
materials on sales history

Create new catalog Mandatory Record keeping Record keeping of Digital scan and page
of products, products, prices, layout
prices, and pictures, and layouts
so on

System Reports

Produce order summary Important Printed on Online view and real-time Data visualization tools
reports request

Produce activity reports Important Printed on Online view and real-time Data visualization tools
request

Produce transaction Important Printed on Online view and real-time Data visualization tools
summary reports request

Produce customer Important Printed on Online view and real-time Data visualization tools
adjustment report request

Produce fulfillment Important Printed on Online view and real-time Data visualization tools
reports request

Figure 8-2

Preliminary selection of

alternative functions and

level of automation for

RMO (selections are

shaded)

C6696_08_CTP.4c 1/28/08 8:23 AM Page 290

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 8 Evaluating Alternatives for Requirements, Environment, and Implementation ♦ 291

DEFINING THE APPLICATION DEPLOYMENT ENVIRONMENT

One of the primary considerations in developing a new information system is the
application deployment environment. The application deployment environment is the con-
figuration of computer hardware, system software, and networks in which the new applica-
tion software will operate. An important part of any project is ensuring that the application
deployment environment is defined and well matched to application requirements. At this
life cycle stage, the analyst’s goal is to define the environment in sufficient detail to be able to
choose from among competing alternatives and to provide sufficient information for design
to begin. Additional details are added as design proceeds.

HARDWARE, SYSTEM SOFTWARE, AND NETWORKS

In the early years of computer applications, there was only one application type and one deploy-
ment environment: a batch-mode application executing on a centralized mainframe using files
stored on disk or tape, with offline data-entry devices such as keypunch machines. As comput-
ing technology has matured, the range of application types has grown to include the following:

• Stand-alone applications on desktop or laptop computers, small server computers, and
PDA devices

• Online interactive applications with wired or wireless connectivity
• Distributed applications spread over various computing platforms and databases
• Internet-based applications

Just as the number of application types has proliferated, so has the variety of hardware,
system software, and networks that support them. Computers now range in size from hand-
held devices to large supercomputers. In addition, analysts are faced with many choices in
supporting software such as operating systems (for example, UNIX and Windows), database
management systems (for example, Oracle and DB2), component infrastructure software and
standards (for example, Java 2 Enterprise Edition [J2EE] and Microsoft .NET), and Web

Functions (expanded Priority (mandatory, Low-end Medium (most High-end automation
from event list) important, desirable) automation probable) automation (medium level plus

. . . when + appears)

Produce catalog activity Important Printed on Online view and real-time Data visualization tools
reports request

Newly Identified Events

Maintain customer Important Archive files Archive, printed Automatic, real-time
purchase history with summary promotional notices for sales prompting

reports

Provide ongoing feed Desirable Printed Daily update Real-time and trend
to manufacturing reports analysis

Provide EDI feed to Desirable Printed reports Daily update Real-time and trend
suppliers from sales data and history analysis

Tie in to shipper system Desirable No link Daily update and e-mail Automatic feed and
notification to customer shipment tracking via

Web link

Perform data Desirable Trend analysis Trend analysis, data
warehousing and visualization tools
conduct data analysis

Prompt automated sales Desirable Based on promotions Based on sales
promotions and history

Conduct expanded sales Desirable Printed reports Data visualization tools
analysis with DSS

Figure 8-2 cont.

Preliminary selection of

alternative functions and

level of automation for

RMO (selections are

shaded)

application

deployment

environment

the configuration of
computer equipment,
system software,
and networks for the
new system

C6696_08_CTP.4c 1/28/08 8:23 AM Page 291

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

server software (for example, Internet Information Server and Apache). Modern application
software relies on a complex infrastructure that includes the client and server hardware, sup-
porting system software, computer networks, and standards that enable them to operate
smoothly together.

When choosing or defining the deployment environment, analysts are concerned with
several important characteristics, including the following:

• Compatibility with System Requirements. Requirements such as user locations, speed of
access and update, security, and transaction volume have a significant impact on environ-
mental requirements. For example, high-volume transaction processing systems such as
credit-card payment-processing systems require secure high-speed networks, powerful
servers, and compatible operating systems and database management systems (DBMSs).

• Compatibility among Hardware and System Software. Although hardware and system
software compatibility has generally improved over time, it is still a significant considera-
tion. For example, because Oracle and Sun Microsystems are frequent partners in software
and standards development, it is no surprise that the Oracle DBMS performs well on Sun
servers running Solaris (Sun’s version of UNIX). Similarly, Microsoft operating systems and
database management systems are well suited to computers using Intel processors.
Ensuring good compatibility of hardware and system software simplifies a system’s instal-
lation and configuration, improves performance, and minimizes long-term operating costs.

• Required Interfaces to External Systems. Modern applications often interact with exter-
nal systems operated by entities such as credit-reporting agencies, customers, suppliers,
and the government. Implementing external interfaces may require a certain system soft-
ware and, less frequently, specific hardware. For example, a credit-reporting agency might
provide services via Web-based XML requests or a J2EE component. An application that
interacts with the credit-reporting system must support one or both of those interfaces
and include whatever system software is compatible with the interfaces.

• Conformity with the IT Strategic Plan and Architecture Plans. Because there are so
many choices in hardware and system software, organizations find it difficult and expen-
sive to support many different types. Most medium- and large-scale organizations have
strategic application and technology architecture plans that focus their efforts on a lim-
ited set of hardware and software alternatives. For example, an organization might
choose to emphasize a standard platform consisting of UNIX, Oracle, J2EE, and com-
patible hardware from Sun Microsystems and Hewlett-Packard. Although that environ-
ment might not be best for every application type, sticking to it whenever possible will
minimize the total cost of infrastructure maintenance and maximize the long-term
compatibility among systems for that particular organization.

• Cost and Schedule. Deployment environment alternatives may vary in their impact on
project cost and schedule. Typically, environment choices that match the IT strategic plan
and existing systems are the fastest and least expensive to acquire, configure, and support.

In sum, the analyst must define an application deployment environment that enables the
application to meet stated requirements, fits within the organization’s IT plans, and can be
acquired and configured within acceptable limits of budget and schedule.

DEVELOPMENT TOOLS

Analysts must also consider and select development tools. The development environment con-
sists of the programming language(s), CASE (computer-assisted software engineering) tool(s),
and other software used to develop application software. The specific deployment environment

292 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

development

environment
the programming
languages, CASE tools,
and other software used
to develop application
software

C6696_08_CTP.4c 1/28/08 8:23 AM Page 292

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 8 Evaluating Alternatives for Requirements, Environment, and Implementation ♦ 293

usually limits development environment choices. For example, choosing a deployment envi-
ronment based on Microsoft .NET limits the set of compatible development tools to those
provided by Microsoft (for example, Visual Studio .NET) and a relatively small number of third-
party vendors. System software choices will also be limited to those most compatible with the
deployment and development environment (for example, Microsoft server operating systems,
Internet Information Services, and SQL Server, for a .NET application).

Normally, companies have a preferred language for system development, and their ana-
lysts are familiar with its features. However, as technology changes, newer languages fre-
quently provide additional capabilities. Analysts can choose from numerous development
languages—from structured languages such as COBOL to object-oriented languages such as
Smalltalk, C++, and Java to Web-based languages such as JavaScript and PHP. Using a new
language does require additional commitment and funding to provide the development team
with necessary training.

The choice of development tools, such as compilers, debuggers, and integrated develop-
ment environments, is usually limited by the target operating system, database management
system, and component or Web service standards. For example, a deployment environment
consisting of UNIX, Oracle, and J2EE would usually lead developers to choose the Java pro-
gramming language and a tool suite such as Oracle JDeveloper, Sun ONE Studio, or IBM
WebSphere.

Many corporations have committed to a particular database management system, and it
can limit tool selection also. Most DBMS vendors also supply a compatible set of develop-
ment tools, which can substantially accelerate the development of some application types
compared with development tools not optimized to a particular DBMS. Examples include
Microsoft Access and Visual Basic, Microsoft SQL Server and Visual Studio .NET, and Oracle
Application Server and JDeveloper.

In sum, application deployment environment choices, particularly the operating system,
DBMS, and distributed software standard, tend to limit development tool choices. Thus, an
analyst should consider the deployment and development environments together when
determining their fit to a particular application.

THE ENVIRONMENT AT ROCKY MOUNTAIN OUTFITTERS

The systems environment at RMO had been built piecemeal over the life of the company to
support the business functions at the various locations. Currently, there are two major manu-
facturing plants, which provide products for three warehouses. The warehouses also stock
items from other manufacturers. Most applications are hosted at the Park City data center.

The Current Environment

Figure 8-3 illustrates the current hardware and software environment at RMO. RMO uses
modern servers, operating systems, and database management systems and connects them
with a high-speed network that supports data, voice, and video-conferencing. With the
exception of basic office software, most applications are relatively old. Some applications
were purchased and others were developed in-house. They are supported by a hodgepodge
of system software and are written in a variety of programming languages. All use terminal-
based interfaces and lack any Web-based interfaces. The current Web site is contracted to a
vendor in Salt Lake City and the RMO network extends to the Web hosting site.

C6696_08_CTP.4c 1/28/08 8:23 AM Page 293

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Proposed Environment

Many of the decisions associated with the target environment are made during strategic plan-
ning, which establishes long-term directions for an organization. In other situations, the strate-
gic plan is modified as new systems are developed to use the latest technological
advancements. In RMO’s case, many technical decisions were made during the initial phases of
the supply chain management (SCM) project that is well under way. Because the new customer
support system (CSS) must integrate seamlessly with the SCM, technical decisions must be
consistent with prior decisions as well as the long-term technology plan.

Because environment decisions are corporate-wide strategic decisions, RMO convened a
meeting to discuss the technology alternatives and to make decisions. Attendees consisted of
Mac Preston, chief information officer; John MacMurty, director of system development; and
Barbara Halifax, project manager. Additional technical staff were also included in the meeting
to provide details as needed.

To ensure that all participants were aware of potential alternatives, Barbara presented and
reviewed the information shown in Figure 8-4. This figure identifies potential implementa-
tion alternatives and was similar to the one used to make decisions for the SCM project. The

294 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Facility and location Computer hardware System software Application software

Data Center (Park City) Server cluster UNIX Supply chain management

Windows Server 2008 package

DB2 database management system Human resources

Microsoft Exchange application (C)

Accounting/finance package

Headquarters (Park City) Midrange server Windows Server 2008 Microsoft Office

Windows terminal services

Microsoft

Mail Order Center Mainframe server UNIX Mail order application
(Salt Lake City) (COBOL)

Windows Server 2008
Microsoft Office

Windows terminal services

Mail order application (COBOL)

Manufacturing Midrange server Windows Server 2008 Microsoft Office
(Portland and Salt Lake City)

Windows terminal services

Microsoft Windows

Phone Order Center Midrange servers Windows Server 2008 Phone order application
(Salt Lake City) (Visual Basic)

SQL Server database
Microsoft Officemanagement system

Windows terminal services

Microsoft Windows

Retail (Park City Small server UNIX Point of sale
and Denver) software package

Point of sale terminals

Warehouses (Albuquerque, Midrange server Windows Server 2008
Portland, and Salt Lake City)

Windows terminal services Microsoft Office

Microsoft Windows

Figure 8-3

The existing
processing
environment at RMO

C6696_08_CTP.4c 1/28/08 8:23 AM Page 294

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 8 Evaluating Alternatives for Requirements, Environment, and Implementation ♦ 295

alternatives are listed by type of technology and degree of centralization. The first three alter-
natives considered are whether to:

• Move to browser-based interfaces with some client-side processing.
• Use thin client browser-based interfaces.
• Use a mix of the two options.

The next two alternatives focus on supporting hardware for the database—whether to:

• Use a centralized database on a large server or server cluster.
• Distribute the database across several servers in multiple locations.

Finally, the location and type of database are considered. The decision is whether to use
more traditional relational database technology or to move to more advanced object-oriented
databases. Any decisions made for the CSS would need to be consistent with prior decisions
for the SCM.

RMO wants its system to be state of the art, but it also does not want to have a high-risk
project and attempt new technology that is not yet proven or for which it lacks needed skills
or experience. Figure 8-5 lists the major components of the strategic direction for RMO.

Current, well-tested technology can provide client/server processing on a rack of multi-
processor servers to support high-volume Internet transactions. Microsoft’s Internet Server
will provide Internet support. The existing DB2 database on the server cluster is a very viable
option to provide efficient back-end processing. The database will require redesign and must
be rebuilt for the new system, but the fundamental processing environment is solid.

Alternative Description

1. Implement browser-based interfaces This solution provides a consistent interface, extends
with Active-X or Java applets for internal applications to some remote locations, and facilitates
applications. e-commerce growth. Clients must support the applet

environment. Virtual private network (VPN) technology is
needed for remote access.

2. Implement browser-based interfaces for This solution also provides a consistent interface and
internal applications with all processing requires VPN technology. Applications are available from
on internal servers. more locations due to less dependence on the client

environment. More server capacity is required because
clients perform no processing functions.

3. Use a mix of alternatives 1 and 2. Use applets for applications with minimal remote access
requirements, such as human resources, and a thin
client model for applications with substantial remote
access requirements, such as supply chain
management.

4. Centralize the database. Supports high-volume transaction processing for
centralized applications and provides high security,
control, and consistency.

5. Distribute the database. Distributed data provides rapid response for distributed
applications and improves fault tolerance. It increases
total hardware costs and administrative complexity and
carries a higher risk, given RMO’s lack of experience
with the technology.

6. Use complete OO components, such as This solution would make seamless interfaces between
J2EE objects, supported by an OO applications—SCM, CSS, and other systems. It would
database management system. position RMO for future OO migration. This solution

requires middleware integration software.

7. Use OO for the user interface and Use Visual Basic or Java to develop the applications. Use
business processing layers with a DB2 or relational Oracle for database processing. This
traditional relational database. solution would be low-risk and very efficient for high

volumes.

Figure 8-4

Processing environment

alternatives

C6696_08_CTP.4c 1/28/08 8:23 AM Page 295

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

296 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Issue Direction(s)

Required interfaces to 1. Automatic feed to SCM system
other systems 2. Interface to feed the accounting general ledger

3. Interface to provide automatic feed to external systems—credit-card verification and package shipping
4. Potential move to XML for a common interface language

Equipment configuration 1. Servers with multiple CPU configuration for front-end applications
2. Database support provided with the existing server cluster

Operating system 1. Windows Server 2008 front-end servers
2. UNIX for server cluster

Network configuration 1. Windows network
2. IIS for Web servers

Language environment 1. Visual Basic, Java, and PHP for application and Web development

Database environment 1. Maintain DB2 database on the server cluster
2. Reevaluate long-term strategy for the OO database

Figure 8-5

Strategic directions for

the processing

environment at RMO

All of the COBOL applications will be replaced with new systems that will be written
using Java, Visual Basic, VBScript, and PHP as appropriate.

In this approach, the server cluster will remain as the central database server. The other two
tiers will be application servers. The users will have individual client personal computers that
are connected to the application servers. Barbara Halifax attached the table shown in Figure 8-5
to her biweekly status report to John MacMurty (see the accompanying memo). She also identi-
fied the other open issues that needed to be decided. Even though the operating environment
decisions are critical to the progress of the project, other important issues also still need to be
addressed.

C6696_08_CTP.4c 1/28/08 8:23 AM Page 296

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 8 Evaluating Alternatives for Requirements, Environment, and Implementation ♦ 297

CHOOSING IMPLEMENTATION ALTERNATIVES

So far, we have described the analysis and fact-finding activities in the development project.
As the project team makes decisions about the scope, level of automation, and processing
environment, it also makes related decisions about the actual approach to designing, pro-
gramming, and installing the system. There are numerous ways to implement a solution. For
example, if an application is fairly standard, perhaps the organization could just buy a com-
puter program or system to support it. Even for more sophisticated systems, other companies
may have already developed standard systems that can be purchased. If purchasing is not an
option, the organization might decide to build the system in-house, and even then there are
various alternatives. Outside programmers can be contracted for a range of services or specific
technical expertise. The point is that the organization must plan how to actually implement
the system, and there are a multitude of options.

Figure 8-6 presents some variations on implementing a system. The left axis represents the
build-versus-buy options. The bottom axis shows the alternatives of developing the system
in-house versus outsourcing the project. Each axis represents a continuum. For example, an
entire system can be bought, or the entire solution can be built. But between those extremes
are systems in which portions are purchased and portions are built. In other words, a basic
solution may be purchased, but it might require modification or programming of some com-
ponents to interface with existing systems. Similarly, many options exist for all or part of the
solution to be developed in-house or outsourced.

Turnkey
or

packaged
solutions

Enterprise
resource
planning
solutions

Custom-built solutions

Buy

Build

In-house Outsource

Facilities management
or Service provider

solutions

Figure 8-6

Implementation

alternatives

The shapes between the two axes show various general approaches to obtaining a system.
Facilities management occurs when the entire system, including development and operation,
is contracted to another company. Below that is packaged software or a turnkey system.
Although slightly different approaches—packaged software is shrink-wrapped, off-the-shelf,
whereas a turnkey system is a customized package—both usually require some modification
to fit the existing environment. Thus, these options usually have a “build” component.
Enterprise resource planning (ERP) solutions begin with a standard system, but they require
substantial integration with a company’s business processes. ERP solutions are integrated so

C6696_08_CTP.4c 1/28/08 8:23 AM Page 297

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

tightly with the entire organization and all its systems that the implementation frequently
requires a substantial effort. Custom-built systems require substantial programming by either
in-house staff or outsourced consultants and programmers. Each alternative is explained in
more detail in the following paragraphs.

FACILITIES MANAGEMENT OR SERVICE PROVIDER SOLUTIONS

Facilities management is the outsourcing of the entire data processing and information sup-
port capability for an entire organization. Facilities management is not an actual develop-
ment technique or implementation alternative. Instead, it is the result of an organization’s
strategic decision to move all system development, implementation, and operation to an out-
side provider. For example, a bank may hire a facilities management firm to provide all of its
data-processing capability. The computers, software systems, networks—even the technical
staff—all belong to the outside firm. The bank in essence has opted to let another firm
become its information systems department.

Outsourcing of all IS functions is a long-term, strategic decision. It applies to an entire
organization and not just a single development project. So, even though we discuss it as one
of the alternatives for implementation, this decision is not typically made by any project
team. It is usually a top executive decision. Normally, a facilities management contract
between an organization and a provider is a multimillion-dollar contract that covers services
for 8 to 10 years. Electronic Data Systems (EDS), a multibillion-dollar company, is one com-
pany that obtains the majority of its revenues by providing facilities management services to
many industries. EDS supports the banking, health insurance (such as Blue Cross and Blue
Shield), grocery, insurance, and retailing industries, as well as governments. EDS can provide
high-quality facilities management services in these various industries by employing a staff of
highly experienced industry specialists.

Service provider solutions also require a long-term strategic decision. In a service provider
solution, a company only buys the required technology services. No in-house computing
capability is required, at least not for the purchased service. For example, many small compa-
nies contract with other companies to host a store Web site. The service might include build-
ing and presenting the Web site, as well as the sales functions for the business, such as catalog
presentation, shopping cart and ordering support, and credit card and payment processing.
The business does not need computer expertise or computer personnel; it is all provided as a
service by the hosting company. Even for larger companies, there are service companies that
provide complete support for accounting, human resources, and payroll. For both
approaches, facilities management or service provider, the company does not build its own
in-house technology group, but depends entirely on outside providers.

PACKAGED, TURNKEY SOFTWARE, AND ERP SYSTEMS

Packaged software comprises software systems that are purchased to support a particular
application. A strict definition implies that the software is used as is, with no modifications.
We all have packaged software on our personal computers, such as a word processor or an
accounting/general ledger package. We buy the software components without the source code
but with documentation, install it, and use it. We don’t modify it or try to add new capabili-
ties. We use it exactly as it comes, with only the built-in options. The advantages of this soft-
ware are that it works well and is inexpensive for the amount of capability provided. It is also
usually well documented, relatively error free, and stable.

Packaged software has its place in the overall scheme of an organization’s IS strategy. First,
many packages can become part of a larger project. For example, a standard reporting system
package may provide reporting capabilities to users. Generally, whenever possible, companies
try to find packaged software to perform those standard functions.

A turnkey system is provided by an outside company as a complete solution, including
hardware and software, and the organization only needs to turn it on. In most cases, the outside

298 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

facilities

management
the outsourcing of all
data processing and
information technology to
an outside vendor

packaged

software
software that is already
built and can be
purchased as a package

turnkey system
a complete system
solution, including
software and hardware,
that can be turned over
to the purchasing
organization

C6696_08_CTP.4c 1/28/08 8:23 AM Page 298

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 8 Evaluating Alternatives for Requirements, Environment, and Implementation ♦ 299

vendor specializes in a particular industry and its application software. Literally hundreds of
firms, many of them small to medium-sized, specialize in systems for particular needs. These
turnkey system firms advertise in trade journals for an industry. A few examples are legal sys-
tems for law firms, video systems for video stores, patient record systems for dentists and doc-
tors, point-of-sale systems for small retail firms, construction management systems for
construction firms, library systems for libraries, and so forth. The list is almost endless.

One critical problem with turnkey systems is that they often do not exactly meet the needs
of an organization, and the organization frequently has the onerous task of modifying the way
it does business to conform to the computer system. Some turnkey system vendors will modify
their systems to suit particular customers. An organization normally purchases the base system,
a certain number of customized changes, and a service agreement. The vendor firm analyzes the
unique requirements of the organization and makes those changes to the program code. The
service agreement can range from simple input form and report modifications to more exten-
sive modifications over a period of months or years. In some cases, only executable code is pro-
vided; in others, both executable and source code are provided so that the organization can also
make its own modifications. Sometimes the vendor firm makes all modifications; other times
the purchasing organization may have programmers work with the vendor’s project team to
reduce the cost of customization and to gain experience on the new system. Again, numerous
combinations are possible, and this method is very popular for obtaining software for small and
medium-sized applications that are somewhat, but not completely, standard.

In the past, turnkey systems were used only for specialized systems within an organiza-
tion. However, recently, several large firms have introduced this approach for enterprisewide
systems. These systems, called enterprise resource planning (ERP) systems, support all opera-
tional functions of an entire organization. Companies such as SAP and Oracle have had good
success introducing ERP systems into organizations. Obviously, when the support is enter-
prisewide, the deployment is a major undertaking. Many of these projects take longer than a
year to install and cost millions of dollars.

The advantage of ERP systems is that a new system can usually be obtained at a much
lower cost and risk than through in-house development. The cost is lower because 60 to 80
percent of the application already exists in the base system. Risk is lower because the base sys-
tem is usually well developed and tested. In addition, other organizations are already using
it, so it has a track record of success.

The disadvantage is that the ERP system might not do exactly what the organization
needs, even after the system has been customized. Frequently, a gap exists between the exact
needs of the organization and the functionality the system provides. The company then must
modify its internal processes and train its users to conform to the new system. ERP systems
are discussed in more detail in Online Supplemental Chapter 1, “Packages and Enterprise
Resource Planning,” on the book’s Web site.

CUSTOM-BUILT SOFTWARE SYSTEMS

Custom-built software systems are those that are developed partly or completely by an out-
side organization and tailored to the exact needs of an organization. The new system is devel-
oped from scratch, based on the systems development life cycle. In some cases, the project
team is staffed entirely by a consulting firm; in others, the project team is a combination of
in-house staff and outside consultants.

The advantage of custom development is that an organization purchases a tremendous
amount of experience and expertise to build a new system. Usually, the consulting firm has
developed similar systems in the past and has extensive domain knowledge for a particular
industry and application. It also will have a large pool of very experienced staff to solve com-
plex technical problems. In addition, a large, experienced staff can be brought to the project
rapidly to meet schedules and deadlines. Outsourcing and contract development are the
fastest-growing segments of the IS industry.

C6696_08_CTP.4c 1/28/08 8:23 AM Page 299

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The major disadvantage of custom development, of course, is the cost. Not only is the organiza-
tion paying for the development of a new system, but it is paying for it in hourly wages for consul-
tants. Typically, organizations opt for custom development when they do not have in-house
expertise or have very aggressive schedules that must be met. Normally, the anticipated return on
investment for the new system must be quite high to justify the cost of this approach. Custom sys-
tems are usually large systems with very high transaction volumes. One example is a health-care sys-
tem with millions of claims to process. When the system can reduce the cost of processing a claim
by one or two dollars, the total savings reach millions of dollars quickly due to the high volume.

Most large and medium-sized companies have an in-house information systems develop-
ment staff. In fact, you might find excellent employment opportunities as a member of the
development staff in such companies. One of the main problems with in-house develop-
ment, particularly in medium-sized firms, is that a portion of a project may require special
technical expertise beyond employees’ experience. As a result, one alternative is to use com-
pany employees to manage and staff the project but to hire special consultants to assist in
areas in which extra expertise is required. That way, the organization can maintain control
and ensure progress but still obtain assistance when needed.

The advantages of this approach are primarily control of the project and knowledge of the
project team. Company staff also have a better understanding of the internal culture of the
organization and the specific processing needs of various business groups. One other major
benefit is that the organization can build internal expertise by developing the system in-house.

The major disadvantage is that the in-house staff may not recognize when they need assis-
tance. At times, the “not invented here” syndrome—the notion that “if we did not think of it
or develop it, it is no good”—complicates development because perfectly good, reasonably
priced solutions are not utilized. Sometimes the technical problems are more complex than
anticipated, and in-house people do not recognize the need to obtain expert assistance.

SELECTING AN IMPLEMENTATION ALTERNATIVE

At times, selecting an implementation alternative is straightforward. At other times, deciding
among alternatives can be difficult, especially when outside providers are included. For exam-
ple, one solution may have some of the required functions but not all. Another solution may
have the requisite functions but may only run on an undesirable platform and operating sys-
tem. Some solutions may provide a quick, inexpensive solution for existing problems but
may be limited for future growth; others offer long-term capabilities but are very expensive
and take a long time to develop. One vendor may propose a turnkey system, another custom
development, another a turnkey system with a particular database management system and
platform, and yet another a joint development project. The problem in selecting is the prover-
bial comparison of apples and oranges. Frequently, there is very little in common among the
solutions proposed by outside vendors because each vendor proposes a system that fits its
own strength. The systems analyst must establish a set of common criteria to compare the
alternatives with as much consistency as possible.

300 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Remember that selecting a new system is not just a matter of “make or
buy” or “outsourcing.” There are many combinations of implementation and
support approaches to consider.

BEST PRACTICE

Identifying Criteria

To begin selection, you must identify the criteria that you will use to compare the various alterna-
tives. You will use these criteria to compare all viable alternatives, although differences among
alternatives may make some criteria more or less applicable to those proposals. In particular, there
are usually some differences in criteria or evaluation methods in comparing packaged and turnkey
systems with custom-built systems. For example, packaged and turnkey systems typically have an
existing base of users who can be queried regarding system functionality, reliability, and other

C6696_08_CTP.4c 1/28/08 8:23 AM Page 300

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 8 Evaluating Alternatives for Requirements, Environment, and Implementation ♦ 301

important characteristics. For custom-built systems, it may be more important to ascertain the
technical skills of the vendor staff. For alternatives that combine purchase of existing solutions
with substantial customization or new development, both criteria would merit careful scrutiny.

Different criteria and evaluation methods can also be applied to alternatives presented by
outside vendors and those presented by an internal IS department. However, there is an
inherent danger of bias toward internal providers when applying different criteria for inter-
nally generated alternatives. In theory, criteria such as “vendor reliability” and long-term costs
should be evaluated similarly for both internal and external providers. But as a practical mat-
ter, some criteria are often ignored or given less emphasis due to the perception of lower risk
and greater control over internal IS staff and departments. The project manager and oversight
committee must carefully examine selection criteria and measurement methods to ensure fair
and complete comparison of internal and external alternatives.

There are three major areas to consider in selecting an implementation alternative:

• General requirements
• Technical requirements
• Functional requirements

General requirements include considerations that are important but not directly associ-
ated with the computer system itself. The first major component of general requirements is
the feasibility assessment, which was discussed earlier in the context of selecting the scope
and level of automation. Each of the implementation alternatives under consideration must
meet the requirements for cost, technology, operations, and schedule defined in the feasibil-
ity analysis. The following list identifies several criteria that can be included in this section:

• The performance record of the provider
• Level of technical support from the provider
• Availability of experienced staff
• Development cost
• Expected value of benefits
• Length of time (schedule) until deployment
• Impact on internal resources
• Requirements for internal expertise
• Organizational impacts (retraining, skill levels)
• Expected cost of data conversion
• Warranties and support services (from outside vendors)

Obviously, some criteria are more important to the organization than others. For example,
in the preceding list, we might want to purchase only from a very reputable, stable, and experi-
enced provider. So, the performance record of the provider is extremely important. On the other
hand, we might have some leeway in the schedule, so a very short deployment schedule might
not be critical. The relative importance of each item in the list can be weighted with a numbering
scale. Figure 8-7 provides a sample table of general criteria and weighting factors for RMO. That
table uses a five-point weighting scale. Criteria that are more important are given a higher num-
ber, such as a five or maybe a four. Those that are less important are assigned lower numbers.
The extended score is the weight times the raw score for each category.

The four alternatives along the top of the table represent various implementation options.
The first alternative is to develop the system in-house. The second and third alternatives are
different turnkey systems that start with a basic package and modify it. The last option is to
contract with a consulting firm to develop a completely new system from the ground up. The
four alternatives are for illustration only—to show the various weighting values possible.

Functional requirements represent the functions that must be included within the system.
These requirements are developed during the analysis activities, identified in the event table,
and described in the data flow diagrams or use case diagrams. Each project has a unique set
of functional requirements based on the needs of the system.

C6696_08_CTP.4c 1/28/08 8:23 AM Page 301

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

302 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

General Weight Alternative 1 Alternative 2 Alternative 3 Alternative 4
requirements (5=high, In-house Package #1 + Package #2 + Custom
criteria 1=low) modify modify development

Raw Extended Raw Extended Raw Extended Raw Extended

Availability of 4 3 12 3 12 3 12 5 20
experienced staff

Developmental cost 3 5 15 5 15 3 9 1 3

Expected value of 5 5 25 3 15 4 20 3 15
benefits

Length of time until 4 2 8 5 20 4 16 2 8
deployment

Low impact on 2 2 4 4 8 5 10 4 8
internal resources

Requirements for 2 2 4 4 8 5 10 4 8
internal expertise

Minimal 3 4 12 3 9 4 12 4 12
organizational impacts

Performance record of 5 5 25 4 20 4 20 4 20
the provider

Level of technical 4 5 20 3 12 3 12 3 12
support provided

Warranties and 4 5 20 4 16 4 16 4 16
support services
provided

Total 145 135 137 122

Figure 8-7

A matrix showing a

partial list of general

requirements

Figure 8-8 illustrates a partial list of functional requirements for the RMO customer sup-
port system. The weighting technique is the same as is used for general requirements.

In addition to the functional and general requirements, each new system normally has a
set of technical requirements that must be met. Technical requirements are also system con-
straints—the constraints under which the system must operate. This category includes all
other requirements that are placed on the system, its method of operation, its performance,
its utility, and so forth. The following list indicates some of the items that should be consid-
ered under technical requirements:

• Robustness (the software does not crash)
• Programming errors (the software calculates correctly)
• Quality of code (maintainability)
• Documentation (user and system, online and written)
• Ease of installation
• Flexibility (the software makes it easy to adjust to new functionality and new environments)
• Structure (maintainable, easy to understand)
• User-friendliness (natural and intuitive use)
• Performance (response time)
• Scalability (ability to handle large volumes)
• Compatibility with operating environment (hardware, operating system)

C6696_08_CTP.4c 1/28/08 8:23 AM Page 302

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 8 Evaluating Alternatives for Requirements, Environment, and Implementation ♦ 303

Figure 8-9 shows possible weighting factors and scores for technical requirements. For
alternatives that are already built, such as packages or ERP systems, scores can usually be
derived. However, for custom-built alternatives, such as in-house projects, these points
become objectives for the new system. In other words, because nothing is built yet, these
items cannot be measured or evaluated. However, they do become criteria for the construc-
tion of the new system. In Figure 8-9, to make balanced comparisons between the alterna-
tives, we have assigned values to “build” alternatives that are the averages of the “buy”
alternatives (the values are marked by asterisks).

Probably the most difficult part of this exercise is establishing the weighting factors. The
client, system users, and project team should all have a voice in establishing the weighting
factors. Consideration must be given not only to the relative importance of each criterion
within each area—general, functional, or technical—but also to the balance among all major
areas. In other words, the rating team must ensure that the relative weight of general require-
ments compared with functional requirements truly represents the desires of the client.

Figure 8-8

A matrix showing a

partial list of functional

requirements

Functional Weight Alternative 1 Alternative 2 Alternative 3 Alternative 4
requirements (5=high, In-house Package #1 + Package #2 + Custom
criteria 1=low) modify modify development

Raw Extended Raw Extended Raw Extended Raw Extended

Make inquiry on items 4 5 20 4 16 5 20 5 20

Create customer order 5 5 25 5 25 5 25 5 25

Change order 4 5 20 5 20 5 20 5 20

Make inquiry on orders 4 5 20 5 20 4 16 5 20

Package order 5 5 25 5 25 5 25 5 25

Ship order 5 5 25 5 25 5 25 5 25

Create back order 4 5 20 5 20 5 20 5 20

Accept return 4 5 20 5 20 4 16 5 20

Correct customer 4 5 20 3 12 4 16 5 20
account

Update catalog 5 5 25 2 10 3 15 5 25

Create special 3 5 15 0 0 2 6 5 15
promotions

Initiate a promotion 3 5 15 0 0 2 6 5 15
mailing

Create sales 3 5 15 3 9 3 9 5 15
summaries

Create order 2 5 10 3 6 3 6 5 10
summaries

Create shipment 2 5 10 2 4 5 10 5 10
summaries

Total 285 212 235 285

C6696_08_CTP.4c 1/28/08 8:23 AM Page 303

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Making the Selection

After requirements have been considered and rated, each alternative can then be evaluated with a
raw score based on how well it meets the criteria. Ranges for raw scores generally vary from a
simple three-point scale to a more finely ratcheted six-point scale. For example, a three-point scale
could contain these ratings: Fully Satisfy (2), Partially Satisfy (1), and Not Satisfy (0). A six-point
scale could represent these ratings: Superior (5), Excellent (4), Good (3), Fair (2), Poor (1), and
Disqualify (0). To calculate a weighted score in each criterion for each alternative, staff would mul-
tiply the raw score by the weighting factor. An overall score, which is the sum of the individual cri-
teria scores, determines a ranking among the various alternatives for this category.

RMO decided to undertake most of the CSS development with in-house staff. As seen in
Figure 8-7, the first three alternatives rank very close together on general requirements, with
in-house development having a slight advantage. In Figure 8-8, alternatives 1 and 4 are
approximately equal and better than alternatives 2 and 3. In Figure 8-9, which shows techni-
cal requirements, alternatives 1, 3, and 4 are very close. So, overall, in-house development
does provide a slight advantage. RMO’s in-house systems analysts and technical staff had
proven several times in the past that they could handle development of complex systems. In
addition, this approach would enable RMO to continue to build in-house expertise. But
although the approach selected was to do development in-house, the information systems
group was not averse to hiring specialists when needed.

RMO has sufficient in-house expertise to develop the networks and the database portions
of the system. The Web-based development will also be done in-house, but RMO will proba-
bly have to hire several specialists. Because RMO wanted to keep the expertise within the com-
pany, hiring some new specialists seemed to be a viable method.

Some of the integration issues, such as integrating new hardware and system software
with existing systems, could possibly become quite complicated. Some very experienced con-
sultants were available, and RMO anticipated that it would need to retain a couple to oversee
this portion of the project.

RMO staff is now ready to proceed with the CSS project. A review of the feasibility con-
straints identified no serious problems. The project is still on schedule and within budget,
and the attitude within the company is very positive. With the availability of these additional
resources, the project also appears to be technically feasible.

304 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Technical Weight Alternative 1 Alternative 2 Alternative 3 Alternative 4
requirements (5=high, In-house Package #1 + Package #2 + Custom
criteria 1=low) modify modify development

Raw Extended Raw Extended Raw Extended Raw Extended

Robustness 5 ? *18 3 15 4 20 ? *18

Programming errors 4 ? *16 4 16 4 16 ? *16

Quality of code 4 ? *18 4 16 5 20 ? *18

Documentation 3 5 15 3 9 4 12 4 12

Easy installation 3 5 15 5 15 4 12 4 12

Flexibility 3 4 12 3 9 4 12 5 15

Structure 3 4 12 4 12 4 12 4 12

User-friendliness 4 5 20 3 12 4 16 5 20

Total 126 104 120 123

Figure 8-9

A matrix showing a

partial list of technical

requirements

C6696_08_CTP.4c 1/28/08 8:23 AM Page 304

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 8 Evaluating Alternatives for Requirements, Environment, and Implementation ♦ 305

CONTRACTING WITH VENDORS

For RMO’s customer support system, in-house development was the chosen alternative for
implementation. But to get the information needed to evaluate all the other alternatives, the
CSS team sent out a formal request for proposal to each prospective vendor.

GENERATING A REQUEST FOR PROPOSAL

As just mentioned, a request for proposal (RFP) is a formal document sent to vendors. Its
basic purpose is to state requirements and solicit proposals from vendors to meet those
requirements. Use of RFPs is almost universal in government contracts and fairly common in
private industry. The project manager has primary responsibility for developing the RFP and
evaluating submitted proposals.

Often, particularly in governmental purchasing, an RFP is a legal document. Vendors rely
on information and procedures specified in the RFP. That is, they invest resources in respond-
ing with the expectation that certain procedures will be followed consistently and completely.
Thus, an RFP is often considered to be a contractual offer, and a vendor’s response represents
an acceptance of that offer.

A good RFP includes a detailed explanation of the information needs of an organization
and the processing requirements that must be fulfilled. Chapter 4 defined system requirements
as consisting of functional and technical requirements. A good RFP will provide detailed expla-
nations of both these types of system requirements. If the early project assumptions indicated
that the most viable option for the new system would be to purchase a turnkey solution or out-
source for custom development, the analysis activities are geared toward developing an RFP.
When the outside firm is selected, it will then ensure that its staff obtains in-depth knowledge
about the problem domain before beginning detailed design or customization.

To develop and distribute a good RFP, the purchasing organization must do an in-depth
analysis. This work is not usually a problem for firms that have in-house information sys-
tems staff. However, for firms that do not have information systems staff, determining pro-
cessing requirements can be a problem. They may also have difficulty generating a
meaningful RFP or evaluating the various purchase alternatives. Smaller, unsophisticated
firms tend to ignore this problem and simply try to make the best decision they can, often
in ignorance. A wiser approach is to hire an independent consultant, one who will not be
involved in the development, to help establish the selection criteria and decide on a vendor.
The same criteria for choosing a final vendor should be used in selecting this independent
consultant.

Figure 8-10 shows an outline of a generic RFP. Obviously, each RFP must be tailored to
the specific needs of the organization and the requirements of the project. The first part of the
RFP, comprising items I and II, provides background information on the company and the
need for a new system. Next, items III through V describe in detail all of the requirements that
the new system must meet. In this example, we have divided the requirements into technical,
functional, and general requirements. Section VI requests information on the provider’s back-
ground and experience. The final two sections, VII and VIII, indicate how the proposal should
be submitted and how it will be evaluated.

The RFP should clearly state the procedural requirements for submitting a valid proposal.
When possible, the organization should include an outline of a valid proposal, along with a
statement of the contents of each section. In addition, the RFP should clearly state deadlines
for questions, proposal delivery, and other important events.

request for

proposal (RFP)
a formal document,
containing details on the
system requirements,
sent to vendors to
request that they bid on
supplying hardware,
software, and/or support
services

C6696_08_CTP.4c 1/28/08 8:23 AM Page 305

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

306 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

Request for Proposal
Table of Contents

I. Introduction and background
A. Background on company
B. Overview of industry/business

II. Overview of need
A. Description of business need
B. Expected business benefits
C. Overview of system requirements

III. Description of technical requirements
A. Operating environment
B. Performance requirements
C. Integration, interfaces, and compatibility
D. Hardware specifications
E. Expansion and growth requirements
F. Maintainability requirements

IV. Description of functional requirements
A. Specification of primary functions
B. Specification of information outputs
C. Specification of the user interface
D. Identification of optional functions and enhancements

V. Description of general requirements
A. Maintenance and support
B. Documentation and training
C. Future releases
D. Other contractual requirements

VI. Requested provider and project information
A. Request for statement of work and project schedule
B. Request for reference list of provider
C. Request for project personnel information

VII. Details for submitting the proposal
A. Time requirements
B. Format requirements

VIII. Evaluation criteria and process
A. Expected timetable of evaluation
B. Method of evaluation of technical, functional, and general requirements

Figure 8-10

A sample RFP table of

contents

The requirements statement constitutes the majority of the RFP. The body of the RFP can
formalize and state the guidelines previously described. Requirements should be separated
into those that are absolute (essential) and those that are optional or subject to negotiation.
This categorization is a more formal version of the prioritization discussed earlier. The RFP
also should state explicitly the evaluation criteria—for example, the categories that are to be
evaluated as well as the weighting factors.

BENCHMARKING AND CHOOSING A VENDOR

One method to evaluate the quality of a vendor’s system is either to observe it in use or to
install it on a trial basis and test it out. However productive this approach may be, it is also
expensive and difficult. The format of the data, the forms, and even the platform may be alien
to existing configurations. If the system is complex, people must be trained to use it. Staff
must also be available to do testing. Although this approach can be quite expensive, it may be
less expensive than making a bad decision.

Some applications are amenable to a more rigorous evaluation called a benchmark. A
benchmark is a performance evaluation of application software (or test programs) using
actual hardware and systems software under realistic processing conditions. In years past,
benchmarking was often difficult to perform because of the expense of the hardware and soft-
ware configurations and the length and cost of installation. Currently, these problems are less

benchmark
an evaluation of a system
against some standard

C6696_08_CTP.4c 1/28/08 8:23 AM Page 306

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 8 Evaluating Alternatives for Requirements, Environment, and Implementation ♦ 307

severe because hardware is cheaper, installation procedures have been streamlined, and com-
petition among vendors is fierce.

Another way to observe a system in use is to visit another company. Sometimes the ven-
dor will have demonstration versions already installed in its own facilities. Potential pur-
chasers are permitted to go to the vendor’s plant and test the system. Vendors also have
previous clients who are using the system. It is almost always a good idea to visit these previ-
ous clients. When prospective clients make a site visit, they are not permitted to test the sys-
tem themselves with their own data, but they will be permitted to observe the other company
using the system. They can also talk to previous clients about their experience with the system
and the vendor. It is always a good idea to get references and to talk with other companies
that have done business with the vendor.

Frequently, companies want to add capabilities to the software as the business environ-
ment changes. To do so, they must make the enhancements themselves or have their vendor
supply upgrades and fixes. Organizations should ascertain the level of ongoing research and
development being done by the vendor. How compatible are these new capabilities to a par-
ticular system after it has been customized? Is there an active users group that can suggest
new enhancements and modifications to the vendor? The company is making a major
investment, and it is important that the investment be considered in the long term. The
largest investment in any new system is the long-term cost of maintenance. A good vendor
will help its clients leverage their maintenance dollars by providing upgrade support and
new capabilities based on feedback from existing clients.

DEVELOPING A CONTRACT

After a final decision is made on which proposal provides the best solution and value, a con-
tract is written. Contract development and negotiation are usually a team effort involving the
project manager, legal counsel, and frequently other senior executives. The project manager’s
involvement is essential to ensure that the contract meets the needs of the project and that
important performance and termination clauses are included.

Contracts can be divided into several different types, which shift the risk either to the pur-
chaser or the vendor. Fixed-dollar contracts put most of the risk on the vendor. The advantage to
the purchasing company is that the vendor assumes the burden of project delays and overruns.
However, the vendor usually sets a high price to compensate for the risk. Cost-plus-percentage
contracts put the risk on the purchaser. In fact, cost-plus-percentage contracts encourage the ven-
dor to spend more because its income is directly proportional to the costs of the project. A mid-
dle ground, with both sharing the risk, is a cost-plus-fixed-fee or cost-plus-incentive contract. In
this case, both the purchaser and the vendor benefit if the project finishes as quickly as possible.
With a fixed fee, the profit margin for the vendor is high if the project progresses quickly. If the
project drags on, however, the fixed fee results in a lower profit margin.

PRESENTING THE RESULTS AND MAKING THE DECISIONS

The results of the investigation and analysis activities described in this chapter are normally
summarized in a written report and presented orally to executives. The intended audience is
the executive oversight committee, which has decision-making and funding responsibility for
the project. The objective of the documentation and presentation is to provide the necessary
background so that informed decisions can be made.

The responsibility of the project team, including both technical and user members, is to do
the detailed investigation and calculations to enable an informed analysis of all of the alterna-
tives. However, the final decision of which alternative, or mix of alternatives, is chosen rests
with the executive oversight committee. This committee not only controls the budget and pro-
vides the funding but also is responsible for the overall strategic direction of the company.

C6696_08_CTP.4c 1/28/08 8:23 AM Page 307

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

One of the more difficult tasks for the project team is to compile, organize, and present
the alternatives and critical issues in a way that is easy to understand yet accurate and com-
plete. The executive oversight committee usually consists of people who are, first and fore-
most, business executives. They generally are not technical experts, yet they need to make
decisions that affect the entire organization. So, presenting findings is one of the most diffi-
cult tasks that the project team will have. It requires careful consideration to find the right
balance of detail. At one extreme is so much technical detail that the oversight committee can-
not understand or follow the logic and becomes lost or bored. At the other end are recom-
mendations without sufficient supporting detail or logic.

The formality of the presentation varies from organization to organization. Some companies
require very formal written reports and oral presentations. Other organizations require nothing
written and only informal discussion between the client (the person funding the project) and the
project team leader. Smaller organizations tend to be less formal, and large corporations typically
have standard policies and procedures for approval.

The format of the document and report varies considerably, depending on the desires of
the audience. A detailed description of how to develop this presentation is provided in
Appendix D. (Appendix D is available for download at www.course.com.) Generally, the writ-
ten documentation will follow the same format as the presentation.

308 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

C6696_08_CTP.4c 1/28/08 8:23 AM Page 308

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

http://www.course.com

SUMMARY
The activities explained in this chapter are primarily project manager responsibilities. The focus of the project
changes at this point from one of discovering the requirements to that of developing a solution system. So,
the activities described are pivotal for the project to change emphasis. Obviously, the project manager takes
primary responsibility for this change in direction. These activities involve seven of the eight project manage-
ment knowledge areas that are described in Appendix A on the book’s Web site.

One of the important activities during analysis is to prioritize the system requirements based on the scope
and level of automation desired. The scope of the new system determines which functions it will support. The
level of automation is a measure of how automated the selected functions will be. Highly automated functions
have sophisticated computer systems such as expert systems to help carry out the business functions.

The application deployment environment is the configuration of computer hardware, systems software, and
networks in which the new system must operate. It determines the constraints that are imposed on the system
development alternatives. The analyst must define an environment, or multiple environmental choices, that
match application requirements and the organization’s strategic application and technology architecture plans.

Another activity that is done in conjunction with prioritizing the requirements is determining what alter-
natives are possible for developing the solution and then selecting one of those alternatives. Implementation
alternatives include such options as building the system in-house, buying a packaged or turnkey solution, or
contracting with a developer to build it (outsourcing). When outsourcing is anticipated, a request for proposal
(RFP) is developed and sent out. The RFPs are then evaluated for how well they match the requirements.
Selecting from the various alternatives should be a careful process. The evaluation includes consideration of
such factors as the match of the proposed system to the functional and technical requirements and the repu-
tation and performance record of the submitting vendor.

One of the final analysis activities is to develop recommendations and present them to management. After
the analysis is complete, a more knowledgeable decision can be made about the direction, cost, feasibility, and
approach of the rest of the project. The systems analyst documents the results of the analysis activities and pre-
sents them in a logical fashion that is focused toward the executives who make funding decisions.

KEY TERMS

application deployment environment, p. 291

benchmark, p. 306

development environment, p. 292

facilities management, p. 298

packaged software, p. 298

request for proposal (RFP), p. 305

turnkey system, p. 298

REVIEW QUESTIONS

1. What is meant by the application deployment

environment? Why is it important in the consideration of a

development approach?

2. List and briefly describe the characteristics that an analyst

examines when choosing or defining the deployment

environment.

3. Describe the relationship between the application deploy-

ment and development environments.

4. Explain the fundamentals of facilities management.

5. What is the difference between scope and level of

automation?

6. What is meant by the make-versus-buy decision?

7. Define a packaged solution. Explain what is entailed in the

packaged solution approach.

8. What is meant by ERP? How does an ERP approach affect

acquiring a new solution?

9. What does outsourcing mean? How does it affect a

project?

10. Define benchmark. Why is it useful in selecting a new system?

11. What is an RFP? Why is it developed at the end of the

analysis activities instead of at the beginning?

12. What is the difference between general requirements,

technical requirements, and functional requirements?

CHAPTER 8 Evaluating Alternatives for Requirements, Environment, and Implementation ♦ 309

C6696_08_CTP.4c 1/28/08 8:23 AM Page 309

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

THINKING CRITICALLY

1. What are the advantages of purchasing a packaged solu-

tion? What are the disadvantages or dangers?

2. What are the advantages of building a solution from the

ground up? What are the disadvantages?

3. What are the advantages to outsourcing a development

project? What are the disadvantages?

4. Discuss the importance of developing a formal technique

and specific criteria for evaluation alternatives.

5. Given the following narrative, identify the functions to be

included within the scope of the system. Also identify sev-

eral levels of automation for each function. The purpose of

this question is to give you an opportunity to think cre-

atively, especially to identify high-level automation alterna-

tives for the various functions.

Conference Coordinators (CC) assists organizations or cor-

porations in coordinating and organizing conferences and

meetings. It provides such services as designing and print-

ing brochures, handling registration of attendees, fielding

questions from attendees, securing meeting spaces and

hotel rooms, and planning extracurricular activities. CC

gets its business in two ways: by following up on leads that

a company is going to be holding a conference and by hav-

ing the company contact CC directly. When a contact is

made, the client is asked for basic information about the

desired event: city, dates, anticipated number of attendees,

price range, and external activities desired. From this infor-

mation, CC prepares a bid. CC likes to keep its turnaround

time on bids to under five working days. Each project is

assigned to a project manager, who will gather informa-

tion from the support staff to prepare the bid. If necessary,

he or she may also request information from the visitors’

center for the desired city.

6. What are important points that determine weighting fac-

tors for the functional requirements listed in the system

requirements for a proposed system?

7. List the important points that determine weighting factors

in the general and technical requirements for a proposed

system.

8. Given the following matrix of various technical require-

ments, develop your own weighting factors for an inven-

tory management system at a small plumbing supplier.

Justify your weights. Extend the raw scores to the

Extended column and calculate the totals. Which would

you choose? Justify your selection: Did you go strictly by

the numbers, or are there other factors you might con-

sider? How do you handle a number that is not given: give

it an average of the others, pick the best of the others,

guess a value, or assign a zero? (Raw numbers use a six-

point scale.)

Category Weight Alternative 1 Alternative 2 Alternative 3
Build in-house Buy turnkey Buy package

Raw Extended Raw Extended Raw Extended

Robustness 5 3 3

Programming errors ? 4 4

Quality of code ? 4 5

Documentation 4 4 3

Easy installation 5 5 4

Flexibility 5 4 3

User-friendliness 5 5 5

Total

EXPERIENTIAL EXERCISES

1. Assume that the deployment environment for a high-volume

payment processing system consists of the following:

• Oracle DBMS running under the UNIX operating system
on a cluster of HP servers

• WebSphere application server running under the Z/OS
operating system on an IBM zSeries 900 mainframe

• J2EE application software that will be executed by other
internal and external systems

Investigate possible development environments for this

deployment environment. Describe their advantages and

disadvantages and recommend a specific set of develop-

ment tools.

310 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

C6696_08_CTP.4c 2/13/08 10:44 AM Page 310

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 8 Evaluating Alternatives for Requirements, Environment, and Implementation ♦ 311

2. Set up an interview with an organization that uses informa-

tion systems. Ask for an example of an RFP for a software

system. Identify the parts of the RFP. Compare them with

the recommended components discussed in this chapter.

3. From a news article or Internet information, find an example of

a company that is installing an ERP package (SAP, Oracle, or

another company). If possible, get a copy of the overall project

plan and analyze the various activities. Compare them with a

standard SDLC. Find out the total budget for the project.

4. Develop an RFP for RMO to be sent out to various vendors.

5. Develop a recommended implementation approach for

RMO. Also develop a presentation of your recommenda-

tion to upper management.

6. Look through some trade magazines (Software, CIO,

Datamation, Infoweek, and so on) to find examples of

companies that have done an evaluation of vendors.

Describe their methods and comment on their strengths

and weaknesses.

TROPIC FISH TALES’ RFPS

Now that you have read and studied the chapter, review the open-

ing case on Tropic Fish Tales. Your job is to provide specific advice for

Robert Holmes or Bill Williams on how to evaluate the various RFPs.

Assuming that you can build some matrices that measure rela-

tive strengths among the proposals, comment on the applicability

of doing an evaluation based strictly on the numbers. In other

words, assume that Robert and Bill were able to create criteria and

weights to measure the benefit to the company of the different

alternatives.

1. Do you think it would be possible to sum up the resulting

values and make a decision based only on the numbers?

Support your answer.

2. What factors, other than those in the matrix of weighted

criteria, might Robert and Bill need to consider in making a

decision? Can these other factors influence the decision as

strongly as the quantified criteria?

3. What if the values of several alternatives are very close?

What other factors might Robert and Bill need to consider?

THE REAL ESTATE MULTIPLE LISTING SERVICE SYSTEM

Consider the requirements of the multiple listing service system devel-

oped in Chapters 5, 6, and 7. Assume that you’re the project man-

ager and that you work for a consulting firm hired by the multiple

listing service to perform only the survey and analysis activities.

1. Assume that system users and owners have indicated a

strong desire for a system that can be accessed “anytime,

anywhere.” Discuss the implications of their desire for the

system scope. Given the preferences of the system users and

owners, should you prepare a table similar to Figure 8-2?

Why or why not?

2. Discuss the implications of the anytime, anywhere require-

ment for the application deployment environment. What

type(s) of hardware, network, and software architecture

will be required to fulfill that requirement?

3. Investigate the availability of packaged and turnkey sys-

tems for multiple listing services. Search the Internet and

real estate trade magazines and Web sites. Discuss the pros

and cons of choosing a packaged or turnkey system.

4. Develop an RFP outline that covers packaged, turnkey, and

custom-developed systems. What are the difficulties of

writing one RFP that covers all three scenarios? Who

should be involved in evaluating RFP responses?

RETHINKING ROCKY MOUNTAIN OUTFITTERS

Various application deployment environments

would actually be acceptable for RMO’s strategic

plan. The staff’s current thinking was to move more

toward a Microsoft solution, using the latest version

of Microsoft Server with Microsoft’s IIS as the Web server. However,

Linux with Apache servers offers another large installed base of

servers. Considering that RMO could also take that approach, do

the following:

1. Describe a viable configuration using Apache/Linux.

2. Compare the relative market penetration of Microsoft and

Apache/Linux (a good starting place is http://news.

netcraft.com).

The database issue is another potential controversy for RMO.

The current decision is to keep the mainframe and run DB2, a very

efficient relational database. However, another alternative would be

to implement an Oracle database. Oracle is also very strong in the

marketplace. Given these two alternatives, do the following:

3. Compare the relative market penetration of these two

solutions.

4. List the strengths and weaknesses of each approach: that

of the DB2 mainframe approach and that of Oracle run-

ning on some type of multiple processor server computer.

CASE STUDIES

C6696_08_CTP.4c 1/28/08 8:23 AM Page 311

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

http://news

312 ♦ PART 2 SYSTEMS ANALYSIS ACTIVITIES

FOCUSING ON RELIABLE PHARMACEUTICAL SERVICE

Assume that Reliable has completed a thor-

ough analysis of system requirements (part of

which you worked on as case exercises in

Chapters 4 through 7). Management is now confronted with the

task of choosing a system scope and implementation approach. To

summarize the alternatives, you have prepared the following table,

which divides the requirements into functional subsets, estimates

the duration of design and implementation for each function if soft-

ware is custom-built, and categorizes the risk for each function

based on software complexity, technology maturity, and certainty

about requirements.

Top executives have evaluated the table and determined that all of

the functions are high-priority needs. The project is critical to restoring

profitability and maintaining market share. Reliable is well behind the

technology curve for its industry, and it needs to modernize to reduce

costs and to provide expected levels of service. Unfortunately, overlap

and dependency among the functions makes it difficult to consider

implementing only a subset of the functions. Executives would prefer

to implement all functions in a single project, but they consider the

combined project duration for all functions to be much too long.

Significant parts of the proposed system, such as inventory, pur-

chasing, and prescription warning, are similar to systems used by

retail pharmacies and in-house pharmacies in large hospitals and

health maintenance organizations. But some significant differences

exist in Reliable’s requirements for order entry, product delivery, and

billing. There are a handful of large vendors and several dozen

smaller vendors that specialize in pharmacy systems.

Assume that management has identified the following options

for proceeding with the system development or acquisition:

• Contract with a vendor to modify a packaged prescrip-
tion software system to suit Reliable’s needs.

• Contract with a vendor to purchase the generic parts of
a prescription system and extend the system to address
Reliable’s unique needs with custom-built software.

• Contract with a system development firm to custom-
build a system, possibly making use of some off-the-
shelf components for inventory management and
prescription warning.

Reliable’s executives have assigned you the following tasks:

1. Develop an RFP outline that addresses the options identi-

fied by the executives. List and briefly describe each gen-

eral, technical, and functional requirement.

2. Assume that you have already developed a complete set

(over 100 printed pages) of analysis documents using

either the traditional or object-oriented approach. Should

those be included in the RFP? Why or why not?

3. Develop matrices (similar to Figures 8-7, 8-8, and 8-9) for

evaluating RFP responses.

4. Develop a list of vendors to whom the RFP should be sent.

FURTHER RESOURCES

Scott E. Donaldson and Stanley G. Siegel, Cultivating Successful

Software Development: A Practitioner’s View. Prentice Hall, 1997.

Ralph L. Kliem and Irwin S. Ludin, Project Management

Practitioner’s Handbook. American Management Association, 1998.

Sanjiv Purba, David Sawh, and Bharat Shah, How to Manage a

Successful Software Project, Methodologies, Techniques, Tools.

John Wiley & Sons, 1995.

John J. Rakos, Software Project Management for Small to

Medium Sized Projects. Prentice Hall, 1990.

Kathy Schwalbe, Information Technology Project Management,

Fifth Edition. Course Technology, 2008.

Neal Whitten, Managing Software Development Projects:

Formula for Success. John Wiley & Sons, 1995.

Function Project duration Risk

Inventory and purchasing 9 months Moderate

Order fulfillment (manual data entry) 6 months Low

Web-based order entry 9 months High

Prescription warning 12 months High

Billing 18 months High

C6696_08_CTP.4c 1/28/08 8:23 AM Page 312

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

313

SYSTEMS DESIGN
TASKS

C H A P T E R 9
Elements of Systems Design

C H A P T E R 1 0
The Traditional Approach to Design

C H A P T E R 1 1
Object-Oriented Design: Principles

C H A P T E R 1 2
Object-Oriented Design: Use Case Realizations

C H A P T E R 1 3
Designing Databases

C H A P T E R 1 4
Designing the User Interface

C H A P T E R 1 5
Designing System Interfaces, Controls, and Security

3
PART

C6696_09_CTP.4c 1/28/08 8:23 AM Page 313

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

314

ELEMENTS OF SYSTEMS DESIGN9
L E A R N I N G O B J E C T I V E S

After reading this chapter, you should be able to:

■ Discuss the issues related to managing and coordinating the activities of

the SDLC

■ Explain the major components and levels of design

■ Describe each major design activity

■ Develop a simple network diagram

■ Describe common deployment environments and matching application

architectures

CHAPTER

C H A P T E R O U T L I N E

Project Management Revisited: Execution and Control of Projects

Understanding the Elements of Design

Design Activities

Network Design

The Deployment Environment and Application Architecture

C6696_09_CTP.4c 1/28/08 8:23 AM Page 314

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 9 Elements of Systems Design ♦ 315

James Schultz is a summer intern with Fairchild Pharmaceuticals. For the past two weeks, he
has been assigned to an ongoing development project for a production scheduling and con-
trol system. The project was nearing a point when critical design and deployment decisions
were needed. Sufficient requirements had been identified through analysis activities to know
what was required in the solution. Before proceeding with more detailed analysis or detailed
design, some basic design decisions were required.

James works for Carla Sanchez, the chief analyst and project manager. For the past two
weeks, James has been shadowing Carla as she finished prioritizing the identified functional
requirements. He helped Carla prepare presentations to the project oversight committee and
system users. He has absorbed a lot of information about the project in a short time, but the
details and overall project direction haven’t yet formed a coherent picture in his mind.
Yesterday, the oversight committee signed off on the work to date, so Carla asked James to
stop by her office the next morning to discuss his assignment for the next project phase.

James knocked on Carla’s open door and asked, “Is this a good time or should I come
back later?”

“I have time now,” she said. “Come in and have a seat. Let’s start by reviewing the results
of yesterday’s meetings, and I’ll answer any questions you have. Then we’ll narrow down your
tasks for the next few weeks of the project.”

James said, “I have two questions that I think are related. The first is, Which implementa-
tion details have been decided and which haven’t? The discussions with the users and over-
sight committee left me with the impression that the decision to go with a full-blown
Web-based system had already been made. Yet none of the supporting infrastructure for
a Web-based system currently exists, or does it?”

Carla replied, “A few elements are in place, but most of it will need to be designed and
acquired. But let’s hear your other question before we get into that.”

James continued, “Well, you’ve sort of anticipated my next question, which is, What do
we need to do next? There seem to be several important tasks that need to be started now,
such as choosing system software to support Web services, determining what changes will be
needed to the company network, and designing the database. But I suspect that I’ve left out a
few important pieces. Also, the tasks and decisions are so interdependent that I don’t know
which should be tackled first.”

Carla smiled before she replied, “Well, you really were awake during all of the meetings!
You should take some pride in knowing that you’re confused about exactly the right things at
this point in the project. The transition from focusing on requirements definition to design-
ing solutions is an important but uncertain step in all projects, and this one is no exception.
It’s hard to move from a detailed knowledge of what the user wants and needs to a precise
blueprint of a system that will satisfy those wants and needs. As you’ve correctly observed,
many important decisions need to be made very quickly, and they overlap. They’re also heav-
ily constrained by available time, budget, and existing systems, skills, and infrastructure.”

Looking a bit relieved, James replied, “So what’s up first, and where do I fit in?”
Carla replied, “The generic name for the next step is systems design, with the first part

being architectural design. It’s where we’ll finalize all of the big-picture decisions, such as
what hardware will support the new system, what operating systems we’ll use, how we’ll store
and access data, and what languages and tools we’ll use. Some of these issues were briefly
addressed at the start of the project, and some decisions were implicit in the choice of deploy-
ment environment and automation scope approved by the oversight committee yesterday.
What we need to do now is to lay all of them on the table, make sure they’re compatible with
one another and with existing systems and capabilities, and parcel out the detailed tasks asso-
ciated with each.”

FAIRCHILD PHARMACEUTICALS: FINALIZING
ARCHITECTURAL DESIGN FOR A PRODUCTION SYSTEM

C6696_09_CTP.4c 1/28/08 8:23 AM Page 315

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Carla continued, “I spent yesterday afternoon dividing the work into major categories,
including hardware and operating systems, Web support services, database design, applica-
tion software design, and user interface design. I summarized the choices made so far and the
remaining decisions we need to discuss. Key players will meet as a group for the rest of the
week to discuss options in each area and develop the system architecture. For example, we’ll
decide whether to extend our existing database to support the new system or develop a new
database with a new DBMS. By the end of the week, we’ll have made all of the critical archi-
tectural decisions, ensured that the pieces all fit together, and developed plans to tackle each
area with personnel assignments and time lines. From that point forward, work in each area
can proceed in parallel. Professor Chen told me that you’ve done an independent study in
Web services support software, right?”

“Yes,” James replied. “I did a comparative study of infrastructure requirements and com-
munication protocols for Web services using CORBA, Microsoft .NET, and Java 2 Web
Services. I did an in-depth technology review of each and visited two sites using each technol-
ogy to see how they worked in practice.”

“Good,” said Carla. “That knowledge will come in handy because we need to decide
whether to base the new system on Web services and, if so, what supporting infrastructure
and development tools to use. I think that you’ll learn a lot by working with me for another
week or two as we hammer out the architectural design. After we get the detailed design tasks
rolling, we’ll choose one for you that suits your interests and abilities. There’ll be plenty of
interesting tasks from which to choose and more than enough work to keep you busy for the
next month or two.”

OVERVIEW

We begin this chapter by revisiting the principles of good project management. Chapter 3 and
Appendix A provide a substantive discussion of project management principles as well as
detailed discussions of project planning. Chapter 8 provided more discussion of project man-
agement tools to determine project scope and implementation alternatives. In this chapter
we will explain project management concepts for how to monitor and control an ongoing
project. These concepts are based on sound principles. However, the actual skills to know how
to run a project come only with experience. What you learn from the text will give you a solid
foundation to observe and learn before you manage your own project.

Chapter 8 described the activities and decisions associated with finalizing the major ele-
ments of the user’s requirements. Those activities were focused on finalizing the major func-
tional components of the system to meet the business need. This chapter is an extension of
those activities, but the focus changes to the solution system. In other words, during analysis
the focus is on understanding what the system should do—for example, the requirements.
Design is oriented toward the solution—in other words, specifying how the system will be
built and the structural components of the new system. Such activities as defining the deploy-
ment environment and determining levels of automation are direct inputs to the design
processes described in this chapter.

A normal question new developers ask is: “When are these tasks carried out in a real project?”
Unfortunately, there is not an easy answer. We have the issue of whether the project is predic-
tive or adaptive, but even within the first part of predictive projects these tasks are often
spread across many weeks. Many projects begin with some of these decisions already made,
particularly when companies already have a strong technology infrastructure in place. For
other projects, the new system may be the result of a new thrust for the organization, and the
decisions are wide open. However, it is normal for the project team to start thinking about
these issues very early on and to begin making preliminary decisions as requirements are
being defined. The important point to understand, however, is that the topics discussed in

316 ♦ PART 3 SYSTEMS DESIGN TASKS

C6696_09_CTP.4c 1/28/08 8:23 AM Page 316

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 9 Elements of Systems Design ♦ 317

this chapter and the following chapters are design topics. In other words, they are solution
oriented. Realizing that these are design issues will help you to know that you should not try
to come up with a solution until you understand the problem.

This chapter is the first of seven chapters that discuss design. In this chapter, we briefly
describe all design activities and discuss the first activity (network design) in more detail.
Later chapters explore other design activities using both traditional and object-oriented mod-
els and techniques.

PROJECT MANAGEMENT REVISITED: EXECUTION AND CONTROL OF PROJECTS

In Chapter 3 we introduced the basic concepts of project management, and explained many of
the fundamental skills required for planning the project. Appendix A teaches you about the
Project Management Body of Knowledge (PMBOK) by providing a detailed explanation of each
of its nine areas. You should study Appendix A before trying to understand the concepts pre-
sented in this chapter. In this section, we build on the concepts taught in the appendix to provide
more detailed ideas about actually running a project. Here we address project management issues
related to the execution, monitoring, and control of an ongoing project. In many ways, this part
of project management is the most difficult. In this activity, the project is actually run and the
project is moved forward. Running a project requires an entire set of project management skills
and talents, almost all of which are learned on the job. In other words, even though we have a
few techniques to teach, much of this knowledge must come from mentoring and experience.

This section provides explanations in four areas of running a project:

• Organizing teams and assigning work
• Communicating status and information
• Monitoring and controlling project progress
• Controlling project issues and risks

Figure 3-3, for predictive projects, and Figure 3-4, for adaptive projects, identified two
major project management activities: project execution management and project control
management. These two activities work together to allow the project manager to schedule and
execute the identified project tasks, and to monitor progress and take corrective action when
things get out of control. Certain issues of project execution and control depend on whether
the project is a predictive project or an adaptive project.

ORGANIZING PROJECT TEAMS AND ASSIGNING WORK

Some project managers see themselves as “the boss,” and believe it is their job to supervise and
direct team members. Other project managers see themselves as facilitators. They know that
the actual work of the project is done by team members, so these project managers consider
that their job is to clear all the obstacles so team members can get the work done. Although
the second approach sounds good in theory, it can be quite difficult. How does the project
manager ensure that a group of individuals, each with different skills, knowledge, motivations,
and desires, learns to work together in a highly collaborative manner to achieve high perfor-
mance? Extensive research on teams has found that an effective team can sometimes outper-
form a regular team by more than a factor of ten. One of the unique opportunities of a project

Don’t design the solution before you understand the problem.

BEST PRACTICE

C6696_09_CTP.4c 2/13/08 10:47 AM Page 317

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

manager is to help build a high-performance team. Appendix A addresses various human
resource issues in a software team setting. This section briefly introduces two project execu-
tion topics related to teams. First, what are some key considerations in organizing the teams?
Second, what are the key issues in assigning tasks on the project schedule to teams or team
members?

Team Organization

Every project is different, both in the kinds of tasks that make up the project and in the indi-
vidual team members assigned to the project. Consequently, it is not possible to specify a par-
ticular team organization that works best in all situations. Over time, most project managers
develop preferences for organizing successful teams. Several key questions that should be
considered in organizing the team are identified in the following list:

• Assign a team leader for each subteam or let the subteams organize themselves?
• Assign members permanently to a team or have floating team assignments?
• Assign team members to subteams to achieve a balance based on (1) skills, (2) experi-

ence, or (3) personality traits?
• Balance team membership based on permanent (core) members or transient members?
• Provide formal team training or on-the-job training for team members?
• Place team members in a large, common work area or individual cubicles or offices?

Assigning Tasks to Team Members

As with the organization of the project team, there are many different methods for partition-
ing the work among team members. Each project manager will tend to develop a certain style
of working with team members to ensure that all scheduled tasks are completed in a timely
fashion. The organization structure of the team also affects how tasks are assigned.
Nevertheless, we have listed a few key questions that must be decided and implemented to
move the project forward:

• What is the formality (versus informality) of the project (schedule, assignments, status,
and so on)?

• Should tasks be assigned to subteams or to key individuals?
• Should tasks be assigned well in advance or using a just-in-time approach?
• Is the project schedule stable or is it a changing schedule?
• How do the number and duration of critical-path tasks compare to the number of tasks

that are not on the critical path?
• Should tasks be assigned based on specific skills or on availability?
• Should tasks be assigned so that team members are fully scheduled or should open times

be provided on people’s schedules?

MANAGING THE COMMUNICATION PROCESS

Pervasive to all types of working relationships and work activities is the problem of commu-
nication. Employees who are at the bottom of the communication hierarchy are very sensitive
to a lack of communication. For some reason, when people rise within the corporate hierar-
chy, they seem to forget the importance and need to keep people informed.

On the other hand, some managers are so caught up with keeping everyone informed that
they waste lots of time in long status meetings and progress reviews. Sometimes there are so
many meetings that team members become frustrated because they cannot get their regular
work done. Most of us have had to sit through a meeting in which everybody made a detailed
report of their status and problems. Such meetings can take hours and are usually a highly
inefficient use of time.

318 ♦ PART 3 SYSTEMS DESIGN TASKS

C6696_09_CTP.4c 1/28/08 8:23 AM Page 318

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 9 Elements of Systems Design ♦ 319

A good project manager is sensitive to communication needs and establishes processes
that ensure team members and outside stakeholders have the information they need, when
they need it. The communication process is actually an information management issue.
Before thinking about how to communicate, a project manager must consider all informa-
tion issues in and around the project.

The first step in communications management is to determine, at a detailed level, what
kind of information is required for project success. There are two types of information on a
project. The first is project-related information, which includes the project schedule, work and
team assignments, status and progress reports, presentation materials, and so on. The second
kind of information is system information, which concerns the business needs and the new
system being built. System information includes requirements definitions, specifications,
design models, open issues logs, and finally program code. The two types of information are
quite different, yet each is critical for project success.

The second step concerns how to manage the information. For each information item, a
mechanism should be put in place to: 1) collect the information, 2) store the information,
and 3) distribute the information. Related to the first and last of these tasks are the questions
of who, what, and how: Who is the source of which information, how is it collected, who
needs which information, and how is it distributed? These questions can be answered early
in the project when a stakeholder analysis is conducted. The team must answer the questions
of what information should be stored and how it should be stored.

Figure 9-1 is a summary of the communications issues. A good project manager will set
up the communication mechanisms early in the project. Decisions about how much infor-
mation to collect, store, and distribute will be influenced greatly by the formality of the proj-
ect, as discussed in Chapter 3. In today’s world, many electronic tools are available to enable
good communications. If the processes are established correctly, with good electronic tools,
the project manager no longer becomes the information bottleneck and information is col-
lected, stored, and distributed almost automatically.

Information
Storage

What, How
Who, What, How Who, What, How

Collect Information Distribute Information

Manage the Communication Process

Project information

System Information

Figure 9-1

Communication

processes within a

project

C6696_09_CTP.4c 1/28/08 8:23 AM Page 319

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

A common and widespread technique to record and track system information is to use a
central repository of system information. Most developer support tools have a central reposi-
tory to capture information. The central repository not only records all design information, it
is normally configured so that all teams can view project information to facilitate communi-
cation among the project teams. Figure 9-2 illustrates various information components that
may exist within a data repository. One distinct advantage of using such a repository is that
all system information is available to every member of the team. Especially on large projects,
it is helpful for members of one team to be able to access design decisions that affect their
work, but which are the responsibility of another team.

320 ♦ PART 3 SYSTEMS DESIGN TASKS

Data
repository

Database
structures

Program code

Form
definitions

Problem and
issue resolutions

Analysis
diagrams

Field
definitions

Design
diagrams

Report
definitions

Figure 9-2

System information

stored in a data

repository

Other electronic tools are also available to help with team communication and informa-
tion coordination. These tools and techniques, often referred to as computer support for
collaborative work, not only record final design information but assist in team collaboration.
Often during the development process, people need to work together to develop the design,
so they need to discuss and dynamically update the working documents or diagrams. One
popular collaborative tool is Lotus Notes. Other software programs allow figures and dia-
grams to be updated with tracking and version information, which helps the team document
the evolution of the result.

Maintaining project information can also be done via electronic means. Schedule infor-
mation can be published to a Web site so everyone can view it. Another type of project track-
ing tool, sometimes called a project dashboard, allows all types of project information to be
posted and viewed by Web browsers. Figure 9-3 is an example of a project dashboard system
that allows easy access to project information. Spreadsheets, e-mails, newsletters, and list
servers all provide capable means to maintain, collect, and distribute information. Web page

C6696_09_CTP.4c 1/28/08 8:23 AM Page 320

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 9 Elements of Systems Design ♦ 321

management systems such as content management systems or wiki systems make posting and
monitoring project information easy. Wikipedia is an example of a wiki system that can be
updated by any interested party and easily viewed. Effective project managers set up the infor-
mation and communication process at the beginning of the project. Once it is set up correctly,
it often will take care of itself. Each team member can update his or her information at the
appropriate times. Everyone should have access to all information, with special e-mails or
notices of critical information postings to those who require it.

Conference Registration System

Project Definition Statement Current Status

Create a new online Web based system to
allow conference attendees to register for
conferences and sign up for specific events

and activities.

As of Jan 1st all coding was complete.
System test has begun. Preparing for

acceptance test in 60 days.

Triple Constraint Matrix

Report
Status

Report
Bug

OK
Caution

Critical

Least Flexible Moderate Most Flexible

Scope Schedule Cost/Resources

Stable
Delays caused by rework of
database design. Critical task

5 days late.
Slightly over, not critical

Timeline

View/Update Details – Click on link below

Investigation Requirements Design & Code Acceptance Test

Jan10 Ap10 Jl10 Oc10 Ja11 Ap11 Jl11 Oc11

View/Update
Issues Log

View/Update
Team Roster

View/Update
Budget

View/Update
Schedule

View/Update
Documentation

Figure 9-3

Sample dashboard

showing project overview

and status information

MONITORING THE PROJECT PLAN

In theory, executing and controlling the project plan sounds easy, but in fact it is quite com-
plicated. The basic premise of executing any project is that you have some type of project
plan. In Chapter 3, you learned how to use Microsoft Project to build a project plan. What we
did not teach, and what you must learn from experience, is how to build a realistic and work-
able project plan. As you have opportunities to work with other project managers, you will
better learn how to make good project plans. Assuming that you have a good project plan,
and have been able to identify and recruit the right team members, executing the plan
becomes easier.

How a team builds and executes project plans will vary depending on whether the project
structure is based on a predictive approach or an adaptive approach. In the predictive
approach, the team tries to lay out all of the project details at the beginning. This approach
requires project plans that are usually quite large and complex. The adaptive approach is less
daunting because the detailed project plan is done for each iteration. At the beginning of an

C6696_09_CTP.4c 1/28/08 8:23 AM Page 321

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

iteration, the first step is to plan the work. Because the piece of work is smaller and often is
better understood, these schedules tend to be smaller and less complex. In either case, the first
step in executing the project is to assign an appropriate project member or team to the task.

Figure 9-4 is a high-level flowchart that illustrates the basic process for monitoring and
controlling the project. The first box, Assign work to person or team, is a complex task by itself.
During the life of a project the makeup of the project personnel often changes. Analysis activ-
ities require a lot of user involvement, and team members who can understand the user’s
needs are most effective. As design and implementation activities begin, programmers and
technical staff are often added to the team. Whenever a new member is added, time must be
allocated for training and educating the new person. Often the size of the team will increase
as design and programming tasks are done in parallel. It is not unusual for various subteams
to be formed for specific internal miniprojects. For example, after some requirements have
been specified, acceptance test data can be identified and created. A subteam comprised of a
user and a testing expert can start the process of creating test data. As another example, a sub-
team can be formed to begin data conversion after the new database structure is defined. The
existing data or database will need to be converted into the new format. The data conversion
subproject can often become complex and require substantial effort. The skills required to
assign teams to specific tasks is usually learned from experience.

322 ♦ PART 3 SYSTEMS DESIGN TASKS

Take corrective

action

Is variance

significant?

Assign work to

person or team
Collect status

Is task

complete?
Is task on

target?

Analyze

variance

yes

no no

no

yes

yes

Figure 9-4

Workflow to monitor and

control project execution

The second box in the flowchart, Collect status, is less complex. We offer the following
guidelines. First, providing status information should be a standard process for all team mem-
bers. Generally it is a waste of time to collect status in a “status meeting.” If status informa-
tion needs to be communicated specifically, then e-mails can be sent. If project teams need to
coordinate their tasks or results, then a coordination meeting can be held between the
affected team members. But general status meetings are an ineffective use of time. Status
information should be collected and posted electronically for all to see. If the project tasks
have been identified at the correct level of detail, then status information can be reported at
milestones as complete or not complete. The “Percent complete” figure never seems to work
as one would anticipate. For example, tasks might reach 90% completion and then remain
there for weeks.

The next box, Analyze variance, is primarily a judgment decision. If a delayed task affects
the overall schedule because it is a critical-path task, then it is a significant variance.
Sometimes a variance also raises the risk of a potential delay or defect, which also should be
considered significant.

The final box, Take corrective action, can also be complex. Experienced project managers
have a whole set of tools they can use to try to correct the variance. Sometimes the correction
is as simple as reassigning team members to get more people working on the task, or maybe

C6696_09_CTP.4c 1/28/08 8:23 AM Page 322

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 9 Elements of Systems Design ♦ 323

it just requires some extra hours of overtime. At other times, tasks may have to be rearranged.
In more serious instances, the entire schedule may have to be reworked or more team mem-
bers may need to be recruited for the team. The objective of corrective action is to get the proj-
ect back to a known and predictable schedule.

CONTROLLING ISSUES AND RISKS

Every development project, whether it is predictive or adaptive, always has lots of questions that
need answers and many decisions to be made. From the first fact-finding session, through archi-
tectural and program design, and until the final acceptance test is conducted, new issues will
arise. In many cases, these issues are quickly resolved and the project moves rapidly forward.
However, in other instances, the answer to a question or the resolution of an open issue will
require additional research. Some open issues have an impact on various parts of the system or
project and need to be resolved in a timely manner. For example, a set of business rules for sales
commissions includes when and how commissions are calculated, what happens to commis-
sions on merchandise returns, when commissions are paid, how the commission schedule
varies to encourage sales of high-margin items and sale items, and so on. These business rules
must be defined to design the database properly and to develop the commission programs.
However, what if management is still making decisions about these business rules? Research
and executive discussion will be needed before final decisions are made. You would not want to
hold up the entire project for a few of these decisions. On the other hand, you want to make
sure that they do not fall through the cracks. Plus, these decisions must be made before the data-
base can be finalized and the program structure can be designed.

During the project planning activities the project manager also identified potential risks
that could have a negative impact on the project schedule. As the project progresses some of
those risks may disappear. Other risks, however, may turn into real problems, and new risks
may appear during the project. A good project manager will establish procedures to track the
identified risks and document any newly identified risks.

Finally, as the project progresses, new items or requests from users will be identified that
cannot be immediately incorporated into the new system. If the project uses a predictive
approach, sometimes new requests are generated after the system is almost complete or even
into acceptance testing. Those requested changes should be documented and put on the list
for the next version of the system. If the project uses an adaptive approach, some requests will
need to wait until the next iteration, or possibly a later version. So, for either type of project,
a change log should be maintained to itemize detail change requests.

The monitoring and control of open issues and risks for a project is usually nothing more
complex than building various tracking logs. These logs can be built in a simple spreadsheet
and posted on the project Web site or central repository. It is a good idea to make these logs
available to all team members. Figure 9-5 is an example of a tracking log. The column head-
ings will vary depending on the type of log you use. For example, a log for tracking user
requests will have slightly different columns than one that tracks open technical design issues.
Figure 9-5 is an open-issue tracking log with items that need to be resolved by a certain date
and that have a person responsible for resolving the issue.

Maintain an open-items list for unresolved problems and questions.

BEST PRACTICE

C6696_09_CTP.4c 1/28/08 8:23 AM Page 323

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

THE PROJECT TEAM AT RMO

As the customer support system project moves forward into design at RMO, two new mem-
bers have been added to the project team. Consistent with the earlier discussion, RMO has
initiated two new subprojects: one for data conversion and one for the system and acceptance
test plans. To integrate new people into the team, Barbara Halifax reorganized the structure of
the project team. Those who had been on the team throughout the analysis activities are now
key players in getting the new team members up to speed. The accompanying RMO memo
highlights some of the current changes in the project.

324 ♦ PART 3 SYSTEMS DESIGN TASKS

1

2
3
4
5

A B C D E F G H I
Issue
Log#

Issue
Date Issue Description Priority Issue Impact

Person
Responsible

Target Fix
Date Resolution Description

Actual Fix
Date

1/18/2010 Commission structure for
sales promotion is
undefined

Urgent Database structure
may need to be
modified

William Henry 2/1/2010

Figure 9-5

Sample issue tracking log

UNDERSTANDING THE ELEMENTS OF DESIGN

Systems design is the process of describing, organizing, and structuring the components of a
system at both the architectural level and a detailed level, with a view toward constructing the
proposed system. Systems design is like a set of blueprints used to build a house. The blue-
prints are organized by the different components of the house, and describe the rooms,

C6696_09_CTP.4c 1/28/08 8:23 AM Page 324

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 9 Elements of Systems Design ♦ 325

stories, walls, windows, doors, wiring, plumbing, and all other details. We do the same orga-
nizing in systems design, although the components we are describing are those of the new
system. We design and specify various components of the solution.

To understand the various elements of systems design, we must consider two questions:

• What are the components that require systems design?
• What are the inputs to and outputs of the design process?

MAJOR COMPONENTS AND LEVELS OF DESIGN

To perform design, analysts first partition the entire system into its major components
because an information system is too complex to design all at once. Figure 9-6 depicts how
these various components fit together. The icons in the figure are pieces of hardware, and
inside the hardware are the software components. The cloud represents the entire system, and
the various icons show the parts of the system that must work together to make the system
functional. Information systems professionals must ensure that they develop a total solution
for the users—they have not done their job if they haven’t provided an integrated, complete
solution.

As we will see in an upcoming section, the design activities of the SDLC support this par-
titioning of the final system into design components. Basically, each design activity is focused
around designing one of the identified components shown in Figure 9-6.

Application server

Database server

Workstation

Desktop PC

PDA

Foreign system

System interface design
describes the communications
going to other systems
(Chapter 15)

The cloud
represents the
entire system

Database design
specifies the
structure of the
underlying
database
(Chapter 13)

User-interface design defines
the forms, reports, and
controls of inputs and
outputs (Chapters 14 and 15)

Network design specifies the
hardware and middleware to
link the system together
(this chapter)

Application design describes
the computer programs and
modules (Chapters 10, 11,
and 12)

Figure 9-6

System components

requiring systems design

C6696_09_CTP.4c 1/28/08 8:23 AM Page 325

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

A second important idea underlying systems design is that of the different levels of design.
During analysis, we first identified the scope of the problem before we tried to understand
the details. We called this step top-down analysis. Analysis, as it was presented, included both
top-down activities (for example, scope first, then details) and bottom-up activities (for exam-
ple, DFD fragments first, then the middle-level diagram). The same ideas apply during design.

As you begin working in industry, you will find that various names are given to the design
at the highest level, including architectural design, general design, and conceptual design. We
will use the term architectural design. During architectural design, you first determine the
overall structure and form of the solution before trying to design the details. Designing the
details is usually called detail design. It is not so important at this point to distinguish which
activities are architectural design and which are detail design. Neither is it important to iden-
tify which models or documents belong to architectural design or to detail design. What is
important is to recognize that design should proceed in a top-down fashion. Let’s review the
implications of this approach for each of the design components identified in Figure 9-6.

For the entire system, the analysts first identify the overall application deployment envi-
ronment. They determine the overall architectural requirements and structure of the network
before specifying the details of the routers, firewalls, servers, workstations, and other compo-
nents. This approach was introduced in Chapter 8 and is expanded in this chapter.

For the application software, the first steps are to identify the various subsystems and their
relationships to the network, the database, and the user-interface components. Part of that early
design is the automation system boundary. The system boundary identifies which functions are
included within the automated system and which are manual procedures. Notice that we began
this process by identifying the level of automation, which was explained in Chapter 8.

For the database component, the first steps are to identify the type of database to be used
and the database management system. Some details of the record structures and the data fields
might have been identified, but the final design decisions will depend on the architecture.

For the user interface, the first steps are to identify the general form and structure of the
user dialog based on the major inputs and outputs. The project team also describes the rela-
tionship of the user-interface elements with the application software and the hardware equip-
ment. Afterward, the detailed window and report layouts can be developed.

INPUTS FOR SYSTEM DESIGN

During the analysis activities, we built documents and models. For traditional analysis, models
such as the event table, data flow diagrams, and entity-relationship diagrams were built. For
object-oriented analysis, we also used the event table and developed other models such as class
diagrams, use case diagrams, and use case descriptions. Regardless of the approach, the input to
the design activities is the set of documents and models that were built during earlier activities.

During analysis, analysts also built models to represent the real world and to understand the
desired business processes and the information used in those processes. Basically, analysis involves
decomposition—breaking a complex problem with complicated information requirements into
smaller, more understandable components. Analysts then organize, structure, and document the
problem domain knowledge by building requirements models. Analysis and modeling require sub-
stantial user involvement to explain the requirements and to verify that the models are accurate.

Design is also a model-building activity. Analysts use the information gathered during analy-
sis—the requirements models—and convert that information into models that represent the
solution system. Design is much more oriented toward technical issues and therefore requires
less user involvement and more involvement by other systems professionals. Figure 9-7 illus-
trates this flow from analysis to design, highlighting the distinct objectives of each phase.

326 ♦ PART 3 SYSTEMS DESIGN TASKS

architectural

design

broad design of the
overall system structure;
also called general design
or conceptual design

detail design

low-level design that
includes the design of
specific program details

C6696_09_CTP.4c 1/28/08 8:23 AM Page 326

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 9 Elements of Systems Design ♦ 327

We should note how the structure of the project affects the design activities, and particularly
the models and documents that are produced. Predictive projects usually tend to have a pro-
nounced change in focus from analysis to design. Even with the overlap of analysis and design,
as we saw in Figure 3-3, generally analysis activities and design activities are very distinct.
Adaptive projects often use a “just-in-time” approach to design, with analysis flowing right into
design and then into programming. For adaptive projects, it is not always easy to distinguish
when a developer transitions from understanding the problem to configuring a solution, but it
is important for developers to recognize when they change the focus toward a solution.

The formality of the project also affects design. Formal projects usually require well-
developed design documents, which are often reviewed in structured walkthrough meetings.
Developers on informal projects often create their designs with notepads and pencils, and
then throw away the design once the program is coded. In other words, design in informal
projects, such as in many Agile projects, is used as the means to the end, which is actual pro-
gram code. However, we emphasize that even though outsiders do not see the design docu-
ments, the design process must still be followed. A programmer who jumps into code without
carefully thinking it through ends up with errors, patches, and poorly structured systems. We
often hear this approach referred to as cowboy coding. Our point? Learn how to design and
build design models, even if you just draw them on the back of an envelope.

Analysis activities

Objectives:
To understand

1. Business events and processes
2. System activities and processing

requirements
3. Information storage requirements

Design activities

Objective:
To define, organize, and structure the
components of the final solution system
that will serve as the blueprint for
construction

Analysis models
and documents

Figure 9-7

Analysis objectives

versus design objectives

The original definition of design indicates that it involves describing, organizing, and
structuring the system solution. The output of the design activities is a set of diagrams and
documents that achieves this objective. These diagrams model and document various aspects
of the solution system. As with the analysis models, some components are similar for struc-
tured and OO approaches, but other components are very different.

C6696_09_CTP.4c 1/28/08 8:23 AM Page 327

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 9-8 duplicates the information about traditional and OO requirements models
originally shown in Figure 5-39 and extends it with the design models for both traditional
structured design and object-oriented design. As noted in the figure, the models developed
during the analysis activities feed directly into the models built for design—the traditional
analysis models feed the traditional design models, and the object-oriented analysis models
feed the object-oriented design models. Note also that several design models are common to
both approaches; these are shown in green and span the two sides of the figure.

For database design, the traditional approach usually uses a relational database model. The
object-oriented technique can require the design of either a relational database model or a
newer object-oriented database model. For user-interface design, both techniques include the
design of the human-computer dialog, forms, and reports. Both database and user-interface
design share many of the same techniques, whether a structured approach or an object-
oriented approach is used.

For application architecture design, however, traditional structured techniques and object-
oriented techniques do differ substantially. Structured techniques, including analysis and
design models, have been used for many years to describe the structure and organization of
systems written using the input-process-output model of software. These models are well
suited to describing business applications that rely on databases or files and do not require
sophisticated real-time processing. These models were originally developed to support appli-
cation software design and programming using COBOL and BASIC programming languages.
They are equally well suited to programming in other languages, such as C, FORTRAN, Pascal,
and other business-oriented programming languages.

Object-oriented techniques are newer techniques that have become widely used since the
late 1980s. They are well suited to real-time, interactive, and event-driven software such as
operating systems that require multitasking capabilities. Object-oriented development is
rapidly becoming the preferred approach for developing business applications, which are
usually interactive and event driven.

A frequently asked question is: Can structured techniques and object-oriented techniques be
mixed? In other words, is it possible to do structured analysis and then object-oriented design
of the application, or vice versa? Generally, such mixing and matching do not work well for
application design because the basic philosophies of the two approaches are so fundamen-
tally different. However, in some situations, it might be possible to mix and match, such as
when designing and implementing the interface using OO after completing traditional struc-
tured analysis. The design of the application software using a traditional approach provides
an architectural structure based on the top-down procedural functions of the system. A sys-
tem designed using object-oriented techniques has an architectural structure based on the set
of interacting objects for each use case.

After analysts have addressed the major components of a system, have considered its
architectural design, and have in hand the documents and models developed during analysis,
they can begin to consider how to design the system. We turn next to design activities.

328 ♦ PART 3 SYSTEMS DESIGN TASKS

C6696_09_CTP.4c 1/28/08 8:23 AM Page 328

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 9 Elements of Systems Design ♦ 329

Object
database
schema

Other
traditional

models

Events, use
cases, and
event table

Things

Context
diagram

DFD fragments

Data flow
definitions

Process
descriptions

Entity-
relationship

diagram (ERD)

Class
diagram

Object-Oriented
Approach

Traditional
Approach

Other
traditional

models

Use case
diagrams

Use case
descriptions

System
sequence
diagrams

Activity
diagrams

State machine
diagrams

User-interface dialogs, forms, and reports

System security and controls

Nodes and locations diagram

Analysis

Design

System
flowcharts

Structure
charts

Relational
database
schema

Package
diagrams

Design
class

diagrams

Interaction
diagrams

Figure 9-8

Traditional structured

and object-oriented

models

C6696_09_CTP.4c 1/28/08 8:23 AM Page 329

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

DESIGN ACTIVITIES

The activities required to complete design in the SDLC provide an overview of the design
process. As indicated previously, these activities provide the design for each of the compo-
nents illustrated in Figure 9-6. More details about design processes are explained later in this
chapter and in subsequent chapters as we discuss each of the design activities. Figure 9-9 iden-
tifies the activities that are associated with design.

330 ♦ PART 3 SYSTEMS DESIGN TASKS

Project
planning
activities

Analysis
activities

Design and integrate the network
Design the application architecture

and software
Design the user interfaces
Design the system interfaces
Design and integrate the database
Prototype for design details
Design and integrate the system controls

Implementation
activities Support

activities

Design activities

Figure 9-9

SDLC components with

design activities

Systems design is a model building endeavor, just as it was during systems analysis. As
design decisions are made, especially at the detail level, those decisions are derived and docu-
mented by building models. As indicated earlier, the models may be quite informal, but they
are the essence of design. For example, in database design, we identify which tables will be
required and what fields will be in which table before we begin to build the tables with SQL
statements. In software design, we decide which classes are the core classes and which are util-
ity classes and what responsibilities (methods) each class will have. User interface design
often requires storyboards or other visual models to make efficient workflow decisions. All of
these systems design tasks are model building tasks.

Systems design involves specifying in detail how a system will work using a particular tech-
nology. Some of the design details will have been developed during systems analysis, when the
alternatives were described. But much more detail is required. Sometimes systems design work
is done in parallel with the analysis activities. In addition, each component of the final solu-
tion is heavily influenced by the design of all the other components. Thus, all systems design
activities are done in parallel. For example, the database design is used heavily in software
design and even affects user interface design. The application architecture drives many of the
decisions for how the network must be configured. When an iterative approach to the SDLC is
used, major design decisions are made in the first or second iteration; however, many designed
components are revisited during later iterations. As with analysis activities, each activity of sys-
tems design can be summarized with a question, as shown in Figure 9-10.

Each of the activities develops a specific portion of the final set of design documents. Just
as a set of building blueprints has several different documents, a systems design package also
consists of several sets of documents that specify the entire system. In addition, just as the
blueprints must all be consistent and integrated to describe the same physical building, the
various systems design documents also must be consistent and integrated to provide a com-
prehensive set of specifications for the complete system. For example, if one analyst is work-
ing on the user interface without consulting the database designer, the analyst could build an
interface with the wrong fields or wrong field types and lengths. Internal consistency is a
mandatory element of effective system modeling and design.

C6696_09_CTP.4c 1/28/08 8:23 AM Page 330

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 9 Elements of Systems Design ♦ 331

DESIGN AND INTEGRATE THE NETWORK

Sometimes a new system is implemented along with a new network. If this is the case, the net-
work needs to be designed. More often, though, network specialists have established the
network based on an overall strategic plan, and designers choose an alternative that fits
the existing network. So rather than designing a network, the project team typically must inte-
grate the system into an existing network.

Important technical issues arise when making the system operate over a network, such as
reliability, security, throughput, and synchronization. Again, specialists are often brought in
to help with the technical details. The requirements developed during systems analysis specify
what work goes on at what locations, so these locations need to be connected. Technical
requirements (as opposed to functional requirements) often have to do with communication
via networks.

Later in this chapter, we highlight critical issues in network design and planning. The key
question to be answered when completing the Design and integrate the network activity is: Have
we specified in detail how the various parts of the system will communicate with each other throughout
the organization?

DESIGN THE APPLICATION ARCHITECTURE AND SOFTWARE

In this activity we include decisions about the structure and configuration of the new system
and the design of the actual computer software. Although we indicated that all components
of system design depend on each other, the desired configuration of the application architec-
ture drives all other design decisions, including network design. Designing the application
architecture involves specifying in detail how all system activities will actually be carried out.
For example, should users be able to access the new system only at work on their desktops, or
should they also be able to work from home via an Internet connection? Is it necessary to
allow remote wireless devices to connect to the system? What kind of transactions (use cases)
and what volume of transactions must the new system be able to handle? These kinds of
application decisions will drive the application architecture, the network, and other hardware
requirements.

Design activity Key question

Design and integrate the network Have we specified in detail how the various parts of the
system will communicate with each other throughout the
organization?

Design the application architecture Have we specified in detail how each system activity is
and software actually carried out by the people and computers?

Design the user interface(s) Have we specified in detail how all users will interact with
the system?

Design the system interface(s) Have we specified in detail how the system will work with all
other systems inside and outside our organization?

Design and integrate the database Have we specified in detail how and where the system will
store all of the information needed by the organization?

Prototype for design details Have we created prototypes to ensure all detailed design
decisions have been fully understood?

Design and integrate the system controls Have we specified in detail how we can be sure that the
system operates correctly and the data maintained by
the system is safe and secure?

Figure 9-10

Design activities and key

questions

C6696_09_CTP.4c 1/28/08 8:23 AM Page 331

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

These user tasks are described during systems analysis in great detail as logical models with
use case diagrams or data flow diagrams and descriptions, without indicating what specific tech-
nology is to be used. During systems design, these user tasks become system activities or trans-
actions. The objective of systems design is to determine the exact way to support each of these
transactions, including the architectural structure of the solution system and the design of the
software components. After specific architectural design alternatives are chosen, the detailed
computer processing models can be built. Models created include physical data flow diagrams,
structure charts, sequence diagrams, design class diagrams, and other physical models.

The approach to application design and the design models created vary depending on the
development and deployment environments. If the programming language is Visual Basic,
for example, the type and nature of the models developed will be different than if the lan-
guage were COBOL. If client/server architecture is used, the models used are different than
with a centralized architecture. If object-oriented technology is used, the models are quite dif-
ferent than for process-based technology. In addition, some activities are carried out by peo-
ple rather than computers, so manual procedures need to be designed.

The key question to be answered when completing the Design the application architecture
and software activity is: Have we specified in detail how each system activity is actually carried out by
the users and computers?

DESIGN THE USER INTERFACES

A critical aspect of the information system is the quality of the user interface. The design of
the user interface defines how the user will interact with the system. To most users, the inter-
face is a graphical user interface with windows, dialog boxes, and mouse interaction.
Increasingly, it can include sound, video, and voice commands. Users’ abilities and needs dif-
fer widely; each user interacts with the system in different ways. In addition, different
approaches to the interface might be needed for different parts of the system. Therefore, you
have many user interfaces to consider. And as information systems become increasingly inter-
active and accessible, the user interface is becoming a larger part of the system.

Analysts should remember that to the user of the system, the user interface is the system.
The user interface is more than just the screens—it is everything the user comes into contact
with while using the system, conceptually, perceptually, and physically. So, the user interface
is not just an add-on to the system. New technology also has led to many new requirements
for the user interface. For example, will users only use computers with large screens, or will
they also use PDAs and other remote devices with small graphical areas? Will other devices
be used for entering information such as text, verbal commands, pictures, and graphics? The
elements and requirements of the user interface need to be considered throughout the devel-
opment process.

The nature of the user interface begins to emerge very early in the development process,
when requirements are being defined. The specification of the tasks the users complete begins
to define the user interface. Then when alternatives are being defined, a key aspect of each
alternative is its type of user interface. The activity of designing the user interface in detail,
however, occurs during systems design.

Sometimes specialists in user-interface design are brought in to help with the project.
These specialists might be called interface designers, usability consultants, or human factors
engineers. The visual programming environments now available make it easy for developers to
create graphical user interfaces for applications. But it is still very difficult to make a graphical
user interface friendly or intuitive.

The processes associated with user-interface design are discussed in Chapter 14. The key
question to be answered when completing the Design the user interfaces activity is: Have we
specified in detail how all users will interact with the system?

332 ♦ PART 3 SYSTEMS DESIGN TASKS

interface

designers

specialists in user-
interface design; also
called usability
consultants or human
factors engineers

C6696_09_CTP.4c 1/28/08 8:23 AM Page 332

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 9 Elements of Systems Design ♦ 333

DESIGN THE SYSTEM INTERFACES

No system exists in a vacuum. A new information system will affect many other information
systems. Sometimes one system provides information that is later used by another system,
and sometimes systems exchange information continuously as they run. The component that
enables systems to share information is the system interface, and each system interface needs
to be designed in detail. From the very beginning of systems design, analysts must ensure that
all of the systems work together well.

In some cases, the new system needs to interface with a system outside the organization—
for example, at a supplier’s site or customer’s home. Increasingly, organizations are linking
systems together across organizational boundaries. At RMO, for example, the new supply
chain management system will have information flows from RMO to its key suppliers. The
new customer service management system will have real-time links to banks and other credit
verification organizations.

Some system interfaces link internal organizational systems, so the analyst may have
information available about other systems. Internally at RMO, the sales subsystem must have
access to the warehouse database to know which items are in stock and which are not avail-
able. In other cases, the new system needs to interface with an application that the organiza-
tion has purchased and installed.

System interfaces can become quite complex, particularly with so many types of technology
available today. Often, an organization needs people with very specialized technical skills to work
on these interfaces. System interface design is discussed in more detail in Chapter 15. The key
question to be answered when completing the Design the system interfaces activity is: Have we spec-
ified in detail how the system will work with all other systems inside and outside our organization?

DESIGN AND INTEGRATE THE DATABASE

Designing the database for the system is another key design activity. The data model (a logi-
cal model) created during systems analysis is used to create the implementation model of the
database. Usually the first decision is to determine the database structure. Sometimes the
database is a collection of traditional computer files. More often, it is a relational database
consisting of dozens or even hundreds of tables. Sometimes files and relational databases are
used in the same system. At other times object-oriented databases might be the most appro-
priate design. Other decisions include whether the database is centralized or distributed. The
internal properties of the database must also be designed, including such things as tables,
attributes, and links.

Analysts must consider many important technical issues when designing the database.
Many of the technical (as opposed to functional) requirements defined during systems analy-
sis concern database performance needs (such as response times). Much of the design work
might involve performance tuning to make sure the system actually works fast enough.
Security and encryption issues, which are important aspects of information integrity, must be
addressed and designed into the solution. Another key aspect of designing the database is
making sure that new databases are properly integrated with existing databases.

Chapter 13 describes database design in detail. The key question to be answered when
completing the Design and integrate the database activity is: Have we specified in detail how and
where the system will store all of the information needed by the organization?

PROTOTYPE FOR DESIGN DETAILS

The basic idea of a prototype is to test some new or risky aspect of the new system before com-
mitting major resources to a particular configuration of the new solution. In fact, prototypes are
used not only to verify a design decision, but to confirm that a particular approach will satisfy the

C6696_09_CTP.4c 1/28/08 8:23 AM Page 333

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

user’s business needs. Prototyping can be used to confirm design choices about user interfaces,
the database, network architecture, controls, or even programming environments being used.
Because many design decisions are made early in a predictive project, prototyping is often a crit-
ical tool to ensure that correct decisions are made and to reduce risk. Therefore, when analysts
consider all of the design activities, they think about how prototypes might be used to help
understand a variety of design decisions. It is also important to recognize that rapid application
development (RAD) approaches develop prototypes during design that evolve into the finished
system. In those cases, the prototype is the system. In adaptive projects, prototyping may not be
characterized in the same way. Frequently an iteration will be used to “try out some new tech-
nology.” Even though it is not specifically called prototyping, the objective is the same.

The key question to be answered when completing the Prototype for design details activity
is: Have we created prototypes to ensure that all detailed design decisions have been fully understood?

DESIGN AND INTEGRATE THE SYSTEM CONTROLS

A final design activity involves ensuring that the system has adequate safeguards to protect
organizational assets. These safeguards are referred to as system controls. This activity is not
listed last because it is less important than the others. On the contrary, especially in today’s
environment, where outsiders can potentially cause severe damage to a system and its data,
designing system controls is a crucial activity. It is listed last because controls have to be con-
sidered for all other design activities—user interface, system interface, application architec-
ture, database, and network design.

User-interface controls limit access to the system to authorized users. System interface con-
trols ensure that other systems cause no harm to this system. Application controls ensure that
transactions are recorded precisely and that other work done by the system is done correctly.
Database controls ensure that data is protected from unauthorized access and from accidental
loss due to software or hardware failure. Finally, and of increasing importance, network con-
trols ensure that communication through networks is protected. All of these controls need to
be designed into the system, based on the existing technology. Specialists are often brought in
to work on some controls, and all system controls need to be thoroughly tested.

Control issues are addressed in several chapters but more explicitly in Chapter 15. The key
question to be answered when completing the Design and integrate the system controls activity
is: Have we specified in detail how we can be sure that the system operates correctly and the data
maintained by the system is safe and secure?

NETWORK DESIGN

The first activity in the list of design activities is to design the network. Here we provide only
a brief introduction to network design. In real projects in large companies, network design is
also frequently done by full-time system programmers and technical support staff. Of course,
in a small company the analyst also may be the technical staff, so he or she may need good
network design skills. Network design is taught at the detailed level in a networking class in a
CIS or MIS curriculum.

Networks are used throughout organizations today. As a result, many new development
projects involve network design. Network planning and design are critical issues that must be
dealt with early in the design of any multitiered system. The key design issues are as follows:

• Integrating network needs of the new system with existing network infrastructure
• Describing the processing activity and network connectivity at each system location
• Describing the communication protocols and middleware that connect layers
• Ensuring that sufficient network capacity is available

334 ♦ PART 3 SYSTEMS DESIGN TASKS

C6696_09_CTP.4c 1/28/08 8:23 AM Page 334

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 9 Elements of Systems Design ♦ 335

Consult with in-house experts to determine whether the network can
support the new system without disrupting existing services.

BEST PRACTICE

Wide Area
Network

Denver LAN

Portland
LAN

Salt Lake City
LAN

Park City
LAN

Provo LAN

Albuquerque
LAN

Figure 9-11

A possible network

configuration for RMO

COMPUTER NETWORKS

A computer network is a set of transmission lines, specialized hardware, and communication pro-
tocols that enable communication among different users and computer systems. Computer net-
works are divided into two classes depending on the distance they span. A local area network
(LAN) is typically less than one kilometer and connects computers within a single building or floor.
The term wide area network (WAN) can describe any network over one kilometer, though the term
typically implies much greater distances spanning cities, countries, continents, or the entire globe.

Figure 9-11 shows a possible computer network for RMO. A single LAN serves each geo-
graphic location, and all LANs are connected by a WAN. Users and computers in a single loca-
tion communicate via their LAN. Communication among geographically dispersed sites uses
the LANs at both sites and the WAN. A router connects each LAN to the WAN. A router scans
messages on the LAN and copies them to the WAN if they are addressed to a user or computer
on another LAN. The router also scans messages on the WAN and copies them to the LAN if
they are addressed to a local user or computer.

computer

network

a set of transmission
lines, equipment, and
communication protocols
to permit sharing of
information and
resources

local area

network (LAN)

a computer network in
which the distances are
local, such as within the
same building

wide area

network (WAN)

a computer network
spread across large
distances, such as a city,
state, or nation

router

network equipment that
directs information
within the network

Technologies such as Ethernet are typically used to implement LANs. They provide low to
moderate amounts of message-carrying capacity at relatively low cost. WAN technologies such
as asynchronous transmission mode are more complex and expensive, though they typically
provide higher message-carrying capacity and greater reliability. WANs may be constructed
using purchased equipment and leased long-distance transmission lines. WAN setup and

C6696_09_CTP.4c 2/13/08 10:48 AM Page 335

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

operation may also be subcontracted from a long-distance telecommunications vendor such
as AT&T or Sprint.

Computer networks provide a generic communication capability among computer sys-
tems and users. This generic capability can support many services, including direct communi-
cations (such as telephone service and video conferencing), message-based communications
(such as e-mail), and resource sharing (such as access to electronic documents, application
programs, and databases). A single network can simultaneously support multiple services
with appropriate hardware and sufficient transmission capacity.

There are many ways to distribute information system resources across a computer net-
work. Users, application programs, and databases can be placed on the same computer system,
on different computer systems on the same LAN, or on different computer systems on differ-
ent LANs. Application programs and databases can also be subdivided and each distributed
separately.

THE INTERNET, INTRANETS, AND EXTRANETS

The Internet is a global collection of networks that are interconnected using a common low-
level networking standard called TCP/IP (Transmission Control Protocol/Internet Protocol).
The World Wide Web (WWW), also called simply the Web, is a collection of resources (pro-
grams, files, and services) that can be accessed over the Internet by a number of standard pro-
tocols, including the following:

• Formatted and linked document protocols, such as Hypertext Markup Language (HTML),
eXtensible Markup Language (XML), and Hypertext Transfer Protocol (HTTP)

• Executable program standards, including Java, JavaScript, and Visual Basic Script
(VBScript)

• Distributed software and Web-service standards, including Common Object Request
Broker Architecture (CORBA), Simple Object Access Protocol (SOAP), and Java 2 Web
Services (J2WS)

The Internet is the infrastructure on which the Web is based. In other words, resources of
the Web are delivered to users over the Internet.

An intranet is a private network that uses Internet protocols but is accessible only by a
limited set of internal users (usually members of the same organization or workgroup). The
term also describes a set of privately accessible resources that are organized and delivered via
one or more Web protocols over a network that supports TCP/IP. Although an intranet uses
the same protocols as the Internet and Web, it restricts resource access to a limited set of users.
Access can be restricted in various ways, including unadvertised resource names, firewalls, and
user/group account names and passwords.

An extranet is an intranet that has been extended to include directly related business users
outside the organization (such as suppliers, large customers, and strategic partners). An
extranet allows separate organizations to exchange information and coordinate their activi-
ties, thus forming a virtual organization. One widely used method of implementing an
extranet is through a virtual private network (VPN), a private network that is secure and
accessible only to members of an organization (or virtual organization). Historically, imple-
menting a private network required an organization to own and operate its own network lines

336 ♦ PART 3 SYSTEMS DESIGN TASKS

Internet

a global collection of
networks that use the
same networking
protocol—TCP/IP

World Wide Web

(WWW), or Web

a collection of resources
such as files and
programs that can be
accessed over the
Internet using standard
protocols

intranet

a private network that is
accessible to a limited
number of users, but
which uses the same
TCP/IP protocol as the
Internet

extranet

an intranet that has been
extended outside the
organization to facilitate
the flow of information

virtual

organization

a loosely coupled group
of people and resources
that work together as
though they were an
organization

virtual private

network (VPN)

a network with security
and controlled access for
a private group but built
on top of a public
network such as the
Internet

C6696_09_CTP.4c 1/28/08 8:23 AM Page 336

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 9 Elements of Systems Design ♦ 337

or leased, dedicated telephone lines. A VPN sends encrypted messages through public
Internet service providers.

NETWORK INTEGRATION

Modern organizations rely on networks to support many different applications. Thus, the
majority of new systems must be integrated into existing networks without disrupting exist-
ing applications. Network design and management are highly technical tasks, and most orga-
nizations have permanent in-house staff, contractors, or consultants to handle network
administration.

The analyst for a new project begins network design by consulting with the organization’s
network administrators to determine whether the existing network can accommodate the new
system. In some cases, the existing network capacity is sufficient, and only minimal changes
are required, such as adding connections for new servers or modifying routing and firewall
configuration to enable new application layers to communicate.

Planning for more extensive changes—such as significant capacity expansion, new com-
munication protocols, or modified security protocols—is much more complex. Typically, the
network administrator assumes the responsibility of acquiring new capacity and making any
configuration changes to support the new system because he or she understands the existing
network and the way other network-dependent applications operate. The analyst’s role for the
new system in these cases is to provide the network administrator with sufficient information
and time to enable system development, testing, and deployment.

NETWORK DESCRIPTION

Location-related information gathered during analysis may have been documented using
location diagrams (such as Figure 6-32), activity-location matrices (such as Figure 6-33), and
activity-data matrices (such as Figure 6-34). This information is important for the design of
the application architecture and the deployment environment, including the network.
Usually network design is done in conjunction with the application architecture, which is
explained in the next section. During network design, the analyst expands the information
content of these documents to include processing locations, communication protocols, mid-
dleware, and communication capacity.

There are many different ways to describe the network infrastructure for a specific applica-
tion. Figure 9-12 shows a network diagram that describes how application layers are distrib-
uted across locations and computer systems for the RMO customer support system. The
diagram summarizes key architectural decisions from Figure 8-5 and combines them with
specific assumptions about where application software will execute, where servers and work-
stations will be located, and how network resources will be organized.

The diagram embodies specific assumptions about server locations, which would be
decided in consultation with network administrators. The Web/application servers could have
been distributed outside the Salt Lake City data center, which might have improved system
response time and reduced data communication capacity requirements on the private WAN.
However, distributing the servers would also entail duplication of server administration at
multiple locations, which would increase operational complexity and cost. Decisions such as
server locations, communication routes, and network security options are determined both
by application requirements and organization-wide policies.

network diagram

a model that shows how
application layers are
distributed across
locations and computer
systems

C6696_09_CTP.4c 1/28/08 8:23 AM Page 337

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

COMMUNICATION PROTOCOLS

The network diagram is also a starting point for specifying protocol requirements. For exam-
ple, the private WAN connections must support protocols required to process Microsoft Active
Directory logins and queries. If the WAN fails, messages are routed through encrypted (VPN)
connections over the Internet, so those connections must support the same protocols as the
private WAN. All clients must be able to send HTTP requests and receive active content such
as HTML forms and embedded scripts. Application servers must be able to communicate with
credit verification and shipping services via the Internet. Firewalls and routers must be config-
ured to support all interactions among the workstations, customer PCs, Web/application
servers, the Active Directory server, and external credit and shipping services. The Park City
data center LAN must support at least one protocol for transmitting database queries and
responses among the mainframe and Web/application servers.

NETWORK CAPACITY

Information from activity-location and activity-data matrices is the starting point for estimat-
ing communication capacity requirements for various LAN, WAN, and Internet connections.
Figure 9-13 reproduces data from the RMO activity-data matrix (see Figure 6-34), which cov-
ers two activities (Look up item availability and Create new order) and three data entities
(Customer, Inventory Item, and Order). Similar tables would be required for all combina-
tions of activity, data entity, and location. Figure 9-13 includes estimates of data size per
access type and the average and peak number of access per minute or hour.

338 ♦ PART 3 SYSTEMS DESIGN TASKS

Microsoft Active

Directory server

Web/application

servers running

Windows Server

2008 and IIS

Customer PCs running

Windows or MacOS and

unknown Web browsers

Internet

Private

WAN

Client workstations

running Windows XP

and Internet Explorer

at Park City and

Denver retail stores

Client workstations

running Windows XP

and Internet Explorer

at Portland mail-

order center

Client workstations

running Windows XP

and Internet Explorer

at Salt Lake City

phone order center

WAN router

and firewall

(Salt Lake City)

WAN routers

and firewalls

(Park City

and Denver)

WAN router

and firewall

(Portland)

Dashed lines are
encrypted failover

connections
through public

ISPs

ISP #1

connection

ISP #2

connection
Internet

router and

firewall

High-speed LAN at

Park City data center

External credit

approval services

External shipping

 services

WAN router

and firewall

Database server on

existing server cluster

at Park City data center

running UNIX and DB2

Figure 9-12

A network diagram for

the RMO customer

support system

C6696_09_CTP.4c 1/28/08 8:23 AM Page 338

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 9 Elements of Systems Design ♦ 339

Data size per access type is an educated guess at this point in the system design because
none of the software layers, interlayer communication dialogs, or databases have been
designed. After these components have been designed in more detail or implemented, ana-
lysts can refine their estimates or actually sample and measure real data transmissions. Actual
data transmission capacity includes communication protocols in addition to raw data.

THE DEPLOYMENT ENVIRONMENT AND APPLICATION ARCHITECTURE

The second activity identified in Figure 9-9 is to design the application architecture and software.
This section provides an introduction to various options for the application architecture. Then
the next three chapters will provide detailed explanations to design the application software.

DATA ENTITIES

Activities and locations Customer Inventory item Order

Look up item availability R (125 bytes, 25/min average,
(Salt Lake City phone order center) 250/min peak)

Look up item availability R (125 bytes, 5/hr average,
(Park City retail store) 15/hr peak)

Look up item availability R (125 bytes, 5/hr average,
(Denver retail store) 15/hr peak)

Create new order C (500 bytes, 2/min average, R (60 bytes, 30/min average, C (200 bytes, 10/min average,
(Salt Lake City phone order center) 10/min peak) 300/min peak) 100/min peak)

R (500 bytes, 8/min average, U (60 bytes, 30/min average,
80/min peak) 300/min peak)

U (500 bytes, 2/min average,
10/min peak)

Create new order C (500 bytes, 1/min average, R (60 bytes, 15/min average, C (200 bytes, 5/min average,
(Portland mail-order center) 10/min peak) 150/min peak) 50/min peak)

R (500 bytes, 4/min average, U (60 bytes, 15/min average,
40/min peak) 150/min peak)

U (500 bytes, 1/min average,
10/min peak)

Create new order C (500 bytes, 1/hr average, R (60 bytes, 15/hr average, C (200 bytes, 5/hr average,
(Park City retail store) 5/hr peak) 75/hr peak) 25/hr peak)

R (500 bytes, 4/hr average, U (60 bytes, 15/hr average,
20/hr peak) 75/hr peak)

U (500 bytes, 1/hr average,
5/hr peak)

Create new order C (500 bytes, 1/hr average, R (60 bytes, 15/hr average, C (200 bytes, 5/hr average,
(Denver retail store) 5/hr peak) 75/hr peak) 25/hr peak)

R (500 bytes, 4/hr average, U (60 bytes, 15/hr average,
20/hr peak) 75/hr peak)

U (500 bytes, 1/hr average,
5/hr peak)

C = Creates new data, R = Reads existing data, U = Updates existing data, D = Deletes existing data

Figure 9-13

Partial activity-data

matrix for RMO customer

support system updated

with data access size and

volume

C6696_09_CTP.4c 1/28/08 8:23 AM Page 339

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The application architecture involves the structure and organization of the new software
system—for example, is it a desktop system, is it a networked system, or is it an Internet-based
system? Obviously the architectural structure of the software system will have to be supported
by the computer equipment and its configuration. Hence, this section introduces concepts
related to both the application architecture and deployment environment (computer
hardware, operating systems, and other system components). Of course, all of the architec-
tural decisions influence, and must be consistent with, the network environment discussed in
the previous section.

SINGLE-COMPUTER AND MULTITIER COMPUTER
ARCHITECTURE

As its name implies, single-computer architecture employs a single computer system and its
directly attached peripheral devices, as shown in Figure 9-14a. Even though a single-computer
architecture can refer to a stand-alone PC, a single PC has limited capabilities even at today’s
computer speeds. Hence, in this context we are discussing large mainframe computers with
extensive computing capability derived by multiple internal CPUs, multiple virtual machines
(each with its own operating system), large online data storage, and tremendous throughput
capabilities. The primary advantage of single-computer architecture is its simplicity.
Information systems deployed on a single-computer system, even though the software may
be complex, usually do not have complex interactions with other systems and thus operate in
a less complex and less cluttered environment. The other major advantage of a mainframe
architecture is the extremely high-volume processing that is supported. A single high-speed
mainframe can often do the same work as a cluster of computer servers. Companies that use
mainframe computers usually have business needs that require high volumes of online trans-
actions or heavy workloads throughout the day and night. Historically mainframe computers
have been very expensive. Today, however, the price of mainframe computers is competitive
with that of large server computers.

At first, servers functioned as less powerful mainframes in a single computer environment.
However, as operating systems and communication software became more sophisticated, it
soon became possible to connect several servers into a cluster of computers that could work
together to share the workload. Nowadays, clusters of servers can handle even greater work-
loads than a single mainframe computer. Many systems are so large that even the largest
mainframe computer cannot perform all the required processing, data storage, and data
retrieval tasks in a network environment. Such systems require another architectural
approach.

Multitier architecture employs multiple computer systems in a cooperative effort to meet
information-processing needs. Multitier architecture can be further subdivided into two types:

• Clustered architecture, shown in Figure 9-14b, employs a group (or cluster) of comput-
ers, usually from the same manufacturer and model family. Programs are allocated to the
least utilized computer when they execute so that the processing load can be balanced
across all machines. In effect, a cluster acts as a single large computer system. Clustered
computer systems are normally located near one another so that they can be connected
with short high-capacity communication links.

• Multicomputer architecture, shown in Figure 9-14c, also employs multiple computer sys-
tems. But hardware and operating systems are not required to be as similar as in a clus-
tered architecture. A suite of application or system programs and data resources is
exclusively assigned to each computer system. Each computer system is optimized to the
role that it will play in the combined system, such as database or application server.

Clustered computers are usually configured to be servers in that they provide support (for
example, data access or program execution) for a larger network of independent computing
devices.

340 ♦ PART 3 SYSTEMS DESIGN TASKS

single-computer

architecture

architecture that
employs a single
computer system
executing all application-
related software

multitier

architecture

architecture that
distributes application-
related software or
processing load across
multiple computer
systems

clustered

architecture

a group of computers of
the same type that share
processing load and act
as a single large
computer system

multicomputer

architecture

a group of dissimilar
computers that share
processing load through
specialization of function

C6696_09_CTP.4c 1/28/08 8:23 AM Page 340

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 9 Elements of Systems Design ♦ 341

CENTRALIZED AND DISTRIBUTED ARCHITECTURE

The term centralized architecture describes deployment of all computer systems in a single
location. Centralized architecture is generally used for large-scale processing applications,
including both batch and real-time applications. Such applications are common in industries
such as banking, insurance, and catalog sales. Information systems in such industries often
have the following characteristics:

• Some input transactions do not need to be processed in real time (for example, out-of-
state checks delivered in large nightly batches from central bank clearinghouses).

• Online data-entry personnel can be centrally located (for example, a centrally located
group of telephone order takers can serve geographically dispersed customers).

• The system produces a large volume of periodic outputs (for example, monthly credit-card
statements mailed to customers).

• A high volume of transactions occurs between high-speed computers (for example, business-
to-business processing for supply chain management).

Any application that has two or three of these characteristics is a viable candidate for
implementation on a centralized configuration of either a mainframe or server cluster.
Current trends in conducting e-business have instilled new life into centralized computing
because of the transaction volumes of many business-to-business (B2B) processes.

Centralized computer systems are seldom used as the sole hardware platform for an infor-
mation system. Most systems have some transaction inputs that must be accepted from geo-
graphically dispersed locations and processed in real time—for example, a cash withdrawal

(b) Clustered architecture

Sun Fire v890
Sun Netra 900

Sun Sparc M5000
(c) Multicomputer architecture

IBM System Z90 mainframe

(a) Single-computer architecture

HP rx8269 servers

Figure 9-14

Single-computer,

clustered, and

multicomputer

architectures

centralized

architecture

architecture that locates
all computing resources
in a central location

C6696_09_CTP.4c 1/28/08 8:23 AM Page 341

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

from an ATM. Most systems also have some outputs that are requested from and delivered to
remote locations in real time—for example, an insurance policy inquiry by a state motor vehi-
cle department. Thus, centralized computer systems are typically used to implement one or
more subsystems within a larger information system that includes online, batch, and geo-
graphically dispersed components.

Components of a modern information system are typically distributed across many com-
puter systems and geographic locations. For example, corporate financial data might be stored
on a centralized mainframe computer. Midrange computers in regional offices might be used
to generate accounting and other reports periodically based on data stored on the mainframe.
Personal computers in many locations might be used to access and view periodic reports as
well as to directly update the central database. Such an approach to distributing components
across computer systems and locations is generically called distributed architecture.
Distributed architecture relies on communication networks to connect geographically dis-
persed computer hardware components.

CLIENT/SERVER ARCHITECTURE

Client/server architecture divides programs into two types: client and server. A server man-
ages one or more information system resources or provides a well-defined service. A client
communicates with a server to request resources or services, and the server responds to those
requests.

Client/server architecture is a general model of software organization and behavior that
can be implemented in many different ways. A typical example is the interaction between a
client application program executing on a workstation and a database management system
(DBMS) executing on a larger computer system (see Figure 9-15). The application program
sends database access requests to the database management system via a network. The DBMS
accesses data on behalf of the application and returns a response such as the results of a
search operation or the success or failure result of an update operation.

342 ♦ PART 3 SYSTEMS DESIGN TASKS

Database
server

Database access request

Response or status code
Client

Figure 9-15

Client/server

architecture with a

shared database

When designing client/server software, the following architectural issues must be
addressed:

• Decomposing the application into client and server programs, modules, or objects
• Determining which clients and servers will execute on which computer systems
• Describing the communication protocols and networks that connect clients and servers

Identify resources or services that can be managed by independent
software units.

BEST PRACTICE

distributed

architecture

architecture that deploys
computing resources in
multiple locations
connected by a computer
network

server

a process, module,
object, or computer that
provides services over a
network

client

a process, module,
object, or computer that
requests services from
one or more servers

C6696_09_CTP.4c 1/28/08 8:23 AM Page 342

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 9 Elements of Systems Design ♦ 343

The key to decomposing the application into clients and servers is identifying resources or
services that can be centrally managed by independent software units. Examples of centrally man-
aged services include security authentication and authorization, credit verification, and schedul-
ing. In each case, a service provides a set of well-defined processes such as retrieval, update, and
approval based on a data store that is hidden from the client, as shown in Figure 9-16.

Client process
or object

Credit
verification

service

Credit
data
store

Figure 9-16

Interaction among client,

server, and a service-

related data store

Client and server software can execute on any computer system. But the most typical arrange-
ment is to place server software on separate server computer systems and to distribute client soft-
ware to computer systems “close” to end users, such as desktop workstations. Figure 9-17 shows a
typical arrangement for an order-processing application. Credit verification, delivery scheduling,
and database server processes execute on a centrally located midrange or mainframe computer,
and users execute multiple copies of the client software on workstations.

Local area
network

Client Server

Client Client

Figure 9-17

Interaction among

multiple clients and a

single server

The client and server communicate via well-defined communication protocols over a
physical network. In Figure 9-17, the network is a LAN, and an appropriate low-level network
protocol such as TCP/IP provides basic communication services. But the system designer must
also specify higher-level protocols, or languages, by which client and server exchange service
requests, responses, and data. In some cases, such as communication with a DBMS, standard
protocols and software may be employed, such as Structured Query Language (SQL) via an
Open Database Connectivity (ODBC) database connection. But in other cases, the designer
must define the exact format and content of valid messages and responses. If a service is pro-
vided by an external organization (for example, credit verification), the external organization
will have already designed an appropriate protocol, and the application designer must ensure
that clients adhere to the protocol.

C6696_09_CTP.4c 1/28/08 8:23 AM Page 343

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The primary advantage of client/server architecture is deployment flexibility. Client/server
architecture arose as an approach to distributing software across networked computers. It pro-
vides the inherent advantages of a networked environment, including the following:

• Location flexibility. The ability to “move” system components without “disturbing” other
system components, in response to changing organizational parameters, such as size and
physical location

• Scalability. The ability to increase system capacity by upgrading or changing the hardware
on which key software components execute

• Maintainability. The ability to update the internal implementation of one part of a sys-
tem without needing to change other parts (for example, the credit verification software
can be rewritten or replaced as long as the new software uses the existing client/server
protocol)

The primary disadvantages of client/server architecture are the additional complexity
introduced by the client/server protocols and the potential performance, security, and relia-
bility issues that arise from communication over networks. A centralized application execut-
ing as one large program on a single computer needs no client/server protocols, and all
communication within the application occurs within the relatively secure, reliable, and effi-
cient confines of a single machine.

For most organizations, the flexibility advantages of client/server far outweigh the disad-
vantages. As a result, client/server architecture and its newer variants have become the domi-
nant architecture for the vast majority of modern software.

THREE-LAYER CLIENT/SERVER ARCHITECTURE

A widely applied variant of client/server architecture, called three-layer architecture, divides
application software into a set of client and server processes independent of hardware or loca-
tions. All layers might reside on one processor, or three or more layers might be distributed
across many processors. In other words, the layers might reside on one or more tiers. The
most common set of layers includes the following:

• The data layer, which manages stored data, usually in one or more databases
• The business logic layer, which implements the rules and procedures of business

processing
• The view layer, which accepts user input and formats and displays processing results

Figure 9-18 illustrates the interaction of the three layers. The view layer acts as a client of
the business logic layer, which, in turn, acts as a client of the data layer.

Like earlier forms of client/server architecture, three-layer architecture is inherently flexi-
ble. Interactions among the layers are always requests or responses, which makes the layers
relatively independent of one another. It doesn’t matter where other layers are implemented
or on what type of computer or operating system they execute. The only interlayer dependen-
cies are a common language for requests and responses and a reliable network with sufficient
communication capacity.

Multiple layers can execute on the same computer, or each layer can operate on a separate
computer. Complex layers can be split across two or more computers. System capacity can be
increased by splitting layer functions across computers or by load sharing across redundant
computers. In the event of a malfunction, redundancy improves system reliability if the server
load can be shifted from one computer to another. In sum, three-layer architecture provides
the flexibility needed by modern organizations to deploy and redeploy information-
processing resources in response to rapidly changing conditions.

344 ♦ PART 3 SYSTEMS DESIGN TASKS

three-layer

architecture

a client/server
architecture that divides
an application into the
view layer, business logic
layer, and data layer

data layer

the part of three-layer
architecture that
interacts with the
database

business logic

layer

the part of three-layer
architecture that
contains the programs
that implement the
business rules of the
application

view layer

the part of three-layer
architecture that
contains the user
interface

C6696_09_CTP.4c 1/28/08 8:23 AM Page 344

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 9 Elements of Systems Design ♦ 345

Three-layer architecture is currently a widely applied architectural design pattern with
both the traditional approach and the object-oriented approach. As with other forms of
client/server architecture, the key design tasks are decomposing the application into layers,
clients, and servers, distributing the “pieces” across hardware platforms, and defining the
physical network and protocols.

The business logic layer is the core of the application software and is constructed accord-
ing to the requirements models developed during analysis, as described in Chapters 5
through 7. For example, in the traditional approach, all of the business logic defined for sys-
tem activities within the RMO data flow diagrams would be implemented as functions or pro-
cedures in the business logic layer. The window or browser forms making up the view layer
would not contain much procedural code. In the object-oriented approach, the classes of
objects in the RMO class diagram (see Figure 5-38) would be implemented within the busi-
ness logic layer as classes of objects that interact to complete user tasks. In either case, the
business logic layer is a server for the view layer and is a client of the data layer. However, the
business logic layer may itself be decomposed into multiple clients and services. Three-layer
architecture is usually implemented with object-oriented techniques and tools, as described
in Chapter 11, though it is also implemented with traditional design techniques and pro-
gramming languages, as described in Chapter 10. In this respect, three-layer architecture is a
prominent architectural design pattern that applies to both traditional and OO approaches.

In this text, Chapters 10 and 11 describe how the view and data layers are designed with
traditional and OO approaches. Chapter 13 describes the details of the database that is
accessed by the data access layer. Chapter 14 describes user-interface design techniques and
guidelines that are independent of the software that implements the view layer, such as the
arrangement of interface elements on a video display and the dialog between user and com-
puter that supports a specific application task.

INTERNET AND WEB-BASED APPLICATION ARCHITECTURE

The Web is a complex example of client/server architecture. Web resources are managed by
server processes that can execute on dedicated server computers or on multipurpose computer
systems. Clients are programs that send requests to servers using one or more of the standard
Web resource request protocols. Web protocols define valid resource formats and a standard
means of requesting resources and services. Any program, not just a Web browser, can use Web
protocols. Thus, Web-like capabilities can be embedded in ordinary application programs.

Internet and Web technologies present an attractive alternative for implementing infor-
mation systems. For example, consider the problem of data entry and access by an RMO buyer
when purchasing items from the company’s suppliers. Buyers are typically on the road for sev-
eral months a year, often for weeks at a time. A traveling buyer needs some means of remotely
interacting with RMO’s supply chain management (SCM) system to record purchasing agree-
ments and query inventory status.

One way of providing these capabilities would be to design custom application software
and a private network to connect to the software. The primary portion of the system could be
installed on a server at RMO. The client portion of the application—for data entry—would
then be installed on the buyers’ laptop computers. A buyer would then connect to the system
from remote locations to gain access to the application server, make queries to the database,
and enter data.

View
layer

Business
logic
layer

Data
layer

User request

Data access
 response

Data access
 request

Unformatted
 response

Information
 request

Formatted
response

Figure 9-18

Three-layer architecture

C6696_09_CTP.4c 1/28/08 8:23 AM Page 345

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Another alternative for implementing remote access for buyers would be to construct an
application that uses a Web browser interface. The application would execute on a Web server,
communicate with a Web browser using HTML or XML, and be accessible from any computer
with an Internet connection. Buyers could use a Web browser on their laptop computer and
connect to the application via a local Internet service provider. Buyers could also access the
application from any other computer with Internet access (for example, a computer in a ven-
dor’s office, hotel business suite, or copy center such as FedEx Kinko’s).

Flexibility is the key to the Internet alternative. Implementing the application via the
Internet greatly expands the application’s accessibility and eliminates the need to install cus-
tom client software on buyers’ laptop computers. With Internet technology, client software
can be updated simply by updating the version stored on the Web server. The application is
relatively cheap to develop and deploy because existing Web standards and networking
resources are employed. Custom software and private access via modems require more com-
plex development and maintenance of a greater number of customized resources.

Implementing an application via the Web, an intranet, or an extranet has a number of
advantages over traditional client/server applications, including the following:

• Accessibility. Web browsers and Internet connections are nearly ubiquitous. Internet,
intranet, and extranet applications are accessible to a large number of potential users
(including customers, suppliers, and off-site employees).

• Low-cost communication. The high-capacity WANs that form the Internet backbone were
funded primarily by governments. Traffic on the backbone networks travels free of charge
to the user, at least for the present. Connections between private LANs and the Internet
can be purchased from a variety of private Internet service providers at relatively low cost.
In essence, a company can use the Internet as a low-cost WAN.

• Widely implemented standards. Web standards are well known, and many computing
professionals are already trained in their use. Server, client, and application development
software is widely available and relatively cheap.

Information resource delivery via an intranet or extranet enjoys all of the advantages of
Web delivery because they use Web standards. In many ways, intranets, extranets, and the Web
represent the logical evolution of client/server computing into an off-the-shelf technology.
Organizations that once shied away from client/server computing because of the costs and
required learning curve can now enjoy client/server benefits at substantially reduced complex-
ity and cost.

Of course, there are negative aspects of application delivery via the Internet and Web tech-
nologies, including the following:

• Security. Web servers are a well-defined target for security breaches because Web standards
are open and widely known. Wide-scale interconnection of networks and the use of
Internet and Web standards make servers accessible to a global pool of hackers.

• Reliability. Internet protocols do not guarantee a minimum level of network throughput
or even that a message will be received by its intended recipient. Standards have been pro-
posed to address these shortcomings, but they have yet to be widely adopted.

• Throughput. The data transfer capacity of many home users is limited by analog modems
to under 56 kilobits per second. Internet service providers and backbone WANs can
become overloaded during high-traffic periods, resulting in slow response time for all
users and long delays when accessing large resources.

• Volatile standards. Web standards change rapidly. Client software is updated every few
months. Developers of widely used applications are faced with a dilemma: Use the latest
standards to increase functionality or use older standards to ensure greater compatibility
with older user software.

346 ♦ PART 3 SYSTEMS DESIGN TASKS

C6696_09_CTP.4c 1/28/08 8:23 AM Page 346

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 9 Elements of Systems Design ♦ 347

For RMO, the primary disadvantages of implementing the customer order application via
the Internet are security, performance, and reliability. If a buyer can access the system via the
Web, then so can anyone else. Access to sensitive parts of the system can be restricted by a
number of means, including user accounts and passwords. But the risk of a security breach
will always be present. Performance and reliability are limited by the buyer’s Internet connec-
tion point and the available Internet capacity between that connection and the application
server. Unreliable or overloaded local Internet connections can render the application unus-
able. RMO has no control over these factors.

The key architectural design issues for Web-based applications are similar to those for
other client/server architectures: defining client and server processes or objects, distributing
them across hardware platforms, and connecting them with appropriate networks, middle-
ware, and protocols. However, for Web-based applications, the choices for middleware and
protocols tend to be much more limited than for other forms of client/server architecture.

Now that we’ve discussed common approaches to application architecture, we turn our
attention to designing the networking infrastructure that connects parts of a modern infor-
mation system.

WEB SERVICES ARCHITECTURE

Web services architecture is another modern variant of client/server architecture. Web services
architecture packages software into server processes that can be accessed via Web protocols,
including XML, SOAP, Web Services Description Language (WSDL), and Universal
Description, Discover, and Integration (UDDI). Figure 9-19 shows how a client interacts with
a Web service via a Web services directory. Information about a Web service, such as server
and service names and port numbers, XML data formats, and security requirements, is
described in WSDL and published in a Web services directory. The client interacts with the
directory to determine what services are available and how to interact with them. The client
then initiates a connection with the Web service using SOAP and XML.

Web services
directory

Client

UDDI
and
XML

WSDL

SOAP and XML

Web
service

Figure 9-19

Web services

architecture

The credit verification service depicted in Figure 9-16 could be implemented as a Web ser-
vice. The credit bureau would implement one or more services and make them accessible via
SOAP on an application or Web server. The credit bureau would publish service information
in one or more Web services directories, which would enable clients to discover and interact
with those services. The published service description would include the required inputs—
such as credit-card name, number, expiration date, and charge amount—and outputs such as
approval or denial and an authorization code. The internal implementation of the service
would be irrelevant to the client as long as it matched the WSDL description in the directory.

Web services

architecture

a client/server
architecture that
packages software into
server processes that
can be accessed via Web
protocols

C6696_09_CTP.4c 1/28/08 8:23 AM Page 347

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Web services architecture provides a flexible mechanism for making software services
available to both internal and external clients. It is widely used to create a unified system by
combining software services distributed across multiple organizations and computers. For
example, RMO could employ external credit verification, shipment, and inventory replenish-
ment Web services in its new online ordering system. RMO might also structure some inter-
nal functions such as querying inventory quantities or posting customer transactions as Web
services to make them easily accessible from multiple applications and locations.

MIDDLEWARE

Client/server and three-layer architecture relies on special programs to enable communica-
tion between the various layers. Software that implements this communication interface is
usually called middleware. Middleware connects parts of an application and enables requests
and data to pass between them. There are various methods to implement the middleware
functions. Some common types of middleware include transaction processing monitors,
object request brokers (ORBs), and Web service directories. Each type of middleware has its
own set of protocols to facilitate communication between various components of an infor-
mation system.

When specifying the protocols to be used for client/server or interlayer communication,
the designer usually relies on standard frameworks and protocols incorporated into middle-
ware. For example, interactions with DBMSs usually employ standard protocols such as
ODBC and SQL with supporting software obtained from the DBMS vendor or a third party.
Third-party service providers such as credit bureaus and electronic purchasing or bidding ser-
vices usually employ a standard Web protocol such as HTTP or XML. Industry-specific proto-
cols have been developed in many industries such as health care and banking.

Complex OO software distributed across multiple layers and hardware platforms relies on
an ORB based on a distributed object interface standard such as CORBA. Distributed non-OO
software relies on different middleware products based on standards such as DCE or
Microsoft’s COM+. Web-based applications rely on Web-oriented protocols such as Microsoft’s
.NET and Sun’s J2WS and specific middleware products that implement and support those
protocols.

348 ♦ PART 3 SYSTEMS DESIGN TASKS

middleware

computer software that
implements
communication protocols
on the network and helps
different systems
communicate

C6696_09_CTP.4c 1/28/08 8:23 AM Page 348

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 9 Elements of Systems Design ♦ 349

SUMMARY
Managing a live project after it gets past the planning stage is a complex and often stressful job. Nevertheless,
some people thrive on this kind of work and are very good at managing. Four key areas must be carefully con-
trolled for successful ongoing project management:

• Organizing the team and assigning tasks to team members
• Monitoring the communications for the project
• Monitoring and controlling project progress
• Keeping track of all the open items during the life of the project

Systems design is the process of organizing and structuring the components of a system to allow the con-
struction (that is, programming) of the new system. The design of a new system consists of activities that
relate specifically to the design of various new system components. The components that need to be designed
include the network, application architecture and software, the user interfaces, the system interfaces, the
database, and the system controls. Prototyping may be required to fully specify any part or all of the design.

The inputs to the design activities are the diagrams, or models, that were built during analysis. The out-
puts of the design are also a set of diagrams, or models, that describe the architecture of the new system and
the detailed logic within various programming components. The inputs, design activities, and outputs are dif-
ferent depending on whether a structured approach or an object-oriented approach is used.

Designing the application architecture can be subdivided into architectural and detail design. Detail design
often refers to the design of the software programs. Architectural design adapts the application to the deploy-
ment environment, including hardware, software, and networks. Modern application software is usually
deployed in a distributed multicomputer environment and is organized according to client/server architecture
or a variant such as three-layer architecture or Web services architecture. Architectural design decisions include
decomposing the application into clients, servers, or layers, distributing software across hardware platforms,
and specifying required protocols, middleware, and networks.

Architectural design decisions can be documented in a network diagram. The network diagram describes
the organization of computing and network resources and specifies details such as the required protocols and
which application software and middleware execute on which computer systems. Required network capacity
can be determined by expanding the activity-location and activity-data matrices to include estimates of message size and volume.

KEY TERMS

architectural design, p. 326

business logic layer, p. 344

centralized architecture, p. 341

client, p. 342

clustered architecture, p. 340

computer network, p. 335

data layer, p. 344

detail design, p. 326

distributed architecture, p. 342

extranet, p. 336

interface designers, p. 332

Internet, p. 336

intranet, p. 336

local area network (LAN), p. 335

middleware, p. 348

multicomputer architecture, p. 340

multitier architecture, p. 340

network diagram, p. 337

router, p. 335

server, p. 342

single-computer architecture, p. 340

three-layer architecture, p. 344

view layer, p. 344

virtual organization, p. 336

virtual private network (VPN), p. 336

Web services architecture, p. 347

wide area network (WAN), p. 335

World Wide Web (WWW), or Web, p. 336

C6696_09_CTP.4c 2/13/08 10:48 AM Page 349

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

350 ♦ PART 3 SYSTEMS DESIGN TASKS

REVIEW QUESTIONS

1. What are some key issues to consider when organizing a

project team?

2. What is the difference between project information and

system information?

3. What is the sequence of steps that will help monitor and

control project progress?

4. What is the primary objective of systems design?

5. What is the difference between analysis and design? List

the design activities of the SDLC.

6. Why is project management so critical during design?

What tools can a project manager use during design?

7. Explain the difference between centralized architecture

and distributed architecture.

8. Explain the difference between clustered architecture and

multicomputer architecture in a centralized system.

9. How are the Internet, intranets, and extranets similar?

How are they different?

10. Describe client/server architecture and list the key architec-

ture design issues that must be addressed when developing

a client/server information system.

11. List and briefly describe the function of each layer in three-

layer architecture.

12. What role does middleware play?

13 Describe the process of network design.

14. What roles do systems analysts and network administrators

play in network design?

15. What is a network diagram? What information does it con-

vey and where does the analyst gather that information?

16. How does the analyst generate estimates of required com-

munication capacity? What analysis activity models are used

as input?

17. What is Web services architecture? What are some examples

of its potential use for business systems?

THINKING CRITICALLY

1. Discuss the evolution of client/server computing from file

server to multilayer applications to Web-based applications.

What has been the driving force behind this evolution?

Where do you think network computing will be in the next

five years? Ten years?

2. Assume that the deployment environment for a high-

volume payment processing system consists of the follow-

ing (these assumptions are from the scenario in Chapter 8’s

first Experiential Exercise):

• Oracle DBMS running under the UNIX operating sys-

tem on a cluster of HP servers

• WebSphere application server running under the Z/OS

operating system on an IBM zSeries 900 mainframe

• J2EE application software that will be executed by

other internal and external systems

What key architectural design decisions must be made for

the system? When should the decisions be made and who

should make them? Outline the subsequent design tasks

that should occur after the key architectural design deci-

sions are made. To what extent can the subsequent steps

be performed in parallel?

3. Develop a network diagram that supports the architectural

design decisions in your answer to problem 2.

EXPERIENTIAL EXERCISES

1. Set up a meeting with the chief analysts of a medium- or

large-scale development project and discuss the transition

from analysis to design for that project. How and when

were key architectural decisions made about the automa-

tion boundary, network design, and supporting infrastruc-

ture? Who made the decisions? Were the early

architectural decisions modified later in the project? If so,

how and why?

2. Find an example of an application system that is browser-

based and uses TCP/IP standards. Explain how it works,

showing sample screens and reports. List each middleware

component and describe its function. List each protocol

employed and identify the standard family or families to

which the protocol belongs.

3. Examine the RMO network diagram in Figure 9-12 and

note the connections to external service providers for credit

verification and shipping services. Identify at least three

companies that can provide each service. Investigate their

online Web-based service capabilities and describe the pro-

tocols used by clients to interact with their services.

4. Find a local company or a systems development team from

the information systems department at your college or uni-

versity and meet with a project manager. Ask him how he

manages his projects. Specifically ask him about the four

areas discussed in this chapter: assigning tasks to team

members, establishing communication protocols and using

electronic tools, monitoring and controlling progress, and

tracking open issues.

C6696_09_CTP.4c 1/28/08 8:23 AM Page 350

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 9 Elements of Systems Design ♦ 351

THE REAL ESTATE MULTIPLE LISTING SERVICE SYSTEM

In Chapter 8, you were asked to discuss the implications of the

“anytime, anywhere” requirement for the application deployment

environment and to describe the type(s) of hardware, network, and

software architecture needed to fulfill that requirement. Assume

that you addressed that question by specifying a three-layer archi-

tecture using ordinary PCs running Web browsers to implement the

view layer. Draw a network diagram that represents your chosen

solution.

Today’s computer-based real estate listings typically include

graphical data, such as still and moving pictures, in addition to text

descriptions of properties. What is the impact of such data on data

communication requirements within your network design, assum-

ing 10 listing accesses per hour? 100 listing accesses per hour?

1,000 listing accesses per hour?

RETHINKING ROCKY MOUNTAIN OUTFITTERS

In Chapter 8, you were asked to consider an alter-

native deployment scenario for RMO based on

Apache Web servers running under Linux and an

Oracle database server. Modify the network dia-

gram in Figure 9-12 to reflect the alternative deployment scenario.

What changes, if any, are required for the client workstations and

customer PCs? What changes, if any, are required in middleware

and communication protocols? Will there be any change in the esti-

mates of required data-communication capacity among client work-

stations and servers at the Park City data center? Why or why not?

FOCUSING ON RELIABLE PHARMACEUTICAL SERVICE

Assume the same facts as presented in the

Chapter 8 Reliable Pharmaceutical case. Also

assume that you are the project manager for the

selected vendor’s development team. Your company, RxTechSys,

develops and markets software to retail and hospital pharmacies and

has decided to take on the Reliable project to expand potential mar-

ket share. RxTechSys and Reliable will jointly develop the new soft-

ware. RxTechSys will then market the finished product to other

companies and pay a royalty to Reliable for each sale.

RxTechSys has been in the pharmacy software business for 20 years.

The latest version of the software is a Web-based application built on the

Microsoft .NET platform. Major functions such as inventory control, pur-

chasing, billing, and prescription warning are implemented as separate

.NET Web services. As part of the team that prepared the response to

Reliable’s RFP, you determined that RxTechSys’s current system can be

adapted to Reliable’s needs as follows:

• Existing browser-based prescription entry can be modified

to handle data input from multiple customer locations over

a VPN. This is a significant modification due to expanded

data content and greater security requirements.

• Order fulfillment software will have to be written from

scratch.

• Billing software will require significant modification

because your current system assumes that all patients have

their health care managed by a single institution, with

possible third-party reimbursements through Medicaid/

Medicare.

• Other parts of your existing system can be used with little

or no modification.

Reliable has provided you with a complete set of object-ori-

ented analysis models, the quality of which you approved during

contract negotiations. Your task is to move the project forward

through design and implementation.

Reliable has assigned an operational manager with some com-

puter experience to your team full-time, and she is authorized to

assign other Reliable personnel to your project as needed. You have

been assigned a full-time staff of four developers, two of whom

have substantial design experience and all of whom participated in

developing the most recent version of RxPharmSys software.

Develop a design plan and schedule that covers the next 4 to 6

weeks (your expected project duration is 10 months). What design

decisions must be made within the next two weeks? Who should

make them? How will design and development proceed there-

after—what tasks must be performed and in what order? How will

you manage and control the project?

CASE STUDIES

FURTHER RESOURCES

Robert Orfali, Dan Harkey, and Jeri Edwards, Client/Server

Survival Guide, Third Edition. Wiley, 1999.

C6696_09_CTP.4c 1/28/08 8:23 AM Page 351

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

352

THE TRADITIONAL APPROACH
TO DESIGN10
L E A R N I N G O B J E C T I V E S

After reading this chapter, you should be able to:

■ Describe the steps involved in the traditional approach to designing the

application architecture

■ Develop a system flowchart

■ Develop a structure chart using transaction analysis and transform analysis

■ Write pseudocode for structured modules

■ Explain how to use three-layer design with the traditional approach

CHAPTER

C H A P T E R O U T L I N E

The Structured Approach to Designing the Application Architecture

The Automation System Boundary

The System Flowchart

The Structure Chart

Module Algorithm Design: Pseudocode

Integrating Structured Application Design with Other Design Tasks

Three-Layer Design

C6696_10_CTP.4c 1/28/08 8:23 AM Page 352

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 10 The Traditional Approach to Design ♦ 353

Bernard closed the office door and spoke to his officemate, Stana, in an exasperated voice. “I
don’t understand why Jim insists that I update these system flowcharts and structure charts.
We should throw this all out and start from scratch with object-oriented (OO) design. I drew
a few of these traditional diagrams in school, but we spent most of our time with object-
oriented diagrams and techniques. I feel as if I’m being asked to fix a computer with a hammer
and saw!”

Bernard, a recent MIS college graduate, was a new employee at Theatre Systems, Inc.,
which sells and supports financial reporting software for small and medium-sized U.S. the-
atre chains. He was hired just as an upgrade project was moving from analysis to design.
Although the company’s software had been updated regularly with improvements and new
features, it lacked some modern capabilities, such as a Web-based interface and scalable mul-
tilayer architecture.

Stana, who had worked for the company for almost four years, replied, “Well, you need to
remember two things. First, many of the IS staff here don’t fully understand OO analysis and
design techniques. Version 1 of our software and its analysis and design documentation was
developed in the early 1980s. All of the upgrades since then have been incremental, so there’s
been no need to burn the old design models and start from scratch. Significant chunks of the
system are unchanged in over a decade.

“Second, there’s a question of suitability of the tools to the task. If our goal was to develop
and implement an entirely new system that could scale from the smallest mom-and-pop the-
atre to the largest nationwide theatre chain and be deployed and redeployed at whim, then
we’d almost certainly be using the latest distributed software technologies, OO programming
languages, and the OO analysis and design tools that best match them. We’d also throw away
most of our existing source code and redevelop the entire system from scratch. But our cur-
rent project calls for grafting some Web browser front-end interfaces onto a system written in
C with as little change as possible to the existing code. Structured design models work very
well for the existing C programs and functions.”

“So how do I represent Web interfaces and client/server interactions with structured tech-
niques?” Bernard asked.

Stana replied, “The trick is to think of the Web server as a container for application soft-
ware programs that communicate with the Web browser over a real-time link—the Internet or
an intranet. In structured design, the primary software units are programs and modules. So in
the current system, the modules are C functions, which are packaged into a small number of
complex programs that do many things, with all-encompassing menu-based front ends. One
of your most important tasks for this upgrade is to decompose those large programs into
smaller ones and move functions that implement the existing user interface out of the C code
and into Web-page code. The remaining functions are application logic that you can package
into small programs that can be called from Web-server scripts. Each of those small programs
should be one structure chart and one box on a system flowchart. You should be able to cut
and paste from the existing structure charts to create rough drafts as a starting point.”

Bernard looked relieved at first, but then confusion and concern crossed his face. “Jim is
going to review my work at the end of the week. I’m worried that I’ll make some huge mis-
takes and that he’ll think he made a mistake in hiring me. Would you look over some of my
work before I meet with him?”

Stana gave Bernard a reassuring smile. “Jim put you in this office with me. And even
though I’m assigned to other project tasks, he asked me to help you when you needed it.
Software development only succeeds when everyone works as a team. People who don’t ask
for help are the ones who get fired. So why don’t you spend the rest of the morning designing
the entry and verification modules for the snack bar receipts, and we’ll sit down after lunch
and go over them?”

THEATRE SYSTEMS, INC. : SOMETHING OLD, SOMETHING NEW

C6696_10_CTP.4c 1/28/08 8:23 AM Page 353

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

OVERVIEW

This chapter describes the traditional approach to designing software. The chapter begins with
an overview of the structured models, model development process, and related terminology.
We then describe how data flow diagrams are annotated with automation boundary informa-
tion. Next, we explore how information from analysis models is transformed into design
models using system flowcharts, structure charts, and module pseudocode. Then we discuss
how traditional software design is integrated with other design activities. The chapter con-
cludes with an examination of how the traditional approach is applied to designing a three-
layer architecture.

As described in the opening case, traditional software design and structured design models
have been in use for many years. They are commonly used with systems developed using pro-
cedural programming languages and are well suited to describing systems with both batch and
online components. Most new systems are developed with object-oriented programming lan-
guages, so traditional systems design models are decreasing in popularity. However, as illus-
trated in the case, many older systems in use today were designed and documented using
traditional methods and models. Also, traditional design concepts such as coupling, cohesion,
and top-down partitioning underlie both traditional and object-oriented design methods, so it
is important to understand those concepts. Finally, traditional models are sometimes adapted
to newer software development methods and paradigms such as multilayered software. So,
analysts should be knowledgeable about the traditional approach to design.

THE STRUCTURED APPROACH TO DESIGNING THE APPLICATION ARCHITECTURE

The application architecture consists of the application software programs that will carry out
the functions of the system. Application design must be done in conjunction with the design
of both the database and the user interface. However, we focus exclusively on the design of
the computer software itself for ease of understanding.

Third-generation programming languages such as Visual Basic, C, COBOL, or Pascal are
organized around modules that are arranged in a hierarchy like a tree. The top module is often
called the boss module or the main module. The middle-level modules are control modules, and
the leaf modules (those at the ends of the branches) are the detailed modules that contain most
of the algorithms and logic for the program. A module, then, is a small section of program code
that carries out a single function. A computer program is a set of modules that are compiled
into a single executable entity. The design of a computer program is specified with a structure
chart, which is discussed in detail later in this section.

In large systems, a single program usually cannot perform all of the required functions.
Sometimes one program is written to perform online activities, and another program carries
out periodic functions that are executed once a day. Other programs may have specialized func-
tions, such as backing up the data or producing year-end financial reports. All these individu-
ally executable entities, or programs, comprise the entire system.

Both the structure of the overall system and any individual subsystems are documented
using a system flowchart. The system flowchart identifies each program, along with the data
it accesses. The system flowchart also shows the relationships among the various programs,
subsystems, and their files or databases. It documents the architectural structure of the overall
system. We describe how to design a system flowchart later in this chapter.

Finally, the project team must also design the internal logic of individual modules. The
internal algorithms that comprise the logic of the modules are usually documented using
pseudocode. If you have taken programming classes, you probably had to write algorithms
in pseudocode before you actually coded your programs. Pseudocode is very much like the

354 ♦ PART 3 SYSTEMS DESIGN TASKS

module
an identifiable
component of a
computer program
that performs a defined
function

system flowchart
a diagram that describes
the overall flow of control
between computer
programs in a system

computer

program
an executable entity
made up of a set
of modules

pseudocode
statements similar to that
of a programming
language that describe
the logic of a module

C6696_10_CTP.4c 1/28/08 8:23 AM Page 354

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 10 The Traditional Approach to Design ♦ 355

structured English described in Chapter 6. Pseudocode describes the logic of a module using
statements similar to that of a programming language.

In general, analysts use a top-down approach for design. The inputs for the development of
the design models and documents are the data flow diagrams and their detailed documenta-
tion, in structured English, and the detailed data flow definitions. Figure 10-1 illustrates the
process. Analysts use an intermediate form of the DFD called the DFD with automation system
boundary, which divides the computerized portions of the system from the manual portions. So,
this diagram determines which portions of the system need to be included in the design. This
enhanced DFD is actually used as the source for the design models, as shown in the figure.

Data flow diagram
Structured English

data flow definitions
Structure chart

System flowchart

Pseudocode

If A then
Calculate Sales Tax
Calculate Total Amount

End If

Data flow diagram
with automation

system boundary

Figure 10-1

Structured design models

The following sections of the chapter trace the sequence of activities shown in Figure 10-1.
First, the automation system boundary is discussed. Then we explain the development of the
system flowchart. Next, we discuss the approach to the design of the structure chart. Finally, we
describe the form and method of writing pseudocode.

THE AUTOMATION SYSTEM BOUNDARY

The automation system boundary partitions the data flow diagram processes into manual
processes and those that are to be included in the computer system. During the analysis activities,
we looked at the business events and all of the processes that were triggered by those events. At
that time, we did not try to distinguish between manual and automated processes, but to develop
the computer system’s design, we must identify the processes that will be automated.

Figure 10-2 illustrates a typical data flow diagram with the automation system boundary
added. This figure shows both the system boundary, which identifies the entire automated
system, and program boundary lines, which partition the DFD into separate programs. This

C6696_10_CTP.4c 1/28/08 8:23 AM Page 355

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

diagram is the first step in design, and it determines what the programs are and what
processes are included within those programs. In this context, we define a program as a sepa-
rate executing entity.

Processes can either be inside or outside the system boundary. Processes that are outside
are manual processes, such as sorting and inspecting paper documents, entering customer
orders, or visually inspecting incoming shipments. The processes that are inside the boundary
may be carried out in online or batch modes. Online processes are usually active every day dur-
ing working hours. Batch processes may be activated each night or only periodically. In some
cases, the system boundary goes right through a process, which indicates that the process is
mid- or high-level and is exploded on a more detailed diagram. Some of the processes in the
exploded detail will be inside the system boundary, and some will be outside.

Data flows are found inside, outside, or crossing the system boundary and the program
boundaries. The data flows that cross the system boundary are particularly important; they
represent inputs and outputs of the system. In other words, the design of the program inter-
faces, including both the user interface and transmittals to other systems, is defined by the
boundary-crossing data flows. In the final system, these data flows will be forms or reports
in the user interface, or files or telecommunication transmittals between systems. Data flows
that cross the boundaries between programs represent program-to-program communication.
In the final system, these data flows will also be files or telecommunication transmittals
between programs.

356 ♦ PART 3 SYSTEMS DESIGN TASKS

Automation system
boundary

Data flows crossing
the boundary are

inputs and outputs

Process that is
partially in and

partially out

Program boundary

Inspected checks

W-2 form

W-2 detail
report

Correct
errors

Calculate
payroll

Print
checks Inspect

checks

Produce
year-end

tax

Tax
agency

Batch program
(Check printing)

Batch program
(Year-end tax)

Online program
(Payroll)

Online program
(Maintain employee

database)

Online program
(Maintain tax tables)

Update
tax tables

Management

Enter time
cards

1

Hourly
employee

Hourly
employee

Update
employees

Time card
information

Updates to
tax rates

Updates to
employees

2

4

3

6
7

8

5
Tax rates

Time cards

Payroll ttns

Employee records

Figure 10-2

The data flow diagram

with an automation

system boundary

C6696_10_CTP.4c 1/28/08 8:23 AM Page 356

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 10 The Traditional Approach to Design ♦ 357

Figure 10-2 is the high-level data flow diagram showing all of the major processes for a
payroll program. The system boundary can also be drawn on each data flow fragment to show
more detail about which processes are internal or external and which low-level data flows
cross the boundary.

THE SYSTEM FLOWCHART

The system flowchart is the representation of various computer programs, files, databases, and
associated manual procedures that make up a complete system. Processes are grouped into
programs and subsystems based on similarities such as shared timing (for example, a process
performed monthly), shared access to stored data (for example, all processes that update
employee data), and shared users (for example, processes that produce reports for the mar-
keting department). The programs and subsystems thus created have complex interdependen-
cies, including flow of data, flow of control, and interaction with permanent data stores. The
system flowchart is frequently constructed during the analysis activities. For example, the sub-
systems of the RMO customer support system were defined during the analysis activities (see
Chapter 6), and the set of activities or use cases allocated to each subsystem makes up the
program modules.

The system flowchart helps to document the application architecture,
showing subsystems, inputs, outputs, and data storage.

BEST PRACTICE

A system flowchart graphically describes the organization of the subsystems into auto-
mated and manual components, showing the flow of data and control among them. System
flowcharts are used primarily to describe large information systems consisting of distinct sub-
systems and dozens or more programs. They are also used to describe systems that perform
batch processing (for example, systems used to process bank transactions, payroll checks, and
utility bills). A common characteristic of such systems is the division of processing into dis-
crete steps (such as validation of input transactions, update of a master file with transaction
data, and production of periodic reports) with a fixed execution sequence. Many batch sys-
tems also make extensive use of files in addition to or instead of databases.

System flowcharts first came into widespread use to document the processing and data flow
between programs that processed information through batch transaction files. Frequently, in
these systems, one program would produce a file of all the daily transactions. Then another pro-
gram would process the transactions and update a master file. Yet another program would be
used to produce the various reports required from the system.

Today’s newer systems perform much processing in real time, as each transaction is
entered. These systems also usually make updates to a relational database system instead of a
master file. Centralized database management systems also include many of the processes
that were previously done by individual programs. System flowcharts also may be drawn for
these newer systems, although the diagrams tend to be much simpler because the processing
is more centralized to a single program or subsystem. But because the systems developed
these days are generally much more complex overall, you will still see system flowcharts used
to represent how all of the pieces fit together.

Many business systems today also have both real-time and batch components. For example,
today your credit-card purchases are at least verified in real time and may even be posted in real
time. However, monthly account statements and customer payments typically are processed in
batches. A system flowchart is used to describe the overall organization of this type of system and
show the relationship between the real-time components and the batch processing.

C6696_10_CTP.4c 1/28/08 8:23 AM Page 357

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 10-3 illustrates the most common symbols that are used in system flowcharts.
These symbols are fairly common throughout the industry, although from time to time you
will see variations.

358 ♦ PART 3 SYSTEMS DESIGN TASKS

Process or
program

File or
database

Document or
report

File on
magnetic

tape

Input or output
screen display

Connection between
components. An arrow
generally indicates a

flow from one
component to another.

Communication link

File or
database

Manual
operation

Figure 10-3

Common system

flowchart symbols

Figure 10-4 is a system flowchart for the payroll system shown on the DFD in Figure 10-2.
Note that the system flowchart identifies the files, programs, and manual processes of the
total system. We have added physical implementation descriptions by identifying the file
media, disk, or tape. Frequently, we also include additional system functions and files such as
backups and history files. Even though the information shown in Figures 10-2 and 10-4 is
very similar, the focus of the diagrams is different. The system flowchart focuses on the imple-
mentation of physical objects, such as executable programs, files, and documents.

Figure 10-4 shows that the payroll program has four inputs and produces three outputs.
The inputs are the time cards, the tax rate table file, the employee database, and corrections.
Outputs produced are an error report, a payroll transaction file, and an updated payroll his-
tory file. Other programs (that is, independent executables) are the two programs to maintain
the tax rate tables and the employee database, and the other two programs to write checks
and to produce year-end income tax reports.

Figure 10-5 is an example of a system flowchart for Rocky Mountain Outfitters. The four
main programs correspond to the subsystems identified in the list of subsystems in Figure 6-10.
As in the example of the order-entry subsystem shown in Figure 6-12, each subsystem will

C6696_10_CTP.4c 2/13/08 10:57 AM Page 358

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 10 The Traditional Approach to Design ♦ 359

include DFD fragments for each of the activities in the subsystem. In the system flowchart,
the individual data stores have been converted into database files. As you can see, the creation
of the system flowchart requires the architectural design of the major program steps, the archi-
tectural design of the databases, the identification of the major interfaces, and the identifica-
tion of the primary outputs.

Figure 10-5 also shows one additional subsystem that is not identified in Figure 6-10. During
the scoping and level of automation review discussed in Chapter 8, RMO decided that it needed
a higher level of automation for a couple of sales analysis reports. In this instance, instead of
adding the reports to an existing subsystem, the project team defined a new subsystem.

Payroll program

Tax table
Inspect time

cards

Correct
errors

Maintain tax
tables program

Employee
database

Maintain employee
database program

Error report

Payroll
transactions

Payroll
transaction

history

Check printing
program

Employee W-2

Federal 940
forms

State 940 forms

Year-end tax
program

Payroll summary
report

Checks

Inspect
checks

Figure 10-4

A sample system

flowchart for a payroll

system

C6696_10_CTP.4c 1/28/08 8:23 AM Page 359

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

360 ♦ PART 3 SYSTEMS DESIGN TASKS

Sales analysis
program

Sales analysis
reports

Maintain customer
information

program

Customer order
program

Order fulfillment
(shipments)

Catalog
maintenance

program

Catalogs

Promotional
materials

Shipping
documents

Accounting
transactions

Customer
database

Order
database

Inventory
database

Catalog/
promotions
database

Shipper remote
system

Figure 10-5

The system flowchart for

Rocky Mountain

Outfitters

THE STRUCTURE CHART

The primary objective of structured design is to create a top-down decomposition of the functions
to be performed by a given program in a new system. Each independent program shown in the
system flowchart performs a set of functions. Using structure chart techniques always provides a
hierarchical organization of program functions. First, this section explains what a structure chart is
and how to interpret one. We explain how each structure chart is related to the DFDs created dur-
ing systems analysis, and then we show how to use a detailed data flow diagram to develop one.

A structure chart hierarchy describes the functions and the subfunctions of each part of a
system. For example, the program may have a function called Calculate pay amounts. Some
subfunctions are Calculate base amount, Calculate overtime amount, and Calculate taxes. In a
structure chart, these functions are drawn as a rectangle. Each rectangle represents a module.

structure chart
a hierarchical diagram
showing the relationships
between the modules of a
computer program

Use a structure chart to document the modular design of each program
shown in a system flowchart. Each high-level module is usually based on
one activity or use case triggered by an event. So, traditional structured
design can be described as use case driven.

BEST PRACTICE

C6696_10_CTP.4c 1/28/08 8:23 AM Page 360

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 10 The Traditional Approach to Design ♦ 361

A module is the basic component of a structure chart and is used to identify a function.
Figure 10-6 shows a simple structure chart for the payroll example. Modules, as shown by the
rectangles, are relatively simple and independent components. Higher-level modules are con-
trol modules that control the flow of execution. Lower-level modules are “worker bee” mod-
ules and contain the program logic to actually perform the functions. In Figure 10-6, for
example, the Calculate pay amounts module may do nothing more than call the lower-level
modules in the correct sequence to carry out the logic of calculating payroll.

Notice how a structure chart provides a simple and direct organization to a computer pro-
gram whose purpose is to calculate payroll amounts. Modular programming is a time-tested
method to write computer programs that are easy to understand and maintain. Breaking a
complex program into small modules makes initial programming and maintenance program-
ming easier. The development of a structure chart is based on rules and guidelines. The key
points are that the program is a hierarchy and that the modules are well-formed with high
internal cohesiveness and minimal data coupling. Later, we describe in more detail the charac-
teristics of good modules.

The lines connecting the modules indicate the calling structure from the higher-level
modules to the lower-level modules. The little arrows next to the lines show the data that is
passed between modules and represent the inputs and outputs of each module. At the struc-
ture chart level, we are not yet concerned with what is happening inside the module. We only
want to know that somehow the module does the function indicated by its name, using the
input data and producing the output data.

Figure 10-7 shows the common symbols used to draw structure charts. The rectangle rep-
resents a module. In a structure chart, a module can represent something as simple as a block
of code, such as a paragraph or section in a COBOL program. In other languages, a module
typically represents a function, procedure, or subroutine. Examples of modules as program
fragments include subroutines (as in FORTRAN and BASIC), paragraphs or subprograms (as
in COBOL), procedures (as in Pascal), and functions (as in FORTRAN, C, and C++). A mod-
ule also can be a separately compiled entity such as a complete C program. The rectangle with
the double bars is simply an existing module or a module that is used in several places. Use
of the double bar notation is optional.

Part c of Figure 10-7 shows a call from a higher-level module to the lower-level module. A
program call occurs when one module invokes a lower-level module to perform a needed
service or calculation. The implementation of a program call varies among programming lan-
guages. For example, a program call can be implemented as a function call in C or C++, a pro-
cedure call in Pascal, or a subroutine call in FORTRAN. In each case, the program passes
control to the called module, the called module executes a series of program statements, the

Deduction
amount

Calculate base
amount

Calculate overtime
amount

Calculate taxes Calculate other
deductions

Calculate pay
amounts

Hours

Hours

Job
category

Base
pay

Overtime
amount

Taxes
Dependents

Deduction
information

Figure 10-6

A simple structure chart

for the Calculate pay
amounts module

program call
the transfer of control
from a module to a
subordinate module
to perform a
requested service

C6696_10_CTP.4c 1/28/08 8:23 AM Page 361

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

called module passes control back to the calling module, and execution resumes with the
statement or instruction immediately following the call.

Figure 10-7c also indicates how data is passed between modules. The arrows with the
open circle, called data couples, represent data being passed into and out of the module. A
data couple can be an individual data item (such as a customer account number) or a higher-
level data structure (such as an array, record, or other data structure). The type of coupling
used at each level of the structure chart usually follows the principle of layering of detail. That
is, coupling between modules near the top of a structure chart typically consists of data structures
representing high-level aggregations of data. Coupling between modules at the bottom of the
structure chart typically consists of single data items, flags, and relatively small data structures.

The arrow with the darkened circle is a control flag. A flag is purely internal information
that is used between modules to indicate some result. Flags originating from lower-level mod-
ules often indicate a result, such as a record passing a validation test. Another common use is
to indicate that the end of a file was reached.

Figure 10-7d illustrates a lower-level module that is broken out on the structure chart but that
in all probability will be subsumed into the calling module for programming. This documenta-
tion technique primarily ensures that the function performed by the module is highlighted. Figure
10-7e and f show two alternatives for program calls. In 10-7e we show the notation used to
indicate iteration through several modules. In 10-7f we show conditional calling of low-level
modules—that is, the program calls modules only when certain conditions exist.

Figure 10-8 is a more complete view of the Payroll program, including the original
Calculate pay amounts function from Figure 10-6. Notice that the entire structure chart shown
in Figure 10-8 is based on the system activities following the temporal event Time to produce
payroll. During systems analysis for the payroll system, the analyst would have identified this
event as one that occurs at the end of every week for hourly employees. Many other events
that trigger activities or use cases would have been identified as well.

362 ♦ PART 3 SYSTEMS DESIGN TASKS

Module

Boss module

Called module

Boss module with
iteration on called

modules

Common
subroutine

module

Boss module

Embedded
module

Boss module with
a condition call

C
on

tr
ol

 fl
ag

P
as

se
d

da
ta

R
et

ur
ne

d
da

ta

(a)

(c)

(e) (f)

(d)

(b)

Figure 10-7

Structure chart symbols

data couples
the individual data items
that are passed between
modules in a
program call

C6696_10_CTP.4c 1/28/08 8:23 AM Page 362

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 10 The Traditional Approach to Design ♦ 363

A basic idea of structured programming is that each module only has to do a very specific
function. The module at the very top of the tree is the boss module. Its functions are to call
the modules on the next tier, pass information to them, and receive information back. The
function of each middle-level module is to control the processing of the modules below it.
Each has control logic and any error-handling logic that is not handled by the lower-level
module. The modules at the extremities, or the leaves, contain the actual algorithms to carry
out the functions of the program. This approach to programming separates program control
logic from business algorithm logic and makes programming much easier.

The arrows from the higher-level modules to the lower-level modules indicate the pro-
gram call. The direction of the call is always from left to right. Notice that the structure chart
maintains a strict hierarchy in the calling structure. A lower module never calls a higher mod-
ule. The curved arrow immediately below the boss module indicates a loop across all three
calls. In other words, the main module will have an internal loop that includes calls to all
three lower-level modules within the same loop.

In the example, you can see the flow of information downward and back up. Usually, a
higher-level module requests a service from a lower-level module and passes the necessary input
information. The lower-level module then returns the requested information or some control
information, as a flag, to notify the higher-level module of the successful completion of the task.
Looking at the Enter time cards subhierarchy, you can observe that the employee time card infor-
mation is passed to the boss. Then the employee name is passed to the next module, which reads
some employee information and passes it back up. Finally, employee data and time card infor-
mation are passed to the rightmost module, which validates the time card. This module returns a
control flag, indicating success or failure of the validation. If the validation fails, the program
sends error messages and goes into its error-handling routines. We have not shown all the com-
plexities required in a real program, especially the error-handling modules.

Included within the structure chart will be the modules that access data from the outside
world. It is important that the design of these modules be consistent with the design of the user
interface, the interface to other systems, and the database design. The structure charts that have
been developed should also be consistent with the system flowchart. If changes were made dur-
ing this design activity, the project team should update the system flowchart accordingly.

Enter employee
time card

Read employee
record

Validate time
card

Get employee
pay rates

Calculate pay
amounts

Write payroll
transactions

Update general
ledger

Update employee
record

Output payroll
Calculate
amounts

Enter time
cards

Calculate base
amount

Calculate
overtime amount

Calculate taxes Calculate other
deductions

Valid
flag

Payroll program

Rates

Employee
pay/tax rates

Payroll
amounts

Payroll
information

Validated
time card

Validated time
card information Employee

information

Time
card Time

card

Employee
data

Employee
name

Payroll
information

Job category
Hours Deduction

informationDependents
Taxes

Overtime amount

Hours

Base pay

Payroll
amounts

Payroll
information

Payroll
information

Deduction
amount

Figure 10-8

A structure chart for the

entire Payroll program

C6696_10_CTP.4c 1/28/08 8:23 AM Page 363

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

DEVELOPING A STRUCTURE CHART

Structure charts create a hierarchy of modules for a program. A structure chart looks like a tree
with a root module and branches. A subtree is simply a branch that has been separated from
the overall tree. When the subtree is placed back in the larger tree, the root of the subtree
becomes just another branch in the overall tree. Why is this important? The structure chart
can be developed in pieces and combined for the final diagram.

Figure 10-5 showed the system flowchart for RMO’s customer support system. Each major
program corresponds to a subsystem in the event-partitioned diagram. Each program will
have its own structure chart. However, as you can see in Figure 6-10, each program—that is,
subsystem—consists of several activities. Each activity corresponds to a process on the event-
partitioned DFD, and each process will be detailed in a DFD fragment based on the activity
triggered by an event from the event table.

You can develop structure charts using one of two methods: transaction analysis and trans-
form analysis. Transaction analysis uses as input the system flowchart and the event table to
develop the top level of the tree—that is, the main program boss module and the first level

364 ♦ PART 3 SYSTEMS DESIGN TASKS

transaction

analysis
the development of a
structure chart based on
a DFD that describes the
processing for several
types of transactions

Create new
order

2

Produce
order

summary
reports

4

Update
order

3

Produce
transaction
summary
reports

5

Look up
item

availability

1

Transaction

Credit
info

Credit info

Transaction

Transaction
summary
reports

Shipping

Catalog
Customer
Order

Management Credit
bureauBank

Order
summary
reports

Order change request

Change confirmation

New order

Order details

Customer
Item inquiry

Item availability details

Order change details

Order confirmation

Order item
Product item
Inventory item
Order transaction

Accounting

Figure 10-9

Event-partitioned DFD

for the order-entry

subsystem

C6696_10_CTP.4c 1/28/08 8:23 AM Page 364

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 10 The Traditional Approach to Design ♦ 365

of called modules. Transform analysis uses as input the DFD fragments to develop the sub-
trees. Each subtree root module corresponds to the first-level branch of the main program struc-
ture chart. We discuss each method in turn.

Transaction Analysis

In transaction analysis, the first step is to examine the system flowchart and identify each major
program, such as the Customer order program in Figure 10-5. Figure 10-9 duplicates Figure 6-13,
the event-partitioned DFD for the order-entry subsystem. This DFD shows the five processes
derived from the five events of this subsystem. In this subsystem, the five primary processes are five
different transactions that must be supported. These transactions are Look up item availability, Create
new order, Update order, Produce order summary reports, and Produce transaction summary reports.

Figure 10-10 shows the structure chart based on transaction analysis for this program. As
already mentioned, transaction analysis is the process of identifying each separate transaction
that must be supported by the program and constructing a branch for each one. In essence, this
program, at least at the highest level, is simply a module to display a screen for the user to enter
a transaction choice and then to invoke the appropriate module to process the transaction.
This diagram does not show the additional detail below each of the transaction modules. Each
of the transaction modules, which are named after the transactions, will be the main boss
module for a subtree to process the transaction. Each subtree will be developed based on the
DFD fragment for that activity and will be developed utilizing transform analysis.

transform analysis
the development of a
structure chart based on
a DFD that describes the
input-process-output
data flow

Figure 10-10

High-level structure

chart for the Customer

order program

Selection

Produce
transaction

summary reports

Produce order
summary
reports

Update
order

Create new
order

Look up item
availability

Get
transaction

choice

Customer
order

program

This structure chart also has very few data couples. Essentially, the only information passed is
the transaction selection from the Get transaction choice module. That information is used by the
control module to select the correct processing module. The subtree beneath the processing mod-
ule will display the appropriate screens to accept and pass the detailed information required.

Transform Analysis

Transform analysis is based on the idea that the computer program “transforms” input data
into output information. Structure charts developed with transform analysis usually have
three major subtrees: an input subtree to get the data, a calculate subtree to perform the logic,
and an output subtree to write the results. Figure 10-8 is a good example of a structure chart
that was developed using transform analysis, for the process of transforming time card inputs
into payroll outputs following one event. Note that a DFD fragment usually follows this pat-
tern of input-process-output, and the structure chart converts the processing on the DFD frag-
ment to a top-down structure of program modules.

Sometimes DFD fragments are decomposed into detailed diagrams. The detailed
diagrams provide more detail than can be used for the structure chart. Figures 10-11 through
10-14 provide an example of transform analysis from Rocky Mountain Outfitters. Figure 10-11
shows the DFD fragment created for the Create new order activity. Figure 10-12 contains the

C6696_10_CTP.4c 1/28/08 8:23 AM Page 365

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

366 ♦ PART 3 SYSTEMS DESIGN TASKS

Order
confirmation

Shipping

Order
details

New order

Customer

Credit
bureau

Credit
info

Bank

Transaction

Create new
order

2

Customer

Order

Order Item

Product item

Inventory item

Order transaction

DFD fragment for activity or use case 2: Customer places order

Figure 10-11

The Create new order
DFD fragment

Figure 10-12

Exploded view of the

Create new order DFD
Diagram 2: Create new order

Customer

Record
customer

information

2.1

Shipping
Customer

Order

Order item

Product item

Inventory item

Order transaction

Produce
confirmation

2.4

Record
order

2.2

Process
order

transaction

2.3

Credit
bureau

Bank

Transaction
details Order ID

Order
details

Order
confirmation

New order

Transaction

Order
details

Credit
info

C6696_10_CTP.4c 1/28/08 8:23 AM Page 366

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 10 The Traditional Approach to Design ♦ 367

exploded view for that activity, which is used for transform analysis. The structure chart is
developed directly from the data flow diagram. The fundamental idea is that the detailed
diagram processes from the data flow diagram become the leaf modules in the structure
charts. The mid-level processes—that is, the processes that were exploded to derive the
low-level processes—become the intermediate-level boss modules on the structure chart.
Thus, the hierarchy of the structure chart directly reflects the organization of the set of
nested, or leveled, data flow diagrams. Additional boss modules might need to be devel-
oped to provide the correct structure to the structure chart.

As stated previously, the general form of a structure chart developed with transform analy-
sis is input-process-output. The method to develop a structure chart from a data flow diagram
fragment consists of the following steps:

1. Determine the primary information flow. This flow is the main stream of data that is
transformed from some input form to the output form.

2. Find the process that represents the most fundamental change from an input stream to
an output stream (see Figure 10-13). The input data stream is called the afferent data
flow. The output data stream is called the efferent data flow. The center process is called
the central transform.

3. Redraw the data flow diagram with the input to the left and the output to the right. The
central transform process goes in the middle. If this diagram is an exploded-view data
flow diagram, add the parent process to the diagram. You can omit nonprimary data
flows to simplify the drawing. An example of this redrawn data flow diagram is shown in
Figure 10-13.

afferent data flow
the incoming data flow
from a sequential set of
DFD processes

efferent data flow
the outgoing data flow in
a sequential set of DFD
processes

central transform
set of DFD processes
that are located between
the input and output
processes

Afferent
data flow

Central transform

Efferent
data flow

Record
customer

information

2.1

Customer

Record
order

2.2

Process
order

transaction

2.3

Produce
confirmation

2.4

Create new
order

2.0

Order transactionOrder

Order item

Product item

Inventory item

OutputInput

Process

Figure 10-13

Rearranged view of the

Create new order DFD

C6696_10_CTP.4c 1/28/08 8:23 AM Page 367

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. Generate the first-draft structure chart, based on the redrawn data flow, with the calling hier-
archy and the required data couples. An example of this diagram is shown in Figure 10-14.

5. Add other modules as necessary to get input data via the user-interface screens, read from
and write to the data stores, and write output data or reports. Usually, these modules are
lower-level, or utility, modules. Add the appropriate data couples based on the data flows
to and from these data stores.

6. Using any structured English or decision table documentation as a basis, add other
required intermodule relationships such as looping and decision symbols.

7. Make the final refinements to the structure chart based on the quality-control concepts
discussed in the following section.

Through step 4, as you can see in Figure 10-14, the organization of the structure chart very
closely mirrors the data flow diagram from which it derives. In step 5, we begin to enhance
the first-draft structure chart with additional modules to read and write data. Frequently, there
are no corresponding processes on the data flow diagram. Thus, at this point we depend less
on the data flow diagram information and more on the requirements of a good design. Figure
10-15 illustrates the structure chart for the next step—step 5.

Comparing Figure 10-14 with 10-15, notice that Figure 10-14 indicates that all the
input information comes from the far-left module, Record customer information. In Figure 10-
15, observe that the accessing of information has been distributed across other branches of
the structure chart. Customer information is retrieved through the far-left branch, but addi-
tional information about the order is retrieved in the second branch of the chart. Even
though this organization is not exactly true to the data flow diagram, it is a more logical
organization of the structure chart. The addition of these data access modules is truly a
design process—the creation of new components based on systems design principles.

In addition to distributing the access of customer input data, the structure chart in
Figure 10-15 has other data access modules to retrieve product and inventory information.
This type of data retrieval corresponds to the data flows on the data flow diagram between
the processes and the data stores. During design, we must explicitly identify the modules
that actually read from and write to the data stores. The module Get product/inventory items
is added to the structure chart to provide the retrieval of the product information. As the
additional modules are added to the structure chart, the data couples are defined more pre-
cisely to reflect this more detailed design structure.

In Figure 10-15, we have also added the symbols concerning looping and optional calls. The
black diamond indicates that the call to create a customer record is optional and, in fact, is
required only if the customer is a new customer. The general form of the structure chart has

368 ♦ PART 3 SYSTEMS DESIGN TASKS

Customer
information

Order
header

Order
line

items

Customer
information

Order line items

Order
financials

Customer
information

Order information

Record
order

Record
customer

information

Process
order

transaction

Produce
confirmation

Create
new
order

Figure 10-14

First draft of the

structure chart

C6696_10_CTP.4c 1/28/08 8:23 AM Page 368

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 10 The Traditional Approach to Design ♦ 369

the inputs to the left and the outputs to the right. The black diamond on the call to Create
order line item indicates a situation in which an item is out of stock, so the call to Create order
line item is conditional.

The high-level boss module, Create new order, and its tree of modules can be plugged into the
transaction structure chart in Figure 10-10. Figure 10-16 illustrates the process of combining the
top-level structure chart, developed using transaction analysis, with the lower-level subtrees,
developed with transform analysis.

EVALUATING THE QUALITY OF A STRUCTURE CHART

The process of developing structure charts from DFDs can become rather involved. Rules and
guidelines can be used to test the quality of the final structure chart, however. Two measures
of quality are module coupling and module cohesion. Generally, it is desirable to have
highly cohesive and loosely coupled modules.

The principle of coupling is a measure of how a module is connected to the other mod-
ules in the program. The objective is to make modules as independent as possible because a
module that is independent can execute in almost any environment. An independent mod-
ule has a well-defined interface of several predefined data fields, and it passes back a well-
defined result in predefined data fields. The module does not need to know who invoked it
and, in fact, can be invoked by any module that conforms to the input and output data
structure. The best coupling is through simple data coupling. In other words, the module is
called, and a specific set of data items is passed. The module performs its function and
returns the output data items. This kind of module can be reused in any structure chart that
needs the specific function performed.

Customer
information Order

financialsOrder
line items

Order
header

Customer
information Customer

information

Order information

Order line items

Customer
information

Order
information

Order ID

Credit
information

Credit
authorization

Order and payment information

Price,
QOH

Item informationItem Id, Qty

Customer
information

Write
transaction

Check
credit

authorization

Record
customer

information

Record
order

Process
order

transaction

Produce
confirmation

Get
customer

information

Create
customer

record

Get order
information

Process
order
item

Get product/
inventory

items

Create
order

line item

Get
requested

item

Create
new
order

module coupling
the manner in which
modules relate to each
other; the preferred
method is data coupling

module cohesion
a measure of the internal
strength of a module

Figure 10-15

The structure chart for

the Create new order
program

C6696_10_CTP.4c 1/28/08 8:23 AM Page 369

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Cohesion refers to the degree to which all of the code within a module contributes to imple-
menting one well-defined task. Modules with high cohesion implement a single function. All of
the instructions within the module are part of that function, and all are required for the func-
tion. Modules with low (or poor) cohesion implement multiple or loosely related functions.

Note that the amount of coupling and the specific data items being passed are good indi-
cators of the degree of module cohesion. Modules that implement a single task tend to have
relatively low coupling because all of their internal code acts on the same data item(s).
Modules with poor cohesion tend to have high coupling because loosely related tasks typi-
cally are performed on different data items. Thus, a module with low cohesion generally has
several unrelated data items passed by its superior.

370 ♦ PART 3 SYSTEMS DESIGN TASKS

Coupling and cohesion are also the two key design goals for object-oriented
design, in which objects are loosely coupled and each object is highly cohesive.

BEST PRACTICE

Selection

Produce
confirmation

Record
order

Record
customer

information

Process order
transaction

Write
transaction

Check
credit

authorization

Process
order
item

Get order
information

Create
customer

record

Get
customer

information

Get product /
inventory

items

Create
order

line item

Customer
order

program

Get
requested

item

Produce
transaction

summary reports

Update
order

Produce order
summary
reports

Create new
order

Look up item
availability

Get
transaction

choice

Figure 10-16

Combination of structure

charts (data couple

labels are not shown)

C6696_10_CTP.4c 1/28/08 8:23 AM Page 370

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 10 The Traditional Approach to Design ♦ 371

Customer information

Read customer file
or history file flag

(a) Poor cohesion

Customer information Customer information

(b) Good cohesion

Process
customer

information

Read
customer

information

Process
customer

information

Read
customer
history file

Read
customer

file

Figure 10-17

Examples of module

cohesion

A flag passed down the structure chart is also an indicator of poor cohesion in the lower-
level module. Flags passed into a module are used typically to select the part of the recipient
module’s code that will be executed. Part a of Figure 10-17 shows an example of poor cohesion.
A project team can improve cohesion by partitioning the module into separate modules, one
for each value of the flag, as shown in part b of Figure 10-17. The code of the superior module is
programmed to use the flag to decide which of the partitioned subordinate modules to call.

MODULE ALGORITHM DESIGN: PSEUDOCODE

The previous two models, the system flowchart and the structure chart, provide the overall struc-
ture of the system and the structure within each program. The next requirement of design is to
describe the internal logic within each module. Three common methods are used to describe mod-
ule logic: flowcharts, structured English, and pseudocode. All three methods are equivalent in their
ability to describe logic. Flowcharting is a visual method that uses boxes and lines to describe the
flow of logic in a program. In the early days of computing, flowcharting was used almost exclu-
sively. Today, however, versions of pseudocode and structured English have replaced flowcharting.
You learned about structured English in Chapter 6. Pseudocode is a variation of structured English
that is closer to a programming language. Frequently, analysts write pseudocode using statements
that are very similar to the target language. If they are writing to COBOL, they use COBOL-like
syntax. If they are writing in Visual Basic or C, they use a syntax that mirrors those languages.

Figure 10-18 shows a simple example of the logic of the payroll system. Pseudocode statements
for the Payroll program, Calculate amounts, Calculate pay amounts, and Calculate taxes modules are
shown. This figure shows examples of each of the three types of control statements used in struc-
tured programming: sequence, a sequence of executable statements; decision, if-then-else logic;
and iteration, do-until or do-while.

C6696_10_CTP.4c 1/28/08 8:23 AM Page 371

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

372 ♦ PART 3 SYSTEMS DESIGN TASKS

Payrollƒprogram
DoUntilƒNoƒmoreƒtimeƒcards

CallƒEnterƒtimeƒcards
CallƒCalculateƒamounts
CallƒOutputƒpayroll

EndƒUntil

Calculateƒamounts
CallƒGetƒemployeeƒpay rates
CallƒCalculateƒpayƒamounts

Calculateƒpayƒamounts

CallƒCalculateƒbaseƒamount
Ifƒ(HoursWorkedƒ>ƒ40)ƒThen

CallƒCalculateƒovertimeƒamount
EndƒIf
CallƒCalculateƒtaxes
Ifƒ(SavingsDeduction=yes)ƒorƒ(MedicalDeduction=yes)ƒorƒ(UnitedWay=yes)ƒThen

CallƒCalculateƒotherƒdeductions
Endƒif

Calculateƒtaxes

GetƒTaxƒRatesƒbasedƒonƒNumberƒDependents,ƒPayrate
CalculateƒIncomeƒTaxƒ=ƒPeriodPayAmountƒ*ƒIncomeTaxRate
IfƒYTDƒPayƒ<ƒFICAƒMaximumAmountƒThen

CalculateƒEmpFICAƒ=ƒPeriodBasePayƒ*ƒFICAEmployeeRate
CalculateƒCorpFICAƒ=ƒPeriodBasePayƒ*ƒFICACorpRate

EndƒIfƒ
IfƒStateTaxRequiredƒThen

GetƒStateTaxRateƒbasedƒonƒState,ƒNumberDependents,ƒPayrate
Calculate StateTaxƒ=ƒPeriodPayAmountƒ*ƒStateTaxRate

EndƒIf
IfƒOvertimePayƒ>ƒ0 Then

CalculateƒOvertimeIncomeTaxƒ=ƒPeriodOvertimePayƒ*ƒIncomeTaxRate
AddƒOvertimeIncomeTaxƒtoƒIncometax
IfƒYTDPayƒ<ƒFICAMaximumƒAmountƒThen

CalculateƒEmpOvertimeFICAƒ=ƒPeriodOvertimePayƒ*ƒFICAEmployeeRate
CalculateƒCorpOvertimeFICAƒ=ƒPeriodOvertimePayƒ*ƒFICACorpRate

EndƒIf
IfƒStateTaxRequiredƒThen

CalculateƒStateOvertimeTaxƒ=ƒPeriodOvertimePayƒ*ƒStateTaxRate
EndƒIf

EndƒIf

Figure 10-18

Pseudocode for the

Calculate pay amounts
hierarchy

C6696_10_CTP.4c 1/28/08 8:23 AM Page 372

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 10 The Traditional Approach to Design ♦ 373

INTEGRATING STRUCTURED APPLICATION DESIGN WITH OTHER DESIGN TASKS

So far, you’ve learned how to develop a structure chart based on the information in a data
flow diagram. The primary focus was on capturing the information in the structural relation-
ship between the processes. The structure chart developed from either transaction analysis or
transform analysis will be correct, but it may not be complete. Before the structure chart can
be considered complete, it usually must be modified or enhanced to integrate the design of
the user interface, the database, and the network, as Barbara Halifax discusses in the accom-
panying RMO memo. Because user-interface and database design are discussed in later chap-
ters, this section and the next section on three-layer design only briefly address the types of
changes that need to be made.

The user interface consists of a set of input forms, output forms, and reports. Interactive
user interfaces are usually based on a dialog between the user and the system and include a
series of input and output forms. Every form must be displayed and the data retrieved some-
where in a module in the structure chart. As these forms are developed, the structure chart
needs to be evaluated from three aspects:

• Are additional user-interface modules needed?
• Does the pseudocode in the interface modules need to be modified?
• Are additional data couples needed to pass data?

C6696_10_CTP.4c 1/28/08 8:23 AM Page 373

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

In earlier chapters, you learned that the entity-relationship diagram (ERD) must be con-
sistent with the data stores found on the data flow diagrams. There is not necessarily a one-
to-one correspondence between data stores and database tables, but the information on every
data store must be somewhere in the database. In addition, every database table and field
must be represented by a data store somewhere. During design, the project team performs
this same type of analysis and makes appropriate changes to the structure chart.

The same three aspects—modules, pseudocode, and data couples—need to be evaluated
for the database. If a database management system is being used, a common interface is usually
provided. The designer can make the database accessible either by calling a database interface
module or by embedding SQL (Structured Query Language) statements within the
pseudocode.

Finally, the structure charts and system flowcharts must be checked for correspondence
to the existing or planned network architecture. Because architectural design normally pre-
cedes or runs concurrently with detailed software design, system flowcharts and structure
charts are normally developed with the proper assumptions about network architecture.
However, changes can be made and new issues might be uncovered as additional details are
added to the design. Thus, an important final step in detailed design is to reevaluate its cor-
respondence to the network architecture, particularly with respect to required protocols,
capacity, and security.

The linear nature of a textbook makes it necessary to present details of design activities in
a fixed sequence. However, in real development projects, the order in which design activities
are performed varies greatly. Some projects assign detailed design tasks such as software, user
interface, system interface, and database design to multiple teams operating in parallel. If an
iterative approach to the SDLC is used, detailed design tasks are completed for each iteration.
Other projects may follow a more linear sequence due to lack of personnel or specific project
characteristics. In projects that follow a relatively linear order, early detailed design decisions
of all types must be reevaluated after later design tasks are completed.

THREE-LAYER DESIGN

Chapter 9 described three-layer design and its division of application software into the view,
business logic, and data access layers. Structure charts and system flowcharts predate the
development of three-layer architecture by at least a decade. Still, they can be used to describe
design decisions and software structuring based on three-layer architecture.

Figure 10-19 shows a system flowchart for the RMO Customer order program. The flow-
chart divides processing according to a three-layer architecture of view layer, business logic
layer, and data layer, as described in Chapter 9. Each layer communicates using well-defined
protocols as noted on the flowchart, which enables the layers to be located on different
machines, if desired. As described in Chapter 9, the choice of protocols, such as HTTPS and
SQL, and the choice of deployment environments, such as Microsoft Internet Explorer, Java
components, and an Oracle database management system (DBMS), are architectural design
decisions made early in the design activities. Annotating a system flowchart with specifics of
the deployment environment is one way of documenting the decision and communicating
important constraints to other project participants.

However, a system flowchart doesn’t necessarily describe where software layers execute. In
Figure 10-19, the view layer is described as executing on a client workstation, but no locations
are given for the business logic and data layers. They could also execute on the client worksta-
tion (an unusual arrangement), both could execute on a single server, or each could execute
on a separate server or cluster of servers. Unless specific location information is included, a
system flowchart should be assumed to describe the distribution of processing functions
across programs or groups of modules, not across computer systems.

374 ♦ PART 3 SYSTEMS DESIGN TASKS

C6696_10_CTP.4c 1/28/08 8:23 AM Page 374

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 10 The Traditional Approach to Design ♦ 375

Describing software structure with structure charts under a three-layer architecture can be
quite different from the examples shown earlier in the chapter, depending on the deployment
environment and development tools. As a point of comparison, consider the structure charts
in Figures 10-15 and 10-16. Structure charts were developed in an era when application pro-
grams were functionally all encompassing. That is, they included modules to handle all oper-
ational aspects of the application task, including input/output (view layer), business logic,
and interaction with data stored in files or databases (data layer). Figure 10-16 describes just
such a program, as might be implemented in a traditional programming language such as C
or COBOL and deployed in a centralized hardware architecture.

Figure 10-20 shows an alternate structure chart for a three-layer architecture for creating
an order, based on a form-oriented dialog that will be discussed in Chapter 14. View layer
modules are shown in yellow, business logic layer modules in red, and data layer modules in
green. All view layer modules are shown, but only the business logic modules called by the
Customer form are shown. Other view layer modules would require similar business logic
layer modules. The data layer is composed of a DBMS, and business logic layer modules
include code to generate appropriate database access commands and process responses.

Figure 10-21 shows the RMO Customer form used to find, add, or update customer data,
as depicted on the structure chart. Figure 10-22 shows how some of the code attached to the
Customer form might be implemented in the Visual Basic programming language to repre-
sent the view layer. The event procedure btnSearch_Click() executes when the user clicks the
Search button. The CustomerID number typed into the form is passed to one of the functions
in a code module representing the business logic layer. The view layer does not include the
details of the customer search.

Figure 10-23 shows a template for the business logic layer function
RetrieveExistingCustomer() that is called by the btnSearch_Click() event procedure. It
indicates the code insertion point for database retrieval statements. Note that this func-
tion handles retrieval of existing customer data but not data entry for new customer data
or database updates of new or existing customer data. Additional functions or procedures
shown on the structure chart below the Customer form would also be included in the
business layer to handle this functionality. The example demonstrates a clean division of
program code between the view and business logic layers, even though they might execute
within the same program on a single machine.

Figure 10-19

A system flowchart

showing three-layer

architecture for the

Customer order

program

Customer
database

Customer order program

View layer
(Client workstation
running Windows

and Internet
Explorer)

Physical display
(1024 ✕ 768,
24-bit color)

Data layer
(Oracle DBMS)

Business logic
layer

(Java server-side
components)

Order
database

Inventory
database

HTTPS/HTML

Online credit
approval
service

HTTPS/XML

JDBC/SQL

C6696_10_CTP.4c 1/28/08 8:23 AM Page 375

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

When layers are distributed across multiple computer systems, programs are more special-
ized and numerous than in centralized architectures. Rather than combining user interface,
business logic, and data access modules within a single program and structure chart, distrib-
uted three-layer architecture employs multiple programs. Some layers, such as the view layer,
may not even be programs in the traditional sense, such as when a Web-based HTTP user
interface is used. The layers that are written in traditional or OO programming languages are
usually separate programs. For example, in a Web-based system, the top two layers of the
structure chart in Figure 10-20—the yellow modules—would be implemented as a set of Web
pages. The third-level modules Retrieve existing customer, Create new customer, and Update existing
customer—the red modules—would probably be separate programs, stored on an application
or Web server and executed via calls from a Web page. Thus, the single structure chart in
Figure 10-20 would be decomposed into several smaller structure charts.

Note that independent programs executing on different computer systems can’t commu-
nicate using function or procedure parameters represented as data couples on a system flow-
chart. Instead, modules in different layers communicate over real-time links using
well-defined protocols. That form of communication is represented on the system flowchart,
as shown in Figure 10-19. The exact format and content of messages passed among layers
must be specified within module pseudocode or elsewhere.

376 ♦ PART 3 SYSTEMS DESIGN TASKS

Update
existing

customer

Retrieve
existing

customer

Create
new customer

Database
management

system

Create
new
order

Order
confirmation

form

Order
summary

form

Shipping and
payment

options form

Product
detail form

Item
search form

Customer
form

Validate
customer

Figure 10-20

A structure chart

showing three-layer

architecture for the

activity Create new order

C6696_10_CTP.4c 1/28/08 8:23 AM Page 376

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 10 The Traditional Approach to Design ♦ 377

Figure 10-21

A simple RMO form to

find, add, or update

Customer data

Figure 10-22

Visual Basic code for

the form shown in

Figure 10-21

C6696_10_CTP.4c 1/28/08 8:23 AM Page 377

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

We’ve now covered architectural and detailed software design using traditional models
and methods. In the next chapter, we’ll cover those same design tasks using object-oriented
tools and techniques. After that, we’ll turn our attention to the remaining design activities—
database, user interface, and system interface design.

378 ♦ PART 3 SYSTEMS DESIGN TASKS

Figure 10-23

A Visual Basic code

template to search for

an existing customer

C6696_10_CTP.4c 1/28/08 8:23 AM Page 378

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 10 The Traditional Approach to Design ♦ 379

SUMMARY
For the traditional structured approach to systems design, the primary input is the data flow diagram. The
data flow diagram is first enhanced by the addition of a system boundary. The designer sketches the system
boundary to show the overall system. He or she also sketches the boundary on the DFD fragments to show
program boundaries at a lower level.

The designer describes processes within each DFD boundary using one or more structure charts. The
designer develops structure charts using transaction analysis, transform analysis, or both. Transaction analysis
is appropriate for the upper structure chart levels of a system that processes multiple input or transaction
types. Transform analysis is appropriate for designing programs that transform a single transaction from its
input form to an output. Structure charts may also be based on three-layer architecture, in which case mod-
ules will be clearly identified by layer and the structure chart may be decomposed into smaller structure charts
if layers will execute on multiple computer systems.

A structured design may also include system flowcharts and module pseudocode. System flowcharts show
the movement of data among programs, files, and manual processing steps, thus providing an overall view of
an entire system. System flowcharts can also describe the interaction between layers of a multilayered system.
Module pseudocode describes the internal logic of a structure chart module.

KEY TERMS

afferent data flow, p. 367

central transform, p. 367

computer program, p. 354

data couples, p. 362

efferent data flow, p. 367

module, p. 354

module cohesion, p. 369

module coupling, p. 369

program call, p. 361

pseudocode, p. 354

structure chart, p. 360

system flowchart, p. 354

transaction analysis, p. 364

transform analysis, p. 365

REVIEW QUESTIONS

1. Explain the relationship and differences between a module

and a program.

2. What is the purpose of the automation system boundary?

How do you develop one?

3. What is a system flowchart used for?

4. What symbols are used on a system flowchart?

5. What is the purpose of a structure chart?

6. What are the symbols used on a structure chart?

7. Explain transaction analysis.

8. Explain transform analysis. What is meant by the term

central transform?

9. What is the difference between afferent and efferent

data flow?

10. Explain module coupling and module cohesion. Why are

these concepts important?

11. Describe how structure charts for three-layer architecture

are different from those for all-encompassing programs

that execute on a single computer system.

C6696_10_CTP.4c 2/13/08 10:57 AM Page 379

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

380 ♦ PART 3 SYSTEMS DESIGN TASKS

Payment history

Customer accounts

Meter information

Usage transactions

Payment Deposit information

Invoice

Meter
reading

Meter reading

Customer Apply
payments

Meter
operations

Bank

Create
billing

statement

Produce
periodic
financial

statements

Adjust
customer
account

Billing and
collections

Process
customer

query

Apply
meter

readings

Produce
meter

reading
schedule

1.1

1.2

1.5

1.7

1.3

1.4

1.6

Daily meter
reading schedule

Customer account query

Account adjustment

Financial statements

Figure 10-24

Electric company

customer billing

THINKING CRITICALLY

1. Given the data flow diagram shown in Figure 10-24, do

the following: (a) draw a system boundary; (b) divide the

DFD into program components such as real-time, monthly,

daily, periodic, and so forth; and (c) draw a system flow-

chart based on the division into program components.

C6696_10_CTP.4c 1/28/08 8:23 AM Page 380

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 10 The Traditional Approach to Design ♦ 381

2. Given the data flow diagram shown in Figure 10-25, and

using transaction analysis, develop a structure chart.

C ourse descr iption
in fo rm ation

C ourse schedul e

Student schedul e

Student master
in fo rm ation

Student

Inquire about
course/

prerequisite
information

Check
registration

status

Add class
to schedul e

Drop class
from

schedul e

Ve ri fy
schedul e

4

5

1

2 3

Registration status
in fo rm ation

Schedule in fo rm ation

Class in fo rm ation Class in fo rm ation

Prerequisite
in fo rm ation

Figure 10-25

Student registration

program

C6696_10_CTP.4c 1/28/08 8:23 AM Page 381

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

382 ♦ PART 3 SYSTEMS DESIGN TASKS

3. Given the data flow diagram shown in Figure 10-26, and

using transform analysis, develop a structure chart.

Student

Enter course/
section add

3.2

Display
course/section

information

3.1

Verify student
eligibility

3.3

Verify section
vacancies

3.4

Update
student

schedule

3.5

Display
reject

message

3.6

Course/section
info

Course
schedule

Student
info

Student
schedule

Display
updated
schedule

3.7

Student
information

Course/section
information

Student and
course information

Message

Course/section
information

Valid course/section
information

Invalid section
information

Updated student schedule

Student status

Figure 10-26

Explosion of Add class to
schedule

C6696_10_CTP.4c 1/28/08 8:23 AM Page 382

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 10 The Traditional Approach to Design ♦ 383

4. Integrate the structure charts from problems 2 and 3 into a

single structure chart.

5. Given the data flow diagram shown in Figure 10-27, and

using transform analysis, develop a structure chart.

Create
purchase

order

1.6

Supplier

Display
orders

1.3

Sort by
supplier

1.4

Items
on order

Supplier

Update for
supplier

information

1.2

Purchasing

Enter
special

order item

1.1

Inventory

Enter
approval /
changes

1.5

Order information

Validated
order

information

Order information

Approved
orders

Sorted
orders

Ordered
items

Updated
order

information

Purchase order information

Figure 10-27

Special-order

purchasing

6. Finish developing business logic layer modules for the view

layer modules in Figure 10-20.

C6696_10_CTP.4c 1/28/08 8:23 AM Page 383

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

384 ♦ PART 3 SYSTEMS DESIGN TASKS

EXPERIENTIAL EXERCISES

1. Discuss the hierarchical nature of traditional structured

design. What kinds of systems and architectures are natu-

rally more inclined to a hierarchy?

2. Find a local company that is updating or redeveloping an

older system originally developed with structured techniques

including structured design. How does the development team

plan to use (or not use) the structured design models? Will the

developers extend the old system or will they (re)implement

both old and new functions with modern tools?

CASE STUDIES
THE REAL ESTATE MULTIPLE LISTING SERVICE SYSTEM

Refer to the description of the Real Estate Multiple Listing Service

system in the case studies of Chapter 5 and the DFDs you devel-

oped in the case studies for Chapter 6. Develop a structure chart for

the system. Follow the steps indicated in this chapter, including any

additional modules required for accessing data.

RETHINKING ROCKY MOUNTAIN OUTFITTERS

Review the decisions about the deployment environ-

ment and design for the Rocky Mountain Outfitters

customer support system, as described in Chapters 8

and 9, and the related traditional design models in

this chapter. Specifically for this system, what are the compara-

tive advantages and disadvantages of software design with tradi-

tional methods and models compared with object-oriented

methods and models?

FOCUSING ON RELIABLE PHARMACEUTICAL SERVICE

Based on the description of the Reliable

Pharmaceutical Service system in Chapters 5

and 6 and the DFDs you developed for

Chapter 6, develop a system flowchart and structure charts for the

system. Assume that the system will be designed and deployed

according to three-layer architecture.

C6696_10_CTP.4c 1/28/08 8:23 AM Page 384

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 10 The Traditional Approach to Design ♦ 385

FURTHER RESOURCES

Tom DeMarco, Structured Analysis and System Specification.

Yourdon Press, 1979.

Meilir Page-Jones, The Practical Guide to Structured Systems

Design, (2nd ed.). Yourdon Press, 1988.

Edward Yourdon, Modern Structured Analysis. Yourdon

Press, 1989.

Edward Yourdon and Larry L. Constantine, Structured Design:

Fundamentals of a Discipline of Computer Program and Systems

Design. Prentice Hall, 1979.

C6696_10_CTP.4c 1/28/08 8:23 AM Page 385

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

386

OBJECT-ORIENTED DESIGN:
PRINCIPLES11
L E A R N I N G O B J E C T I V E S

After reading this chapter, you should be able to:

■ Explain the purpose and objectives of object-oriented design

■ Develop package diagrams and component diagrams

■ Develop design class diagrams

■ Use CRC cards to define class responsibilities and collaborations

■ Explain the fundamental principles of object-oriented design

CHAPTER

C H A P T E R O U T L I N E

Object-Oriented Design: Bridging from Analysis to Implementation

Object-Oriented Architectural Design

Fundamental Principles of Object-Oriented Detailed Design

Design Classes and the Design Class Diagram

Detailed Design with CRC Cards

Fundamental Detailed Design Principles

C6696_11_CTP.4c 1/28/08 8:24 AM Page 386

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 11 Object-Oriented Design: Principles ♦ 387

Despite some hiccups at the beginning of the project, things seemed to be under control now. Bill
Santora, the project leader responsible for developing an integrated customer account system at
New Capital Bank, had just finished a technical review of the new system’s first-cut design with the
review committee. This first-cut design focused on six core use cases, which had been chosen as the
most fundamental to the business and would be implemented in the first development iteration.

New Capital Bank had been using object-oriented languages for quite a while, but it had
been slower to adopt object-oriented analysis and design techniques. Bill had been involved
in some early pilot projects that had used the Unified Process (UP) and the Unified Modeling
Language (UML) to develop systems using object-oriented techniques. However, this devel-
opment project was his first large-scale project that would be entirely object oriented.

As Bill collected his presentation materials, his supervisor, Mary Garcia, spoke. “Your tech-
nical review went very well, Bill. The committee found only a few minor items that need to be
fixed. Even though I am not completely current on the new object-oriented techniques, it was
easy for me to understand what you presented and how these core functions will work. I still
find it hard to believe that you will have these six pieces implemented in the next few weeks.”

“Wait a minute,” Bill said, laughing. “It won’t be ready for the users then. Getting these six
core functions coded and running doesn’t mean that we are almost done. This project is still
going to take a year to complete.”

“Yes, I know. But it is nice that we will have something to show after only two months.
Not only do I feel more confident in this project, but the users love to see things developing.”

“I know. Remember how much grief I got when I originally laid out this plan based on an iter-
ation approach? It was difficult to detail the project schedule for the later iterations, so I had a hard
time convincing everybody that the project schedule was not too risky. The upside is that because
each iteration is only six weeks long, we have something to show right at the beginning. You don’t
know how relieved I am that the design passed the review! The team has done a lot of work to
make sure the design was solid, and we all felt confident. It is good to get confirmation, though.
And we really will have some basic pieces of the new system working in two or three more weeks.”

“Well, building it incrementally makes a lot of sense and certainly seems to be working. I espe-
cially liked the diagrams you showed. It was terrific how you showed that the three-layer architectural
design supported each use case. Even though I do not consider myself an advanced object-oriented
technician, I could understand how the object-oriented design fit into the architecture. I think you
wowed everybody when you demonstrated how you could use the same basic design to support both
our internal bank tellers and a Web portal for our customers. Congratulations.”

Bill’s response reflected Mary’s enthusiasm. “How about the design class diagrams? Don’t
they give a nice overview of the classes and the methods? We use them extensively as a focus
for discussion on the team. They really help the programmers write good, solid code.”

“By the way, have you scheduled a review with the users?” Mary asked.
“No, not yet. The architectural design is mostly technical stuff, and we are not quite ready

to meet with the users. We next need to move into the detailed design. We will have some
design meetings with the users when we start doing detailed design. However, even then most
of the work is very technical. The users will help us by verifying our understanding of the
information availability, but much of what we do is too technical for them to follow.

“We will design and then code six core use cases in this first development iteration,” Bill
continued. “We have scheduled six weeks for this first iteration. I hope it is enough time. We
will be crunched to get it all done by then. But, of course, it will be nice to show the users
some working pieces at that time. Then we will have another round of meetings with users to
let them verify our work and to begin work on the next iteration.”

“I am excited to see the first pieces run. It just makes so much sense to be able to test these
core functions during the rest of the project. Let me congratulate you again,” Mary said as she
and Bill headed off to lunch together.

NEW CAPITAL BANK: PART 1

C6696_11_CTP.4c 1/28/08 8:24 AM Page 387

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

OVERVIEW

In Chapter 7 you learned how to do object-oriented analysis by developing functional
requirements models. You learned that analysis consists of two parts—discovery and under-
standing. Understanding is taking the information gleaned from user interviews and con-
structing a set of interrelated and comprehensive models. Model building is an essential part
of understanding the user needs and how they influence the proposed system. However,
remember that the objective of analysis models is not to describe the new system, but only to
understand, in precise terms, the requirements.

Chapter 9 then introduced you to the concepts of logical design. Figure 9-6 identified the
system components that require detailed design specifications, and Figure 9-8 showed the
detail design models used for object-oriented design. The focus of this chapter and the next is
primarily how to develop these object-oriented design models, which are then used by the
programmers to code the system.

This chapter focuses on two levels of design—architectural design, often referred to as
high-level design, and detailed design, where the design of each use case is specified. The
chapter starts by teaching the models and processes required to develop an overall architec-
tural structure for the new system. Two types of model diagrams are used: component dia-
grams and deployment diagrams. This chapter takes the basic ideas you learned in Chapter 9
about the deployment environment, and extends them by teaching you how to do architec-
tural design using the appropriate models.

In the latter part of the chapter, you will begin learning the process of detailed design. The dis-
cussion first explains design class diagrams, which are an extension of the problem domain class
diagram with design information added. Next we explain Class-Responsibility-Collaboration
(CRC) cards to begin teaching the details of use case centered, object-oriented design.

The chapter ends with an important discussion of design principles for good object-
oriented design. Throughout this chapter and the next, we are concerned not only with teach-
ing the basics of object-oriented design, but with teaching foundation principles so that the
systems you build are well structured and maintainable. The design principles will provide
you with a solid foundation for designing systems correctly.

OBJECT-ORIENTED DESIGN: BRIDGING FROM ANALYSIS TO IMPLEMENTATION

So what is object-oriented design? It is a process by which a set of detailed object-oriented
design models are built and then used by the programmers to write and test the new system.
System design is the bridge between user requirements and programming the new system.
One strength of the object-oriented approach is that the design models are often just exten-
sions of the requirements models. Obviously, it is much easier to extend an existing model
than to create entirely different models for design. However, we emphasize that it is a good
practice to create design models and not just jump into coding. Just as a builder does not
build something larger than a doghouse or a shed without a set of blueprints, a system devel-
oper would never try to develop a large system without a set of design models. Students who
are building personal Web pages or small systems for course assignments sometimes think
that design models are unnecessary. Remember, however, that blueprints may not be neces-
sary for a doghouse, but they certainly are for a home.

One tenet of the new adaptive approaches to development is to create models only if they
have meaning and are necessary. Sometimes new developers misinterpret this guideline to mean
they do not need to develop design models at all. The design models may not be formalized
into a comprehensive set of documents and diagrams, but the models they develop are certainly
necessary. Developing a system without doing design is comparable to writing a research paper
without an outline. You could just sit down and start writing; however, if you want a paper that

388 ♦ PART 3 SYSTEMS DESIGN TASKS

C6696_11_CTP.4c 1/28/08 8:24 AM Page 388

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 11 Object-Oriented Design: Principles ♦ 389

is cohesive, complete, and comprehensive, you should write an outline first. You could write a
complex paper without an outline, but in all probability it would be disjointed, hard to follow,
and missing important points—and it would earn a low grade! The outline can be jotted down
on paper, but the process of thinking it through and writing it down allows the writer to ensure
that it is cohesive. Systems design provides the same type of framework.

One important point about adaptive approaches is that requirements and design are done
incrementally within iterations. So, a complete set of design documents is not developed at one
time. The requirements for a particular use case or several use cases may be developed, and then
the design documents are developed for that use case. Immediately following the design of the
solution, the programming can be done. Some people call this “just in time” system design.

OVERVIEW OF OBJECT-ORIENTED PROGRAMS

Before going further, let’s quickly review how an object-oriented program works. Then we will dis-
cuss the design models and how they must be structured to support object-oriented programming.

An object-oriented program consists of a set of program objects that cooperate to accom-
plish a result. Each program object has program logic and any necessary attributes encapsu-
lated into a single unit. These objects work together by sending each other messages and
working in concert to support the functions of the main program.

Figure 11-1 depicts how an object-oriented program works. The program includes a window
object that displays a form in which to enter student ID and other information. After the student
ID is entered, the window object sends a message (number 2) to the Student class to tell it to cre-
ate a new student object (instance) in the program, and to go to the database, get the student
information, and put it in the object (message 3). Next, the new Student object sends the infor-
mation back to the window object to display it on the screen. The student then enters the updates
to her personal information (message 4), and another sequence of messages is sent to update the
Student object in the program and the student information in the database.

Figure 11-1

Object-oriented event-

driven program flow

C6696_11_CTP.4c 1/28/08 8:24 AM Page 389

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

One common question about object-oriented programs is, “Who is in charge?” In a struc-
tured program, it is obvious who the boss module is and who controls the computing. In an
object-oriented program, it is not as obvious. In fact, no one may be in charge. Yes, one pro-
gram gets things started, but once the program is executing, no particular module or object
has to be in charge.

Let’s compare traditional structured programs to object-oriented programs through an
analogy—a computer analogy, but one with which you may be familiar. A mainframe com-
puter has a massive amount of computing capability. It may be connected to thousands of
work terminals, and it controls them all. No individual terminal does work unless the main
computer directly instructs it to do so. The mainframe also does all the database access and
execution. This system is much like a traditional structured program.

In contrast, a network of personal computers consists of many individual computers con-
nected by network cables. Each computer has its own capabilities, but if you are working at
one, you can communicate with another on the network through a message and ask for assis-
tance. For example, some individual computers on the network have large disk drives and spe-
cial databases that you can access. These computers are called file servers. Other resources
such as printers are also on the network. Typically, in most PC networks you have encoun-
tered, there is no single, coherent purpose for the individual computers. But sometimes it is
desirable to have many computers working together for a specific purpose. Again, they can
work together by sending messages to each other to fulfill the overall computing objective.
This system is how an object-oriented system or program is designed.

An object-oriented system consists of sets of computing objects. Each object has data and
program logic encapsulated within itself. Analysts define the structure of the program logic
and data fields by defining a class. The class definition describes the structure or a template of
what an executing object looks like. The object itself does not come into existence until the
program begins to execute. This is called an instantiation of the class, or making an instance
(an object) based on the template provided by the class definition.

Figure 11-1 illustrates three objects in this simple program execution. Each object also rep-
resents a structure of three-layer architecture. The three objects need not exist on the same
machine. In fact, in a multitier architecture, the three classes of objects will generally exist on
three separate machines. You learned about multitier architectures in Chapter 9.

OBJECT-ORIENTED DESIGN MODELS AND PROCESSES

The objective of object-oriented design is to identify and specify all of the objects that must
work together to carry out each use case and where they reside in different computing nodes.
As shown in the previous figure, these objects include user interface objects, problem domain
objects, and database access objects. Besides simply identifying the classes, another design
objective is to specify the detail methods and attributes within the classes so that a program-
mer can understand how a set of objects collaborate to execute a use case.

Figure 11-2 illustrates which requirements models are directly used to develop which
design models. The models on the left side were developed during analysis, and those on the
right side are the ones we will develop during design. As you might infer from the number of
arrows pointing to them, interaction diagrams are the core diagrams used for detailed design.
Interaction diagrams are explained in detail in Chapter 12.

At this point you should be familiar with the requirements models on the left side of the
diagram. Let’s take a minute to review the purpose of each model. The domain model class
diagram identifies all the classes, or “things,” that are important in the problem domain; for
example, to the system users. The use case diagram identifies the elementary business
processes that the system needs to support—in other words, all the ways users want to use the
system to carry out procedures or processing goals. The set of activity diagrams are used to
document the internal workflow of each use case. An activity diagram shows the individual
steps necessary to carry out a particular use case. The system sequence diagram is closely

390 ♦ PART 3 SYSTEMS DESIGN TASKS

instantiation

creation of an object
based on the template
provided by the class
definition

C6696_11_CTP.4c 1/28/08 8:24 AM Page 390

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 11 Object-Oriented Design: Principles ♦ 391

related to an activity diagram, except that it shows the messages or data that is sent back and
forth between the user and the system during the steps of the use case. Finally, the state
machine diagram keeps track of all status conditions for one particular class. It also shows the
business rules that control the changing of one state (status condition) to another.

The right side of the figure shows the design models. Architectural design is one of the
first steps in system design, inasmuch as it provides the big picture and overall structure of
the new system. At the top of the right column are the component diagram and the deploy-
ment diagram. You learned a bit about the deployment environment in Chapter 9, but with-
out using official UML notation. This chapter explains how to draw component and
deployment diagrams. You also learned a little about multilayer software design in Chapter 9.
This chapter explains how to use these two diagrams to document the architectural design of
the software system.

Customer

name

changeName()

Order

orderID

shipOrder()

Design models

Design class diagrams

:Controller :Customer

Interaction diagrams

Requirements models

Customer Order

Domain model class diagram

Package diagrams

Requirements state machine
diagrams

Ready Shipped

Design state machine diagrams

Ready Shipped

:System

System sequence diagrams

Create
new order

Use case diagrams
Clerk

System

Enter
data

Activity diagrams and use
case description

View layer Data layer

Client
computer

Network
computer

Deployment diagrams

Application
server

Internet
server

Component diagrams

Clerk

Clerk

Display
order

Clerk

Figure 11-2

Design models with their

respective input

requirements models

C6696_11_CTP.4c 1/28/08 8:24 AM Page 391

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Moving down the right column of Figure 11-2, we next see a design class diagram, or
DCD, which is an expansion of the domain model class diagram. It is used to document the
design elements of software classes, as you will learn later in this chapter. The next type of
diagram is an interaction diagram, which can be either a sequence diagram or a communica-
tion diagram. You learned how to build system sequence diagrams (SSDs) in Chapter 7. The
design version of sequence diagrams is much more detailed, and is used to carry out much of
the detailed design activity. You will learn how to create interaction diagrams in the next
chapter. State machine diagrams are also used by programmers to develop the detailed class
methods. You already learned about those in Chapter 7. The design version is similar to the
version used during analysis.

Finally, the square at the bottom of the column shows package diagrams, which are sim-
ply a way to group design elements together. You first saw a package symbol in Figure 7-5,
when use cases were grouped into subsystems. Package diagrams can be used to group any
type of design elements, but we will use them primarily to group design classes.

We begin system design by first thinking about the overall structure of the new solution
system—the architecture of the system.

OBJECT-ORIENTED ARCHITECTURAL DESIGN

Usually, the first step in system design is architectural design. In most cases during the early
steps of requirements gathering and documentation, the developers begin to think about how
the system will be deployed and what the overall structure will look like. It is normal at the
beginning of a project to say, “This is a Web-based system,” or “This will only be used inter-
nally on our network and desktops.” Those comments are the beginning of the architecture
design of the solution system.

Software systems are generally divided into two types: single-user systems and enterprise-
level systems. Single-user systems are found on a single desktop, or execute from a server but
without sharing resources. Typical examples are a spreadsheet program, an engineering draw-
ing program, a simple accounting program, or even an e-mail client program. The architec-
tural design of a single-user system is usually simple. Often there is only one layer, and it runs
on a single computer. However, even for a single-use system, it is wise to develop the system
as a multilayer program so that the boundaries between the various levels are well defined.

The term enterprise-level system can mean many different things. For our purposes, we
define it as a system that has shared components among multiple people or groups in an
organization. Enterprise-level systems almost always use multiple tiers of computers. You
learned about n-layer or n-tiered architectures in Chapter 9. A typical example of this archi-
tecture is an internal networked client/server environment in which the client computers con-
tain the view and domain layer programs, and the data access layer is on a central server.
Characteristic of enterprise-level systems, the database and data access are on a central server
because it is a shared resource throughout the organization. This configuration is a three-
layer, two-tiered system. Because the central database is shared across the enterprise, it is
placed on a central server that all users of the application program can share. Because local
client computers are often powerful Macintosh or personal computers, both the view layer
and domain logic can be executed locally.

Our definition of an enterprise-level system is a broad one. Two major categories of sys-
tems fit this definition in relation to systems design: (1) client/server network-based systems
and (2) Internet-based systems. You may find that many people only think of the second cat-
egory when they talk about enterprise-level systems, because so much new development is
being done for the Web. Remember, however, that the broader definition is equally valid.

These two methods of implementing enterprise-level systems have many similar proper-
ties. Both require a network, both have central servers, and both have the view layer on the

392 ♦ PART 3 SYSTEMS DESIGN TASKS

enterprise-level

system

a system that has shared
resources among
multiple people or
groups in an organization

C6696_11_CTP.4c 1/28/08 8:24 AM Page 392

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 11 Object-Oriented Design: Principles ♦ 393

client machines. However, some fundamental differences also exist in the design and imple-
mentation of these two approaches. The primary difference is in how the view layer interacts
with the domain and data access layers. As developers, we must be able to distinguish
between these two types of systems, because we must consider important design issues.

Figure 11-3 identifies three fundamental differences that affect the architectural design of
the system—state, client configuration, and server configuration. The concept of state relates
to the permanence of the connection between the client view layer and the server domain
layer. If the connection is permanent, as in a client/server system, values in variables can be
passed back and forth and are remembered by each component in the system. The view layer
has direct access to the data fields in the domain layer. For example, data in an order, such as
all of the line items and their prices, is displayed in the forms.

Design Issue Client/Server Network System Internet System

State “Stateful” or state-based system, e.g., Stateless system, e.g.,
client/server connection is long term client/server connection is

not long term and has no
inherent memory.

Client Configuration Screens and forms that are programmed Screens and forms are
are displayed directly. Domain layer is often displayed only through a
on the client or split between client and browser. They must conform
server machines. to browser technology.

Server Configuration Application or data server directly Client tier connects
connects to client tier. indirectly to the application

server through a Web server.

Figure 11-3

Differences between

client/server and Internet

systems

In a stateless system, such as the Internet, the client view layer does not have a permanent
connection to the server domain layer. The Internet was designed so that when a client
requests a screen via a URL address typed in the browser, the server sends the appropriate doc-
ument, and then the two disconnect. In other words, the client does not know the state of the
server, and the server does not remember the state of the client. This transient connection
makes it difficult to implement such things as an order in a shopping cart. To add more per-
manence to the stateless environment, Web designers have developed other techniques, such
as cookies, session variables, and XML data transmission. As a systems designer, you must
consider these additional components when designing an Internet enterprise-level system.

Concerning client configuration, the client side of a network-based system contains the
view layer classes and often the domain layer classes. Formatting, displaying, and event pro-
cessing within the screens are all directly controlled by the view layer and domain layer pro-
gram logic. There is great flexibility in the design and programming of these electronic
screens. The view layer classes and domain layer classes can communicate directly with each
other. Even if the domain layer is split across tiers, a permanent communication link can be
established—all under the program’s control.

In an Internet-based system, all electronic screens are displayed by a browser. The format-
ting, displaying, and event processing all must conform to the capabilities of the browser
being used. Special techniques and tools, such as scripting languages, applets, and style
sheets, have been developed to simulate the network-based capability. However, as a designer,
you will need to design for the environment.

The server configuration in a network-based system consists of data access layer classes and
sometimes domain layer classes. These classes collaborate through direct communication
and access to each other’s public methods. In an Internet-based system, all communications
from the client tier must go through the HTTP server. Communication is not direct, and
methods and program logic are invoked indirectly through passed parameters. This indirect
technique of accessing domain layer logic is more complex and requires additional care in
designing the system.

C6696_11_CTP.4c 1/28/08 8:24 AM Page 393

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The next two sections more precisely define both component diagrams and deployment
diagrams. Component diagrams focus on logical components, while deployment diagrams
focus on physical components. You will learn the UML notation used for both diagrams and
how they are used to carry out the process of architectural design.

COMPONENT DIAGRAMS AND ARCHITECTURAL DESIGN

We have started to address the physical components of the system—how the system is parti-
tioned into executable components. Earlier design discussions focused on identifying logical
components. The component diagram identifies the logical, reusable, and transportable
components of the system. The essential element of a component diagram is the component
element with its interfaces.

A component is an executable module or program, and it consists of all the classes that are
compiled into a single entity. It has well-defined interfaces, or public methods, that can be
accessed by other programs or external devices. The set of all of these public methods that are
available to the outside world is called the application program interface, or API. Figure 11-4
illustrates the UML notation for a component and its interfaces. It is not necessary to list all of
the interfaces on a single component. Only those that are pertinent to the context of the dia-
gram are listed. There are two ways to represent a component: either as a general class or as a
specific instance. The same rules apply in this situation as with class and object notation—
a general class uses the name of the component class, and an instance name is underlined. The
name of the component is written inside.

394 ♦ PART 3 SYSTEMS DESIGN TASKS

Alternative socket-
port connection

notation

Port–API output
interface

Component

Socket–Uses
input

Socket using
Port API

«component»
InventoryDatabaseSystem

«component»
InventoryUpdateSubsystem

«component»
InventoryQuerySubsystem

Figure 11-4

Object-oriented

component notation

component

diagram

a type of implementation
diagram that shows the
overall system
architecture and the
logical components
within it

application

program

interface or API

the set of public methods
that is available to the
outside world

C6696_11_CTP.4c 1/28/08 8:24 AM Page 394

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 11 Object-Oriented Design: Principles ♦ 395

The top rectangle in the figure illustrates the notation for a component along with its
interfaces. The component rectangle has an icon in the top right corner. The icon is a small
rectangle with two plugs extending from the left side, signifying that it is a moveable, exe-
cutable component, and is possibly reusable and pluggable.

The figure shows two types of interfaces: an output port and an input socket. The output
port is similar to a programming interface—it defines the method names (for example, a por-
tion of the API) that can be used by other components to access the component’s functions.
The input socket represents the services that the component needs from other components.
Notice the ball and socket notation. They go together so that the input of one component pre-
cisely fits the output of another component.

The bottom portion of the figure shows how the port interfaces and sockets can be used
in a component diagram. The InventoryDatabaseSystem presents an interface to the world, as
denoted by the interface ball along its bottom edge. The InventoryUpdateSubsystem uses that
interface to access the methods of the InventoryDatabaseSystem. In this figure, we show that
the InventoryQuerySubsystem also accesses the same interface by connecting it to the inter-
face via a dashed arrow.

In our design examples, we would like to show how to do multilayer design for a Web-
based system, and we would like to illustrate the locations of various Web pages. In other
words, we want to have some notation to show where Web pages reside and are deployed.
Because the UML notation that we use does not have standard notation for a window, we
extend the notation to include it. UML does have rules both for stereotyping a symbol and
for extending the language. Figure 11-5 shows the notation we have invented.

«frameset»«GUI»

Figure 11-5

Extension notation for

window and Web page

The figure simply displays a class notation with a stereotype notation such as «GUI» and
«frameset», along with a small window icon in the top right corner. This notation will serve
for either a desktop system window or a Web system frameset. A frameset is a high-level object
that can hold items to be displayed by a browser. We will use a frameset notation and stereo-
type to indicate a Web page. You can think of a frameset as the window in a browser that can
display frames or a set of frames.

One other object-oriented notation used for high-level design is the package notation. In
Chapter 7 you learned that a package is a group of similar items. The notation is a box with a
tab on top, much like a file folder. In Chapter 7, Figure 7-5, we used a notation to group use
cases together into subsystems. However, it can also be used to group any other type of ele-
ments, such as classes.

Next let’s use the component and window notation to do an architectural design of some
straightforward Internet systems.

C6696_11_CTP.4c 1/28/08 8:24 AM Page 395

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Two-Layer Architectural Design of Internet Systems

Many colleges have courses in Web development. Most of those courses fall into two cate-
gories: Web site design or Web programming languages. Both classes are important and bene-
ficial for your education as a system developer.

Web programming courses teach you various programming languages and the ways to
insert program logic into Web pages. You learn JavaScript, VBScript, PHP, and ASP (Active
Server Pages). You may learn how to use advanced database tools, such as Cold Fusion, to
access databases from your pages. You also learn how the browser and server work together to
serve up pages that have sufficient programming logic to support the business application.
Advanced versions of this course even teach you the Java or .NET environments so that you
can configure an entire application.

We do not intend for this short section to replace that course. Instead, we introduce the
architecture of these Web-based systems and provide a few principles of good design that you
can apply as you develop skills in other courses. In Chapter 9, we explained three-layer design
as one effective approach to developing robust, easily maintainable systems. But how can
designers implement a three-layer design in a Web-based architecture? This question is partic-
ularly important if an organization wants to use the same problem domain logic for both
types of enterprise systems: a client/server system and an Internet-based system.

Figure 11-6 illustrates a simple, generic Internet architecture. Remember, we are doing log-
ical design at this point and are not yet concerned with the physical computer configuration.
We will discuss the computer configuration when we learn more about deployment diagrams
in the next section. Of course, because there is an Internet cloud between two components,
we can naturally assume they are in different physical locations.

Figure 11-6 includes four recognizable components. The browser is an executable component
whose purpose is to format, display, and execute active code such as JavaScript or ActiveX
Controls. The Internet Server is another executable component whose purpose is to retrieve pages
and invoke other components. This diagram shows two examples of components—executable
programs in the Common Gateway Interface (CGI) and the Application Server—which also may
invoke other components that are not shown in this diagram.

In the interest of brevity, the ports and sockets have been omitted from this diagram. The
interfaces between these components are industry standard, and the unique port/socket com-
bination does not need to be emphasized here. Every two-headed arrow, however, does repre-
sent two port/socket pairs.

As indicated in Chapter 9, many simple business systems can be designed as two-layer sys-
tems. These systems primarily capture information from the user and update a database. No
complex domain layer logic is required. In those instances, the domain layer and data access
layer are usually combined. The business logic in the domain layer frequently relates only to
data formatting and to deciding which database table to update. Many business applications
fall in this category. For example, a simple address book system could be easily designed as a
two-layer system.

The CGI was the original way to process input data. The CGI directory contains compiled
programs that are available to receive input data from the server. The programs in the CGI
directory can be written in any compiled language, such as C++. This technique is effective
and usually has quick response and processing times. The only downside is that these pro-
grams can be quite complex and difficult to write. They process the input data, access any
required database, and format a response page in HTML, as indicated by the ResponsePage in
the diagram.

396 ♦ PART 3 SYSTEMS DESIGN TASKS

C6696_11_CTP.4c 1/28/08 8:24 AM Page 396

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 11 Object-Oriented Design: Principles ♦ 397

The other potential direction for input data is directly to a URL for a Web page with embed-
ded program code. The extension shown on the ResponsePage indicates the type of program code
embedded in the page—ASP for Active Server Pages, PHP for PHP Hypertext Preprocessor, JSP for
Java Server Pages, CFM for Cold Fusion Pages, and so forth. Depending on the type of extension,
an application server—which is the language processor—is invoked to process the embedded
code. The embedded code, via the application server, can process the code, including reading and
writing to a database. The application server, working with cookies on the browser, can manage
sessions with the user. Session variables are set up to maintain information about the user across
multiple page requests and forms. The application server also formats the response page based
on the HTML statements and the code and forwards it back to the Internet server.

Even though we have referred to this design as two-layer architecture, the user interface classes
often contain the business logic and data access. Due to the structure of Web servers, the program
(defined as object-oriented classes) that processes the input forms also outputs the HTML code that
is sent back to the client browser. For example, in Java-based systems, Java servlets receive the data
from input on a Web form, process the data, and format the output HTML page. To process the data,
the servlets usually include any required business logic and data access logic. The .NET environment
is similar. For every Web form, there is a code-behind class written in Visual Basic, C#, J#, or some
similar language. The code-behind object receives the data from the Web form, processes the data,
and formats the output HTML page. So, it is often not clear whether the architecture is one-layer or

Browser
(with cookies)

«frameset»
Page

JavaScript
VBScript
Applet

ActiveXControl

Internet
Server

request/
input data

«input data»
Form

«displays»

Common
Gateway

Interface (CGI)

Application
Server

(session mgr)

«frameset»
ResponsePage

PHP
ASP
JSP

Servlets
ColdFusion

User Interface Layer Domain layer
(Business Logic)

Internet

reply

Figure 11-6

Two-layer Internet

architecture

C6696_11_CTP.4c 1/28/08 8:24 AM Page 397

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

two-layer. However, we refer to this architecture as two-layer to emphasize that it is dynamic and
that the HTML response pages are built dynamically.

This architecture works well for two-layer applications that are not too complex—for exam-
ple, when the response pages already have most of the HTML written. The embedded code per-
forms functions such as validating the data and storing it in the database. Note that the business
logic is minimal, so mixing it with the data access logic still provides a maintainable solution.

However, some inherent complexities exist with this Internet system. The processing and
data access code is embedded within the HTML pages, which are also user-interface pages.
Because these response pages may contain additional forms, they may also have other client-
side code such as JavaScript and VBScript. So, a single entity—the HTML page—could poten-
tially contain user-interface controls, user-interface logic, problem domain logic, and data
access logic. All three layers are mixed together. Many Internet systems have been built with
this architecture. As you might guess, if any of the three pieces of logic becomes complex, test-
ing and maintaining the system becomes very difficult.

Three-Layer Architectural Design of Internet Systems

For systems that require more complex business logic, it is better to add a layer so that sepa-
rate classes exist for both the domain logic and the data access process. Three-layer architec-
ture is also more appropriate for systems that need to support multiple user interfaces, both
Internet-based and network-based. Figure 11-7 expands the diagram in Figure 11-6 to show
how a three-layer approach can be implemented.

On the CGI leg, the three-layer approach is implemented by defining separate domain
layer and data access layer subsystems. On the application server option, as shown in the
lower part of the diagram, it is not as easy to separate business logic from data access logic.
The diagram shows the application component, which is an executable that crosses the
dashed line dividing the business layer from the data access layer. However, even though there
is a single executable, the internal classes can be built exclusively as a business class or a data
access class. This is illustrated by defining two packages of classes. Let’s address two
approaches for how this is done—the Java approach and the .NET approach.

For Java server pages, which have a .jsp extension, the application server invokes a Java
servlet when the input form is received. A Java servlet is a Java program that executes like any
other program. The Java servlet identified for the input form can be a special class that serves
as a use case controller, which can then distribute the input message to other domain classes
to process the request. After the request is processed, including any database access, the servlet
takes control and formats the output response page. The difference, of course, is that the out-
put is in HTML statements and must flow through the server and browser before it is dis-
played to the user.

For the .NET environment, the process is similar. The input data form is sent to the
ASP.NET application server, which invokes the code-behind object (written in Visual Basic or
C#) for the particular Web form. The code-behind object will then call appropriate methods in
other objects. In the new .NET environment, the program modules are compiled into a com-
mon language called Common Language Runtime, a mid-level language that allows programs
to be partially compiled and managed for faster, more efficient execution. As with Java, the
program structure can use a three-layer design. One of the major differences in the .NET envi-
ronment is that the .NET framework has an extensive library of standard components that does
everything from automatically authenticating users to accessing data and populating forms.
But this feature can be both an advantage and disadvantage. The advantage is that the high-
level components provided by .NET make it easy to program and build forms. However, the
disadvantage is that you can easily mix the layers, scattering business logic with user-interface
processes and data access logic.

398 ♦ PART 3 SYSTEMS DESIGN TASKS

C6696_11_CTP.4c 1/28/08 8:24 AM Page 398

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 11 Object-Oriented Design: Principles ♦ 399

Browser
(with cookies)

«frameset»
Page

JavaScript
VBScript
Applet

ActiveXControl

Internet
Server

request/
input data

Common
Gateway

Interface (CGI)

Application
Server

(session mgr)

«frameset»
ResponsePage

PHP
ASP
JSP

Servlets
ColdFusion

User Interface Layer Domain layer
(Business Logic)

Data Access
subsystem

Data Access Layer

Internet

reply

«displays» «input data»
Form

Business logic
classes

Data access
classes

Application

Figure 11-7

Three-layer Internet

architecture

Web Services

Finally, let’s look at one last variation of an Internet architecture—a Web service. One new tech-
nique being used to develop Internet-based systems is through the use of Web services. We
expect to hear and see more about Web services in the near future. So what are Web services?
They are simply computer programs that provide services to other systems via the Internet and
are posted in a directory so that other systems can find and use them. Figure 11-8 shows how a
Web service might be used.

Be sure the problem domain classes are well defined first, before defining
the Web forms and user interface pages.

BEST PRACTICE

C6696_11_CTP.4c 1/28/08 8:24 AM Page 399

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Suppose that in processing an input form the application requires some data from an
external database. Perhaps the application is a financial services system, and it needs the lat-
est financial information about a particular company. Instead of trying to have the system
maintain this data itself and keep it current, the system developers decide to access the data
from some other service on the Internet. So, as the program is executing, it determines that it
needs current financial data. It does not care where it gets the data, just that the data is cur-
rent. First, the program sends a request for information. This request will go to a services
directory called Universal Discovery, Description, and Integration (UDDI), which is an index-
ing service to help locate Web services. The request will be based on keywords that describe
exactly what is desired. The UDDI provides an Internet address of a program that provides
the service. The application then requests the desired information over the Internet.

This process sounds easy, but it was never possible before, for various reasons. One major
obstacle was that the requestor and the provider had to use exactly the same format of data
exchange. This fact is emphasized in the figure by making the port/socket interface visible
between the two components. Defining the same format is easy if only two programs are
involved. But to have a general-purpose format that any program can use has been a major
problem. In Web services, however, all communication is based on XML (eXtensible Markup

400 ♦ PART 3 SYSTEMS DESIGN TASKS

request/
input data

Internet

reply

«displays» «input data»
Form

Business logic
classes

Data access
classes

Application

Web Service

«frameset»
Page

JavaScript
VBScript
Applet

ActiveXControl

«frameset»
ResponsePage

PHP
ASP
JSP

Servlets
ColdFusion

Application
Server

(session mgr)

Internet
Server

Browser
(with cookies)

Figure 11-8

Invoking a Web service

C6696_11_CTP.4c 1/28/08 8:24 AM Page 400

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 11 Object-Oriented Design: Principles ♦ 401

Language), a text-based language much like HTML. The difference is that HTML has standard
tags, whereas XML can include self-defining tags to describe any data you want. In other
words, the sequence and format of the data are defined within the transmitted file itself. Thus,
the recipient of the data can process it no matter what the sequence. Examples of XML are
shown in Chapter 15 in the discussion of interface design.

The next section extends the concepts of architectural design by mapping the logical com-
ponents to physical computers and locations. You first learned about physical design in
Chapter 9 in the discussion of multitiered design. In the next section, you will learn about
the notation of deployment diagrams and how to describe the multiple tiers of today’s systems.

DEPLOYMENT DIAGRAMS

A deployment diagram shows the placement of various physical nodes (components) across
different locations. A node can be thought of as a computer, or a bank of computers, represent-
ing a single computing resource. A node is a physical entity at a specific location. Figure 11-9
illustrates the symbol that is used for a node—a shaded rectangle. The shading is added to rep-
resent a real object that can cast a shadow. The name of the node is listed inside, either as a
classification of node or as a single instance with the name underlined.

:Server

One other symbol used in deployment diagrams is the artifact symbol. The term artifact
simply means something that is man-made. In this situation, an artifact means something tan-
gible that is created and exists on a particular node. The symbol for an artifact is a rectangle
with a document icon in the top right corner. The document icon is a piece of paper with the
corner folded down. If a component in a component diagram defines a logical piece of a sys-
tem, then an artifact can be thought of as the physical item that holds or specifies that compo-
nent. Figure 11-10 illustrates both the symbol for an artifact and its relationship with a
component. As shown, an artifact has a dependency relationship with a component. The stan-
dard UML notation for a dependency relationship is a dashed arrow. In other words, an arti-
fact depends on the component, and if the component changes, the artifact also must change.

Figure 11-9

Notation for a node in a

deployment diagram

deployment

diagram

a type of implementation
diagram that shows the
physical components
across different locations

artifact

a class invented by a
system designer to
handle a needed system
function

C6696_11_CTP.4c 1/28/08 8:24 AM Page 401

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 11-11 illustrates the use of nodes, artifacts, and components in a deployment dia-
gram. This diagram illustrates how the three-layer architecture of Figure 11-7 might be
deployed on various machines. The browser artifact is normally deployed on a client
machine. A server computer is used to deploy both an Internet server and an application
server. Notice that the view layer consists of the client computer as well as the server com-
puter. The server computer also includes the business layer as a separate artifact. The far-right
symbol is a logical component representing the database system. To interpret this part of the
figure, you must understand that the physical implementation of the database system is either
still open for discussion or is not important for this figure. It could be implemented on the
same node or on a different node. This figure simply indicates that a database system is
needed in the logical solution, but tells us nothing about where or how it will be done. It is
not unusual to have logical components on a deployment diagram.

402 ♦ PART 3 SYSTEMS DESIGN TASKS

«component»
InventoryDatabaseSystem

«artifact»

«manifests»

Figure 11-10

An artifact and its

relationship to a

component

:Client

«artifact»

Browser

:Server

«artifact»
Internet
Server

«artifact»
Application

Server

«component»
DatabaseSystem

Figure 11-11

Example of a deployment

diagram for an Internet-

based system

C6696_11_CTP.4c 1/28/08 8:24 AM Page 402

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 11 Object-Oriented Design: Principles ♦ 403

So far you have learned foundation principles for multilevel design of object-oriented sys-
tems. The examples in the text are fairly high-level and generic solutions. You might think that all
solutions would look exactly alike, but they do not. As you focus on specific applications and a
slightly more detailed level, you might see different configurations of logical components and
computer nodes. For example, some systems run in conjunction with other systems, like
Facebook and the separate Facebook applications. The applications run on a separate platform
and may have their own application database servers. Some Facebook applications are also gate-
ways into separate commercial applications on separate sites. By the time an entire application is
configured, there may be several different nodes, each with separate artifacts representing the var-
ious logical components. (See problems 3 and 4 in the “Thinking Critically” section at the end of
this chapter.)

Once the architectural design is determined, it is time to drill down to a lower level of
abstraction. In other words, you stop treating the logical components as black boxes and start
to look inside. Each component is an executable program and is made up of classes. So the
next step in the application design is to begin defining the design classes. Designing at this
level is usually called detailed design.

As noted in Chapters 1 and 2, RMO’s new customer support system needed to support
both a Web user interface and an internal desktop interface. It is critically important for the
same back end—business logic and database access—to link with either user interface.
Consequently, the design team must specify the architectural design in enough detail to
ensure that the programmers implement a system that can support both user interfaces.
Barbara Halifax has updated John MacMurty on her team’s progress in completing the archi-
tectural design and creating the system’s Web interface (see the memo).

C6696_11_CTP.4c 1/28/08 8:24 AM Page 403

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

FUNDAMENTAL PRINCIPLES OF OBJECT-ORIENTED DETAILED DESIGN

Now that we have learned about architectural design, we can turn to detailed design. If you
refer back to Figure 11-2 and proceed down the right column, the next two diagrams to dis-
cuss are the design class diagram and the interaction diagrams (sequence diagrams and com-
munication diagrams). These two diagrams are the most important for detailed design.

The objective of object-oriented detailed design is to identify and specify all of the objects
that must work together to carry out each use case. As shown in Figure 11-1, there are user-
interface objects, problem domain objects, and database access objects. Additional objects to
perform specific services, such as logon authentication, may also be required. As you may
suppose, a major responsibility of detailed design is to identify and describe each set of
objects within each layer and to identify and describe the interactions or messages that are
sent between these objects.

The most important model in object-oriented design is a sequence diagram—or its first
cousin, a communication diagram. In Chapter 7, you learned to develop system sequence dia-
grams (SSDs) to model input and output requirements for a use case. The full sequence dia-
gram is used for design and is a type of interaction diagram. A communication diagram is
also a type of interaction diagram. During design, developers extend the SSD by modifying
the single :System object to include all of the interacting user-interface, problem domain, and
database access objects. In other words, they look inside the :System object to see what is hap-
pening inside the system. We will spend a good deal of time in the next chapter learning how
to develop these detailed sequence diagrams. Figure 11-12 shows a simple sequence diagram
based on Figure 11-1, which updates student information. A sequence diagram uses the same
notation as an SSD, which you learned to develop in Chapter 7. In fact, a sequence diagram
is simply an extension of a systems sequence diagram. We explain the details of sequence dia-
grams and how to develop them in the next chapter.

404 ♦ PART 3 SYSTEMS DESIGN TASKS

Actor

changeName (studentID, name)

nameUpdate

:StudentUpdController :Student

changeName (name)

Figure 11-12

Sequence diagram for

updating student name

The other major design model, which you will learn to develop later in this chapter, is the
design class diagram. Its main purpose is to document and describe the programming classes
that will be built for the new system. They describe the set of object-oriented classes needed
for programming, navigation between the classes, attribute names and properties, and
method names and properties. A design class diagram is a summary of the final design that

C6696_11_CTP.4c 1/28/08 8:24 AM Page 404

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 11 Object-Oriented Design: Principles ♦ 405

was developed using the detailed sequence diagrams, and it is used directly when developing
the programming code. Figure 11-13 shows the original domain model that was developed
during analysis and the design class diagram version of that class. The design class version has
a new compartment at the bottom that specifies the method signatures for the class. The
attributes have also been enhanced. We explain the details of this notation in the next sec-
tion. Detailed design is the process that takes the domain model to the design class model.

Domain diagram Student

studentID
name
address
dateAdmitted
lastSemesterCredits
lastSemesterGPA
totalCreditHours
totalGPA
major

Student

-studentID: integer {key}
-name: string
-address: string
-dateAdmitted: date
-lastSemesterCredits: number
-lastSemesterGPA: number
-totalCreditHours: number
-totalGPA: number
-major: string

Student

+createStudent (name, address, major): Student
+createStudent (studentID): Student
+changeName (name)
+changeAddress (address)
+changeMajor (major)
+getName () : string
+getAddress () : string
+getMajor () : string
+getCreditHours () : number
+updateCreditHours ()
+findAboveHours (int hours): studentArray

Design class diagram Student

Elaborated
attributes

Method signatures

Figure 11-13

Student class examples

for the domain class and

the design class

diagrams

As an object-oriented system designer, you must provide enough detail so that a program-
mer can write the initial class definitions, including the method code. As you will see in the
following sections, the primary components of the OO design are design class diagrams,
interaction diagrams, and, for some classes, state machine diagrams. For example, a design
class specification helps define an object’s attributes and methods. Figure 11-14(a) illustrates
some sample code, written in Java, for the Student class. Figure 11-14(b) shows the same
example code written in Visual Basic .NET. Referring back to Figure 11-13, you should be able
to see how the design class provides the input to write the code for Figure 11-14. Notice that
the class name, the attributes, and the method names are derived from the design class nota-
tion. Of course, in the design class we took some liberties by abbreviating the first name and
last name to name and by combining all the components of an address into one field called
address. If there is any question whether programmers will know that they should break these
shortened names out into the detailed fields, the designer should not take these shortcuts.
Other code that needs to be added to the class definition can be derived from the other design
models, including the interaction diagrams and the state machine diagrams.

C6696_11_CTP.4c 1/28/08 8:24 AM Page 405

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

406 ♦ PART 3 SYSTEMS DESIGN TASKS

public class Student
{
 //attributes
 private int studentID;
 private String firstName;
 private String lastName;
 private String street;
 private String city;
 private String state;
 private String zipCode;
 private Date dateAdmitted;
 private float numberCredits;
 private String lastActiveSemester;
 private float lastActiveSemesterGPA;
 private float gradePointAverage;
 private String major;

 //constructors
 public Student (String inFirstName, String inLastName, String inStreet,
 String inCity, String inState, String inZip, Date inDate)
 {
 firstName = inFirstName;
 lastName = inLastName;
 ...
 }
 public Student (int inStudentID)
 {
 //read database to get values
 }

 //get and set methods
 public String getFullName ()
 {
 return firstName + " " + lastName;
 }
 public void setFirstName (String inFirstName)
 {
 firstName = inFirstName;
 }
 public float getGPA ()
 {
 return gradePointAverage;
 }
 //and so on

 //processing methods
 public void updateGPA ()
 {
 //access course records and update lastActiveSemester and
 //to-date credits and GPA
 }
}

Figure 11-14(a)

Example class definition

in Java for Student class

C6696_11_CTP.4c 1/28/08 8:24 AM Page 406

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 11 Object-Oriented Design: Principles ♦ 407

 Public Class Student

 'attributes
 Private studentID As Integer
 Private firstName As String
 Private lastName As String
 Private street As String
 Private city As String
 Private state As String
 Private zipCode As String
 Private dateAdmitted As Date
 Private numberCredits As Single
 Private lastActiveSemester As String
 Private lastActiveSemesterGPA As Single
 Private gradePointAverage As Single
 Private major As String

 'constructor methods
 Public Sub New(ByVal inFirstName As String, ByVal inLastName As String,
 ByVal inStreet As String, ByVal inCity As String, ByVal inState As String,
 ByVal inZip As String, ByVal inDate As Date)
 firstName = inFirstName
 lastName = inLastName
 ...
 End Sub

 Public Sub New(ByVal inStudentID)
 'read database to get values
 End Sub

 'get and set accessor methods
 Public Function GetFullName() As String
 Dim info As String
 info = firstName & " " & lastName
 Return info
 End Function

 Public Property firstName()
 Get
 Return firstName
 End Get
 Set (ByVal Value)
 firstName = Value
 End Set
 End Property

 Public ReadOnly Property GPA()
 Get
 Return gradePointAverage
 End Get
 End Property

'Processing Methods
Public Function UpdateGPA()

 'read the database and update last semester
 'and to date credits and GPA
 End Function

 End Class

Figure 11-14(b)

Example class definition

in VB .NET for

Student class

C6696_11_CTP.4c 1/28/08 8:24 AM Page 407

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

OBJECT-ORIENTED DESIGN PROCESS

Object-oriented design is model driven and use case driven. As you saw in Figure 11-2, the
design process takes the requirements models as input and produces the design models as
output. Obviously, we need a method for organizing this activity, and it is focused around
use cases. In other words, we develop the design models use case by use case. For example, a
design interaction diagram is developed for each use case. After a group of them have been
designed, the design class diagram is completed for that entire group of use cases. We can
divide the process of design into five major steps, as summarized in Figure 11-15.

408 ♦ PART 3 SYSTEMS DESIGN TASKS

Object-Oriented Detailed Design Steps

1. Develop the first-cut design class diagram showing navigation visibility. Chapter 11

2. Determine class responsibilities and class collaborations for each use case using Chapter 11

 Class-Responsibility-Collaboration (CRC) cards.

3. Develop detailed sequence diagrams for each use case. Chapter 12

 (a) Develop the first-cut sequence diagrams.

 (b) Develop multilayer sequence diagrams.

4. Update the design class diagram by adding method signatures and navigation Chapter 12

 information using CRC cards and/or sequence diagrams.

5. Partition the solution into packages as appropriate. Chapter 12

Figure 11-15

Object-oriented detailed

design steps

First, a preliminary version, or first-cut model, of the design class diagrams is created. Some
basic information, such as attribute names, must be listed in the first-cut model to develop the
interaction diagrams. This step provides a foundation for the second and third steps.

The second step often used by developers is to take each use case and develop a set of CRC
cards. The development of CRC cards helps provide an overall understanding of the internal
steps required for the system to support the use case. CRC cards provide a simple method to
identify all of the objects involved in a particular use case and their responsibilities. The results
of a CRC activity will be sets of cards that can be used to help develop a sequence diagram; if a
use case is simple enough, the cards can be used to program the use case. In other words, for
simple use cases, CRC cards may be sufficient to write the code. CRC cards are explained in
detail later in the chapter.

The third step in detailed design is to develop interaction diagrams, resulting in one for
each use case or scenario. Developing an interaction diagram is a multistep process of deter-
mining which objects work together and how they work together. The first part is to develop a
sequence diagram that includes only the domain classes. Next, a multitier solution is devel-
oped that includes data access classes and view layer classes. Development of the interaction
diagrams is the heart of object-oriented systems design. As shown in Figure 11-2, input models
for interaction diagrams are use case diagrams, activity diagrams, and system sequence dia-
grams. Design class diagrams are also used in the process. The result of the development of
these design models is called realization of use cases. Here, the term realization is the specifi-
cation of the detailed processing that the system must perform to carry out the use case—in
other words, to make a set of software blueprints. Just as object-oriented analysis was driven by
use cases, so is object-oriented design.

The fourth step in OO detailed design is to return to the design class diagram and develop
method names based on information developed during the design of the interaction diagrams.
The navigation visibility and attribute information is also updated in this iteration of the
design class diagram.

The final design step is to partition the design class diagram into related functions using
package diagrams. A system might be partitioned in several ways, such as by subsystem or by
layers. In Chapter 9, you learned about multilayer architectures and multiple tiers. This chapter
explains how to partition design class diagrams into packages to represent the multiple layers
in a multitier system. We focus on a basic multilayer design that consists of the view layer

realization of

use cases

specification of all
detailed system
processing for each
use case

C6696_11_CTP.4c 1/28/08 8:24 AM Page 408

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 11 Object-Oriented Design: Principles ♦ 409

(user-interface classes), the domain layer (problem domain classes from the domain model
class diagram), and the data layer (database access classes). Note that several synonymous
terms are used to denote the domain layer, including problem domain layer and business logic
layer. Package diagrams provide the detailed class organization information that can be added
to the architectural view of the final system.

DESIGN CLASSES AND THE DESIGN CLASS DIAGRAM

As shown in Figure 11-2, the design class diagrams and the detailed interaction diagrams work
together. A first iteration of the design class diagram is created based on the domain model
and on engineering design principles. The preliminary design class diagram is then used to
help develop interaction diagrams. As design decisions are made during development of the
interaction diagrams, the results are used to refine the design class diagram.

The domain model class diagram shows a set of problem domain classes and their associ-
ations. During analysis, because it is a discovery process, analysts generally do not worry
much about the details of the attributes or the methods. However, in object-oriented pro-
gramming, the attributes of a class must be declared as public or private, and each attribute
must also be defined by its type, such as character or numeric. During detailed design, it is
important to elaborate on these details, as well as to define parameters that are passed to the
methods and return values from methods. Sometimes, developers also define the internal
logic of each method at this point. We complete the design class diagram by integrating infor-
mation from interaction diagrams and other models.

As developers build the design class diagrams, they add many more classes than were orig-
inally defined in the domain model. To build a complete object-oriented system, many other
design classes must be identified and specified. Referring to Figure 11-1, the Input window
objects and Database access objects are examples of additional classes that must be defined.
As the classes are defined, designers usually document them on various class diagrams. The
classes in a system can be partitioned into distinct categories, such as user-interface classes. At
times, designers may also develop distinct class diagrams by subsystem. Whatever process
they use, designers document their decisions with class diagrams, so class diagrams are used
in different ways. We now turn to design class diagram notation and discuss the design prin-
ciples used in developing the first iteration of the design class diagram.

DESIGN CLASS SYMBOLS

UML does not specifically distinguish between design class notation and domain model
notation. However, practical differences occur simply because the objective of design model-
ing is distinct from that of domain modeling. Domain modeling shows things in the users’
work environment and the naturally occurring associations among them. The classes at that
point are not specifically software classes. After we start a design class diagram, though, we
are specifically defining software classes. Because many different types of design classes are
identified during the design process, UML has a special notation, called a stereotype, which
allows designers to designate a special type of class. A stereotype is simply a way to categorize
a model element as a certain type. A stereotype extends the basic definition of a model ele-
ment by indicating that it has some special characteristic we want to highlight. The notation
for a stereotype is the name of the type placed within printer’s guillemets, like this: «Control».
You were first exposed to a stereotype when you were developing a use case diagram. You
learned that connecting lines between actors and use cases indicated a relationship and that a
certain type of relationship existed between use cases, called the «includes» relationship.

Four types of design classes are considered standard: an entity class, a control class, a
boundary class or view class, and a data access class. Figure 11-16 shows the notation used to
identify these four stereotypes. Two types of notation can be used for design classes. The class

stereotype

a way of categorizing a
model element by its
characteristics, indicated
by guillemets (« »)

C6696_11_CTP.4c 1/28/08 8:24 AM Page 409

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

rectangles on the left show the full symbols. Notice that the stereotypes are placed above the
name in the name compartment. The circular symbols on the right are shorthand notation
for these stereotypes, and are called icons. We will use the stereotype icons from time to time,
but in most cases we prefer the full notation.

An entity class is the design identifier for a problem domain class. In other words, it comes
from the domain model. These objects are normally passive, in that they wait for business
events to occur before they do anything. They are also usually persistent classes. A persistent
class is one that exists after the program quits. In other words, the data must persist after the sys-
tem is shut down. Obviously, the way to make data persistent is to write it to a file or database.

A boundary class, or view class, is specifically designed to live on the system’s automa-
tion boundary. In a desktop system, these classes would be the windows classes and all the
other classes associated with the user interface.

410 ♦ PART 3 SYSTEMS DESIGN TASKS

«entity»
Customer

«control»
UseCaseHandler

«boundary»
OrderWindow

Customer

UseCaseHandler

OrderWindow

OrderDBReader

«dataAccess»
OrderDBReader

Figure 11-16

Standard stereotypes

found in design models

A control class mediates between the boundary classes and the entity classes. In other
words, its responsibility is to catch the messages from the boundary class objects and send
them to the correct entity class objects. It acts as a kind of switchboard, or controller, between
the view layer and the domain layer.

A data access class is used to retrieve data from and send data to a database. Rather than
insert database access logic, including SQL statements, into the entity class methods, a sepa-
rate layer of classes to access the database is often included in the design.

DESIGN CLASS NOTATION

Figure 11-17 shows the details within a design class symbol, as you first saw in the design class
in Figure 11-13. The name compartment includes the class name and the stereotype informa-
tion. The lower two compartments contain more details about the attributes and the methods.

entity class

a design identifier for a
problem domain class

persistent class

an entity class that
exists after a system
is shut down

boundary class or

view class

a class that exists on a
system’s automation
boundary, such as an
input window

control class

a class that mediates
between boundary
classes and entity
classes, acting as a
switchboard between
the view layer and
domain layer

data access class

a class that is used to
retrieve data from a
database

C6696_11_CTP.4c 1/28/08 8:24 AM Page 410

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 11 Object-Oriented Design: Principles ♦ 411

The format that analysts use to define each attribute includes the following:

• Attribute visibility. Visibility denotes whether other objects can directly access the
attribute. (A + sign indicates that an attribute is visible, or public, and a – sign means that
it is not visible, or private.)

• Attribute name
• Type-expression (such as character, string, integer, number, currency, or date)
• Initial-value
• Property (within curly braces), such as {key}

The third compartment contains the method signature information. A method signature
shows all of the information needed to invoke (or call) the method. It shows the format of
the message that must be sent, which consists of the following:

• Method visibility
• Method name
• Method parameter list (incoming arguments)
• Type-expression (the type of the return parameter from the method)

In object-oriented programming, analysts use the entire signature to identify a method.
Some OO languages allow multiple methods to have the same name as long as they have dif-
ferent parameter lists or return types. In those languages, both the method name and the
parameter list are used to invoke the correct method. For example, suppose that we want to
be able to find a customer record either by the customer ID number or by the customer name.
We could identify two methods, each with the same name, such as getCustomer (customerID)
and getCustomer (customerName). When a method such as getCustomer has the same name
but different parameter lists, we say the method is an overloaded method. To know which
method to invoke, the run-time environment must also note what parameters are included,
and whether a number (customerID) or a text field (customerName) was entered.

The domain model attribute list contains all attributes discovered during analysis activi-
ties. The design class diagram includes more information on attribute types, initial values,
and properties. It can also include a stereotype for clarification. As shown in Figure 11-13 in
the Student design class diagram, the third compartment contains the method signatures for
the class. Remember that UML is meant to be a general object-oriented notation technique
and not specific to any one language. So, the notation will not be the same as programming
method notation.

For example, for those of you with programming experience, the constructor notation we
use is createStudent (name, address, major): Student. Remember that the constructor is the
method that makes a new object for the class. In many programming languages, the construc-
tor is given the same name as the class. However, in this situation we use a create statement to

Figure 11-17

Notation used to define a

design class

visibility

a notation of whether an
attribute can be directly
accessed by another
object; indicated by plus
or minus signs

method signature

a notation that shows all
of the information
needed to invoke, or call,
the method

overloaded

method

a method with one name
but two or more
parameter lists

C6696_11_CTP.4c 1/28/08 8:24 AM Page 411

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

follow more closely the message names used in interaction diagrams. Figure 11-13 also illus-
trates another constructor. In the second method line, only the student ID is passed in. This
implies that a student with an ID exists, and the constructor itself must fill in the information
about the student. This usually requires access to a database to get values for the fields.

The method called findAboveHours (int hours): studentArray, as denoted with an underline
in Figure 11-13, is a special kind of method. Remember in the object-oriented approach that a class
is a template to create individual objects or instances. Most of the methods apply to one instance
of the class. However, frequently analysts need to look through all of the instances at once. Such a
method is called a class-level method, which is denoted by an underline. In VB .NET it is called a
shared method, and in Java it is a static method. This type of method is executed by the class instead
of a specific object of the class. Because these methods are used at the class level, they do not
depend on the existence of a particular object. If necessary, they can access data across all objects.
In this example, the findAboveHours method looks through all the instances of the class and
returns the ones that have more total hours than the input parameter.

Figure 11-18 is an example of design classes with attributes and methods; it shows how inheri-
tance works for design classes. In Chapter 5 you learned about generalization/specialization.
Generalization/specialization in the problem domain model becomes inheritance in the design
model and in a programming language. The notation is the same as in the problem domain. In this
case, we have used three separate arrows instead of one single arrow, but the meaning is identical.
Each of the three subclasses inherits all of the attributes and methods of the parent Order class.
Hence, each subclass has an orderID, an orderDate, and so forth. In this example, each subclass also
has additional attributes that are unique to its own specific class. Each of the subclasses also has a
unique attribute that is underlined, such as noOfPhoneOrders. Underlined attributes are class-level
attributes and have the same characteristics as class-level methods. A class-level attribute is a static
variable and it contains the same value in all instantiated objects of the same type.

Each subclass also has an addItem() method and a makePayment() method, as well as all
the other methods in the parent class. When those methods are executed for a particular sub-
class, such as PhoneOrder, the code in the parent class is executed. The InternetOrder class also
has an additional method to send an e-mail and confirm the order. The MailOrder class over-
rides one of the methods in the parent Order class. The cancelOrder() method is an overridden
method, in that the version in the subclass replaces the method in the parent class.

412 ♦ PART 3 SYSTEMS DESIGN TASKS

Customer

-accountNo: string {key}
-name: string
-billingAddress: string
-shippingAddress: string
-dayPhone: string
-nightPhone: string
-myOrder: order

Order

-orderID: int {key}
-orderDate: date
-priorityCode: string
-shipping&Handling: float
-tax: float
-grandTotal: float

+additem ()
+cancelOrder ()
+makePayment ()

0..* 1..1

+updateName ()
+updateAddress ()
+placeOrder ()

PhoneOrder

-clerkID: string
-callingPhone: string
-processTime: int
-noOfPhoneOrders: int

PhoneOrder

-clerkID: string
-callingPhone: string
-processTime: int
-noOfPhoneOrders: int

InternetOrder

-URLaddress: string
-timeOfDay: string
-timeToOrder: int
-noOfWebOrders: int

MailOrder

-orderFormID: string
-noOfMailOrders: int

+cancelOrder ()+confirmEmail ()

Figure 11-18

Order class with three

subclasses showing

inheritance

Not only are methods and attributes inherited by the subclasses, associations are also
inherited. In the figure, the order object must be associated with exactly one customer. Each

class-level

method

a method that is
associated with a class
instead of with objects of
the class

class-level

attribute

an attribute that contains
the same value for all
objects in the system

overridden

method

a method in a subclass
(with inheritance) that
overrides the method in
the parent class

C6696_11_CTP.4c 1/28/08 8:24 AM Page 412

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 11 Object-Oriented Design: Principles ♦ 413

subclass inherits the same association and must be associated with exactly one customer.
Finally, if you look carefully, you will notice that the title of the Order class is italicized. An itali-
cized class name indicates that it is an abstract class, a class that can never be instantiated.
In other words, there are never any Order class objects. All orders in the system must be instan-
tiated as one of the three subclasses. Every order in the system will be either a PhoneOrder, an
InternetOrder, or a MailOrder. Each of the three subclasses is considered a concrete class
because it can be instantiated (in other words, objects can be created). The purpose of an
abstract class is illustrated by the figure. It provides a central holding place for all the attributes
and methods that each of the three subclasses will need. This example demonstrates one way
that object-oriented programming implements reuse. The methods and attributes in the
abstract class only need to be written once in order to be reused by each of the subclasses.

DEVELOPING THE FIRST-CUT DESIGN CLASS DIAGRAM

To start the design process, we develop a first-cut design class diagram based on the domain model.
Figure 11-19 is a partial RMO domain model, as developed in Chapter 5 (see Figure 5-38).

catalogID {key}
season
year
description
effectiveDate
endDate

Catalog

productID {key}
vendor
gender
description

ProductItem

price
specialPrice

CatalogProduct

date
transactionType
amount
paymentMethod

OrderTransaction

quantity
price
backorderStatus

OrderItem
orderID {key}
orderDate
priorityCode
shipping&Handling
tax
grandTotal

Order

accountNo {key}
name
billingAddress
shippingAddress
dayPhone
nightPhone

Customer

1..*

1..*
1

1
0..*

1

1

0..*

0..*

1..*

0..*

1

inventoryID {key}
size
color
options
quantityOnHand
averageCost
reorderQuantity

InventoryItem

Figure 11-19

Partial RMO domain

model class diagram

The first-cut design class diagram is developed by extending the domain model class dia-
gram. It requires two steps: (1) elaborating on the attributes with type and initial value infor-
mation and (2) adding navigation visibility arrows. As indicated earlier, object-oriented
design is use case driven. So, let’s choose a use case to start with and focus only on classes
involved in that use case. It is always a good idea to begin with simple use cases, so we start
with Look up item availability.

Elaboration of Attributes

The elaboration of the attributes is fairly straightforward. The type information is determined
by the designer based on his or her expertise. In most instances, all attributes are kept invisi-
ble or private and are indicated with minus signs before them. We also need to add a new
compartment to each class for the addition of method signatures.

abstract class

a class that can never be
instantiated (no objects
can be created of this type)

concrete class

a normal class that can
be instantiated (objects
can be created)

C6696_11_CTP.4c 1/28/08 8:24 AM Page 413

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Navigation Visibility

As stated earlier, an object-oriented system is a set of interacting objects. The interaction dia-
grams developed during design document what interactions occur between which objects.
However, for one object to interact with another by sending a message, the first object must
be visible to the second object. Navigation visibility, in this context, refers to the ability of
one object to be able to view and interact with another object. We use two types of navigation
visibility during design: attribute navigation visibility and parameter navigation visibility. Attribute
navigation visibility occurs when a class has an attribute that references another object.
Visibility is obtained through the attribute reference. Parameter navigation visibility occurs
when a class is passed a parameter that references another object. A parameter is usually
passed through a method call. Sometimes developers refer to navigation visibility as just
navigation or visibility. However, we prefer the term navigation visibility to distinguish the con-
cept from public and private visibility on attributes and methods.

Figure 11-20 shows one-way attribute navigation visibility between the Customer class
and the Order class. Notice the variable called myOrder in the Customer class. This variable
holds a value to refer to an order instance. The navigation arrow indicates that an Order
object must be visible to the Customer object. We have included the myOrder attribute in the
example to emphasize this concept.

414 ♦ PART 3 SYSTEMS DESIGN TASKS

Customer

-accountNo: string {key}
-name: string
-billingAddress: string
-shippingAddress: string
-dayPhone: string
-nightPhone: string
-myOrder: order

-orderID: int {key}
-orderDate: date
-priorityCode: string
-shipping&Handling: float
-tax: float
-grandTotal: float

Order

Figure 11-20

Attribute navigation

visibility between

Customer and Order

You might wonder how the myOrder attribute can obtain the correct value to refer to the
Order object. One way would be for the Customer object to create the Order object. By invok-
ing the constructor, the created object already contains the needed reference. Another way for
the Customer object to get the correct reference is to have it passed in as a parameter on a
method. For example, a programming statement such as myCustomer.addOrder (anOrder)
would pass a reference to the particular Order object to the Customer object. The Customer
object could then place it in the attribute called myOrder, as shown in Figure 11-20. In this
example, the navigation visibility begins as parameter navigation visibility, but is then pro-
moted to attribute navigation visibility. If the reference value for an Order is stored in a tem-
porary or local variable, it would remain at parameter navigation visibility and would not be
promoted to attribute navigation visibility.

navigation

visibility

a design principle in
which one object has a
reference to another
object and thus can
interact with it

C6696_11_CTP.4c 1/28/08 8:24 AM Page 414

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 11 Object-Oriented Design: Principles ♦ 415

Because interactions between objects can only be accomplished with navigation visibility,
you must always be aware of it as a designer. In programming jargon, invoking a method on
an object frequently requires dot notation to invoke the correct method on the correct object.
Remember from your programming experience that dot notation qualifies the name of a
method or attribute to correctly identify the object to which it applies, such as
myOrder.changePriority(). One responsibility of a design is to specify which classes have nav-
igation visibility to other classes. Attribute navigation visibility can be either one way or two
way. For example, a Customer object may be able to view an Order object, which means the
Customer object knows which orders a customer has placed. In programming terms,
the Customer class has a variable, or an array of variables, that point to the Order object(s)
for that customer. If navigation is two-way, then each Order object will also have a variable
that refers to the Customer object. If the navigation is not two-way, then Order objects will
not have a variable to point to the Customer object. In a design class diagram, attribute navi-
gation visibility is identified by an arrow between the classes, where the arrow points to the
visible class. Parameter navigation visibility is sometimes shown by a dashed arrow between
the classes.

Now let’s think about adding navigation visibility to the RMO class diagram. Remember
that we are designing just the first-cut class diagram, so we might need to modify the naviga-
tion arrows as the design progresses. We ask the following basic question when building nav-
igation visibility: Which classes need to have references to, or be able to access, which other
classes? Here are a few general guidelines.

• One-to-many relationships that indicate a superior/subordinate relationship are usually
navigated from the superior to the subordinate; for example, from Order to OrderItem.
Sometimes these relationships form hierarchies of navigation chains; for example, from
Catalog to ProductItem to InventoryItem.

• Mandatory relationships, in which objects in one class cannot exist without objects of
another class, are usually navigated from the more independent class to the dependent
class; for example, from Customer to Order.

• When an object needs information from another object, a navigation arrow might be
required, pointing either to the object itself or to its parent in a hierarchy.

• Navigation arrows may also be bidirectional.

Figure 11-21 is a first-cut design class diagram for the use case Process new order based on
the two steps described earlier in this section. The first step is to elaborate on the attributes
with type information and visibility. The second step is to identify which classes may be
involved and which classes require navigation visibility to other classes. We identify the
classes that appear to be necessary to carry out the use case. We determine what other classes
are necessary based on what information is needed. For example, price information is in the
CatalogProduct class and description information is in the ProductItem class. One thing to
remember about visibility is that the classes are programming classes, not database classes. So
we are not thinking about foreign keys in a relational database. We are thinking about object
references in a programming language.

C6696_11_CTP.4c 1/28/08 8:24 AM Page 415

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 11-21 has one additional design class in the diagram for this use case,
OrderHandler, which is stereotyped as a controller class. As mentioned previously, a con-
troller class, or use case controller, is a utility class that helps in the processing of a use case.
Notice that it has visibility at the top of the visibility hierarchy.

Three points are important to note. First, as detailed design proceeds use case by use case,
we need to ensure that the interaction diagrams support and implement the navigation that
was initially defined. Second, the navigation arrows need to be updated as design progresses
to be consistent with the design details. Finally, method signatures will be added to each class
based on the design decisions made when creating the interaction diagrams for the use cases.

As a preliminary step before developing interaction diagrams, many developers like to use
CRC cards in brainstorming sessions to help identify the sets of classes involved in each use
case. The next section explains how CRC cards can help with detailed object-oriented design.

DETAILED DESIGN WITH CRC CARDS

CRC stands for Class-Responsibility-Collaboration. It defines a brainstorming technique that is
quite popular among object-oriented developers. Developers use it during analysis activities to
help identify classes and the scope of each class. It is also used extensively during design to help
identify responsibilities of the class and the sets of classes that collaborate for a particular use case.

A CRC card is simply a 3x5 or 4x6 index card with lines that partition it into three areas—
class name, responsibility, and collaboration classes. Figure 11-22 illustrates the two sides of a

416 ♦ PART 3 SYSTEMS DESIGN TASKS

«controller»
OrderHandler

Customer

-accountNo: string {key}
-name: string
-billingAddress: string
-shippingAddress: string
-dayPhone: string
-nightPhone: string

-orderID: int {key}
-orderDate: date
-priorityCode: string
-shipping&Handling: float
-tax: float
-grandTotal: float

Order

-orderItemID: int {key}
-catalogID: string
-productID: string
-inventoryID: string
-quantity: int
-price: float
-backorderStatus: string

OrderItem

CatalogProduct

-catalogID: string {key}
-productID: string {key}
-price: float
-specialPrice: float

-productID: string {key}
-vendor: string
-gender: string
-description: string

ProductItem

-inventoryID: string {key}
-size: string
-color: string
-options: string
-quantityOnHand: int
-averageCost: float
-reorderQuantity: int

InventoryItem

Figure 11-21

First-cut RMO design

class diagram for the

Process new order
use case

C6696_11_CTP.4c 1/28/08 8:24 AM Page 416

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 11 Object-Oriented Design: Principles ♦ 417

CRC card from the RMO customer support system. The card is partially filled out. Along the
top of the card is the name of the class. The left partition lists the responsibilities for objects
in this class. Responsibilities include information that the class maintains and actions that
the class carries out in support of some use case. The right partition lists other classes with
which this class collaborates in support of a particular use case. The information within
parentheses is return information from the collaborating class to the main class. On the back
of the card, you have the option of listing important attributes that are required for a particu-
lar use case.

Class name

Customer
update name
update address
request purchase
 history
process orders
make payments

Order (ID)
Payment (ID)

customerNo
customerName
customerAddress
shippingAddress
dayPhone
nightPhone

Responsibilities

Collaborating classes
with return data Attributes on back

Figure 11-22

Example CRC card

The process of developing a CRC model is usually done in a brainstorming session. A prin-
cipal benefit of using CRC cards is that it requires a group effort, so the design is being
reviewed and evaluated while it is being developed. For detailed design, this can be done with
a couple of developers. A user may be invited to participate—particularly a technically oriented
user—although it is not essential. In any event, a member of the group should be a domain
expert, either as a user or a team member who has become proficient in the problem domain.

A design session using CRC cards already has substantial information from which to
begin. Before starting the design session, each team member should have a copy of the
domain model class diagram. Of course, the use case diagram or list of use cases also needs to
be available. Other detailed information such as activity diagrams, system sequence diagrams,
and use case descriptions should be provided, along with a stack of empty, CRC-formatted
index cards. For each use case you need to design, the following process is done iteratively.

• Select a use case. Because the process is to design, or realize, a single use case, start with
a set of unused CRC cards. Because we are doing multilayer design, make up one card as
the use case controller card.

• Identify the problem domain class that has responsibility for this use case. This object
will receive the first message from the use case controller. Using the domain model that
was developed during analysis, select one class to take responsibility. Focus only on the
problem domain classes. On the left side of the card, write the object’s responsibility. For
example, a customer object may take responsibility to make a new order, so one responsi-
bility may be Process a new order.

• Identify other classes that must collaborate with the primary object class to complete
the use case. Other classes will have required information. For our example of creating
an order, we will need an order class card and order item class card, pricing information
will probably come from the product class, and the inventory class will have to be checked
for stock on hand. List these classes on the primary problem domain card. As you identify
the other classes, write their responsibilities on their cards. Also, on the backs of all cards,
write the pertinent information or attribute of each object class.

C6696_11_CTP.4c 1/28/08 8:24 AM Page 417

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

At the end of this process, you will have a small set of CRC cards that collaborate to sup-
port the use case. This process can be enhanced with several other activities. First, the CRC
cards can be arranged on the table in the order they are executed or called. In other words,
the calling order can be determined at this time. For example, the customer object creates an
order object, the order object creates order item objects, and order item objects access prod-
uct and inventory objects to get required information. Figure 11-23 illustrates a solution set
of CRC cards for the use case Process new order.

418 ♦ PART 3 SYSTEMS DESIGN TASKS

NewOrderWIndow
accept input
display results

OrderHandler

InquireOnItemWindow
accept item data
display items

OrderHandler

OrderHandler
handle new
 orders

Customer
Order
OrderItem

Customer
update name
update address
place orders
request history

Order
Transaction

Order
update information
request shipping
update status
cancel order
add items to order
take payment

Order-item
Transaction

OrderItem
update information
cancel item
request backorder

Catalog
Product
InventoryItem

OrderTransaction
process payment Customer

Order

CatalogProduct
provide price

ProductItem
provide description

InventoryItem
provide quantity
update quantity
order new supply

Figure 11-23

CRC cards model for

Process new order
use case

Another helpful step is to include the GUI classes. Chapter 12 explains the details of user
interface design. It focuses heavily on the techniques and rules to develop effective computer
screens for the system. If a user is part of the team, and if some preliminary work has been
done on the user interface requirements, it could be effective to add CRC cards for all user
interface window classes that are required for the use case. By including GUI classes, all of the
input and output forms can be included in the design. Obviously, this is a much more com-
plete design.

Any other required utility classes can also be added to the solution. For example, for a
three-layer design, data access objects will be part of the solution. Each persistent class will
have a data access class to read and write to the database. Other utility classes will be needed
to be consistent with some design patterns, which will be discussed later. CRC cards for those
classes can also be added to the solution.

At the end of the design for one use case, two other important tasks remain. Because the
CRC cards only have data for a single use case, the information can be transferred to the
design class diagram. The design class diagram then becomes a central repository for all infor-
mation about every class in the new system.

A second task is to put an elastic band around the set of CRC cards for the next step. If the
use case is a simple one, the CRC cards can be taken by a programmer and the use case can be
implemented. If the use case is more complex, the set of cards can be given to a developer to
be expanded into a sequence diagram for a more complete solution. Use case realization with
sequence diagrams is covered in the next section.

To finish the example, let’s go back to the DCD and update it based on the design infor-
mation created during the brainstorming session. Figure 11-24 shows an updated DCD with
several methods added and updates in the visibility. We first note that a new class has been

C6696_11_CTP.4c 1/28/08 8:24 AM Page 418

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 11 Object-Oriented Design: Principles ♦ 419

added. Evidently we overlooked the OrderTransaction class in the first-cut DCD. We also note
that the OrderHandler needs visibility to the Order class to process a payment. Compare the
responsibilities identified on the CRC cards and the method names described in each class.
Note the close correlation.

Often when developers begin using CRC cards, they list many different responsibilities
for a given class. For example, developers might say the OrderItem class should get the price.
In reality, the CatalogProduct class provides the price and the OrderItem only uses it. In other
words, it usually helps to think of responsibilities as being similar to methods—requests to
do something, rather than random actions that need to occur.

«controller»
OrderHandler

Customer

-accountNo: string {key}
-name: string
-billingAddress: string
-shippingAddress: string
-dayPhone: string
-nightPhone: string

-orderID: int {key}
-orderDate: date
-priorityCode: string
-shipping&Handling: float
-tax: float
-grandTotal: float

Order

-orderItemID: int {key}
-catalogID: string
-productID: string
-inventoryID: string
-quantity: int
-price: float
-description: string
-backorderStatus: string

OrderItem

CatalogProduct

-catalogID: string {key}
-productID: string {key}
-price: float
-specialPrice: float

-productID: string {key}
-vendor: string
-gender: string
-description: string

ProductItem

-inventoryID: string {key}
-size: string
-color: string
-options: string
-quantityOnHand: int
-averageCost: float
-reorderQuantity: int

InventoryItem

+processNewOrder ()
+addItemsToOrder ()
makePayment ()

+updateName ()
+updateAddress ()
+placeOrder ()
+requestHistory ()

+addItem ()
+updateInformation ()
+requestShipping ()
+updateStatus ()
+cancelOrder ()
+makePayment ()

+updateInformation ()
+cancelItem ()
+requestBackorder ()

+getPrice () +getDescription () +updateQOH ()

«controller»
OrderHandler

+processNewOrder ()
+addItemsToOrder ()
makePayment ()

«controller»
OrderHandler

+processNewOrder ()
+addItemsToOrder ()
makePayment ()

OrderTransaction

-transactionID: int {key}
-orderDate: date
-transactionType: string
-amount: float
-payMethod: string

+processPayment ()

FUNDAMENTAL DETAILED DESIGN PRINCIPLES

Now that you understand how an object-oriented program works and you know the notation
for a design class, let’s review several basic principles that will guide design decisions. We used
these principles throughout the chapter as we discussed the steps of object-oriented design
because they are important to all parts of the process.

Figure 11-24

Final DCD for the Process
new order use case

C6696_11_CTP.4c 1/28/08 8:24 AM Page 419

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

ENCAPSULATION AND INFORMATION HIDING

Encapsulation is the design principle that each object is a self-contained unit that includes
both data and program logic. Each object internally carries its own data and provides a set of
methods that access the data. Each object also provides a set of services that are invoked by
calling the object’s methods. One of the benefits of this approach is that a software developer
can design the system in a building-block fashion. Nearly all engineering disciplines have
standard units that serve as building blocks and that can be combined into a final design.
Encapsulated objects are the software equivalent of building blocks.

Programmers also depend heavily on the benefits of encapsulation to support the idea of
object reuse. Every object-oriented language comes with a set of standard objects that are
used repeatedly throughout a system. These standard sets of objects provide basic services that
are used many times in the same system—and sometimes even in multiple systems. One fre-
quent application of reuse is in the design of the user interface, either for desktop or Web
applications. Designers often reuse the same classes to develop windows and window com-
ponents such as buttons, menus, icons, and so forth. Sometimes problem domain classes can
also be reused.

Related to encapsulation is the concept of information hiding, which dictates that the
data associated with an object is not visible to the outside world. In other words, the object’s
attributes are private. A set of methods is provided to access the data and modify it. Although
this principle is primarily a programming concept and is most beneficial for programming
and testing, several important design principles are based on it. The linkage or coupling
between objects in a system is better if access to data attributes uses a standard interface of
method names, as explained next.

COUPLING

Coupling is a general term that is derived from attribute navigation visibility. In the previous
example in which Customer had navigation visibility to Order, we could also say that
Customer and Order are coupled, or linked. Now, extend this same idea of visibility through-
out all the classes in the entire system. Coupling is a qualitative measure of how closely the
classes in a design class diagram are linked. A simple way to think about coupling is the num-
ber of navigation arrows on the design class diagram. Low coupling for the system is usually
better than high coupling. In other words, fewer navigation visibility arrows indicate that a
system is easier to understand and maintain.

We say that coupling is a qualitative measure because no specific number measures cou-
pling in a system. A designer must develop a feel for coupling—to recognize when there is
too much or to know what is a reasonable amount of coupling. Coupling is evaluated as a
design progresses use case by use case. Generally, if each use case design has a reasonable level
of coupling, the entire system will, too.

Refer back to Figure 11-1 and observe the flow of messages between the objects.
Obviously, objects that send messages to each other must have navigation visibility and thus
are coupled. For the Input window object to send a message to the Student object, it must
have navigation visibility to it. So, the Input window object is coupled to the Student object.
But notice that the Input window object is not connected to the Database access object, so
those objects are not coupled. If we designed the system so that the Input window object
accessed the Database access object, the overall coupling for this use case would increase—
that is, there would be more connections. Is that good or bad? In this simple example, it
might not be a problem. But for a system with 10 or more classes, too many connections with
navigation visibility can cause high levels of coupling, making the system more complex.

So why is high coupling bad? The main reason is that it adds unnecessary complexity to a
system, making it hard to maintain. A change in one class ripples throughout the entire sys-
tem. So, experienced analysts make every effort to simplify coupling and reduce ripple effects
in the design of a new system.

420 ♦ PART 3 SYSTEMS DESIGN TASKS

encapsulation

a design principle of
objects in which both data
and program logic are
included within a single,
self-contained unit

object reuse

a design principle in
which a set of standard
objects can be used
repeatedly within a
system

information

hiding

a design principle in
which data associated
with an object is not
visible to the outside
world, but methods are
provided to access or
change the data

coupling

a qualitative measure of
how closely the classes
in a design class diagram
are linked

C6696_11_CTP.4c 1/28/08 8:24 AM Page 420

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 11 Object-Oriented Design: Principles ♦ 421

COHESION

Cohesion refers to the consistency of the functions within a single class. Cohesion is a qualita-
tive measure of the focus or unity of purpose within a single class. For example, in Figure 11-1,
you would expect the Student class to have methods—that is, functions—to enter student
information such as identification number or name. That would represent a unity of purpose
and a highly cohesive class. But what if that same object also had methods to make classroom
assignments or assign professors to courses? The cohesiveness of the class would be reduced.

Classes with low cohesion have several negative effects. First, they are hard to maintain.
Because they perform many different functions, they tend to be overly sensitive to changes
within the system, suffering from ripple effects. Second, it is hard to reuse such classes.
Because they have many different—and often unrelated—functions, it usually does not make
sense to reuse them in other contexts. For example, a button class that processes button clicks
can easily be reused. However, a button class that processes button clicks and user logons has
limited reusability. A final drawback is that classes with low cohesion are usually difficult to
understand. Frequently, their functions are intertwined and their logic is complex.

Although there is no firm metric to measure cohesiveness, we can think about classes as
having very low, low, medium, or high cohesion. Remember, high cohesion is the most desir-
able. An example of very low cohesion is a class that has responsibility for services in differ-
ent functional areas, such as a class that accesses both the Internet and a database. These two
types of activities are different and accomplish different purposes. To put them together in
one class causes very low cohesion.

An example of low cohesion is a class that has different responsibilities but in related func-
tional areas; an example might be a class that does all database access for every table in the data-
base. It would be better to have different classes to access customer information, order
information, and inventory information. Although the functions are the same—that is, they access
the database—the types of data passed and retrieved are very different. So, a class that is connected
to the entire database is not as reusable as one that is only connected to the customer table.

An example of medium cohesion is a class that has closely related responsibilities, such as
a single class that maintains customer information and customer account information. Two
highly cohesive classes could be defined, one for customer information such as names and
addresses. Another class or set of classes could be defined for customer accounts, such as bal-
ances, payments, credit information, and all financial activity. If the customer information and
the account information are limited, they could be combined into a single class with medium
cohesiveness. Either medium or highly cohesive classes can be acceptable in system design.

Good, experienced developers always think about how to keep coupling low
and cohesion high. Always keep these concepts in mind when designing.

BEST PRACTICE

PROTECTION FROM VARIATIONS

One of the underlying principles of good design is protection from variations: the principle
that parts of a system that are unlikely to change should be segregated (or protected) from
those that will change. As you design systems, you should try to isolate the parts that will
change from those that are more stable.

Protection from variations is a principle that drives the multilayer design pattern.
Designers could mix all of the user-interface logic and business logic together in the same
classes. In fact, in early user-oriented, event-driven systems such as those built with early ver-
sions of Visual Basic and PowerBuilder, the business logic was included in the view layer
classes, often in the windows input forms. The problem with this design was that when an
interface needed to be updated, all of the business logic had to be rewritten. A better

cohesion

a qualitative measure of
the consistency of
functions within a
single class

protection from

variations

a design principle in
which parts of a system
that are unlikely to
change are segregated
from those that will

C6696_11_CTP.4c 1/28/08 8:24 AM Page 421

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

approach is to decouple the user-interface logic from the business logic. Then, the user inter-
face can be rewritten without affecting the business logic. In other words, the business logic,
being more stable, is protected from variations in the user interface.

Also, what if updates to the business logic require the addition of new classes and new
methods? If the user-interface classes are tightly coupled to the business classes, there could
be a ripple effect of changes throughout the user-interface classes. However, because the user
interface can simply send all of its input messages to the use case controller class, changes to
the methods or classes in the business logic and domain layer are isolated to the controller
class. You will find that protection from variations affects almost every design decision, so
you should watch for and recognize the application of this principle in all design activities.

INDIRECTION

Indirection is a popular object-oriented design principle that can protect stable components
from variations and reduce coupling. Indirection is the principle of decoupling two classes or
other system components by placing an intermediate class between them to serve as a link. In
other words, instructions don’t go directly from A to B; they are sent through C first. Or, in
message terminology, don’t send a message from A to B. Let A send the message to C, and
then let C forward it to B.

Although there are many ways to implement protection from variations, indirection is fre-
quently used. Inserting an intermediate object allows any variations in one system to be iso-
lated in that intermediate object. Indirection is also useful for many corporate security
systems. For example, many companies have firewalls and proxy servers that receive and send
messages between an internal network and the Internet. A proxy server appears as a real
server, ready to receive messages such as e-mail and HTML page requests. However, it is a fake
server, which catches all of the messages and redistributes them to the recipients. This step of
indirection allows security controls to be put in place and protect the system.

OBJECT RESPONSIBILITY

One of the most fundamental principles of object-oriented development is the idea of object
responsibility—objects are responsible for carrying out the system processing. These respon-
sibilities are categorized in two major areas: knowing and doing. In other words, what is an
object expected to know, and what is an object expected to do or to initiate?

Knowing includes an object’s responsibilities for knowing about its own data and knowing
about other classes with which it must collaborate to carry out use cases. Obviously, a class
should know about its own data, what attributes exist, and how to maintain the information
in those attributes. It should also know where to go to get information when required. For
example, during the initiation of an object, data that is not passed as parameters may be
required. An object should know about, or have navigation visibility to, other objects that can
provide the required information. In Figure 11-13, the first constructor method for the Student
class does not receive a studentID value as a parameter. Instead, the Student class takes respon-
sibility for creating a new studentID value based on some rules it knows.

Doing includes all the activities of an object to assist in executing a use case. Some of
those activities include receiving and processing messages. Another responsibility is to instan-
tiate, or create, new objects that may be required for completion of a use case. Classes must
collaborate to carry out a use case, and some classes are responsible for coordinating the col-
laboration. For example, for the use case Process new order, the Order class has responsibility
to create OrderItem objects. Another class, such as InventoryItem, is only responsible for pro-
viding information about itself.

422 ♦ PART 3 SYSTEMS DESIGN TASKS

indirection

a design principle in
which an intermediate
class is placed between
two classes to decouple
them but still link them

object

responsibility

a design principle in
which objects are
responsible for carrying
out system processing

C6696_11_CTP.4c 1/28/08 8:24 AM Page 422

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 11 Object-Oriented Design: Principles ♦ 423

SUMMARY
The primary creative activity of system developers is to write computer software that solves the business prob-
lem. So far, this textbook has focused on two major activities: to first understand the user’s requirements (the
business problem), and then to figure out and visualize a solution system. This chapter focused on how to
configure and develop the solution system—in other words, design the system. System design is the bridge
that puts business requirements in terms that the programmers can use to write the software that becomes
the solution system.

Architectural design is the first step in configuring the new system. Its purpose is to determine the struc-
ture and configuration of the new system’s various components. Two types of diagrams are used to document
the architectural design: component diagrams and deployment diagrams. Component diagrams show the var-
ious executable components of the new system and how they relate to each other. Deployment diagrams
show how and where the components are executed on various computing platforms. Together they define
the system’s configuration.

Many new systems are enterprise-level systems, in that they are used at locations throughout the entire
organization. They also share resources, such as a common database of information.

Once the architectural design is known, then detailed design can begin. The objective of detailed design
is to determine the objects and methods within individual classes to support the use cases. The process of
detailed design is use case driven, in that it is done for each use case separately.

The process of detailed design can be divided into two major areas: developing a design class diagram
(DCD), and developing the set of interacting classes and their methods for each use case via a sequence dia-
gram. The DCD is usually developed in two steps. A first-cut DCD is created, but then it is refined and cor-
rected as the sequence diagrams are developed. Sequence diagrams can also be developed in two steps. A
preliminary idea of how the objects collaborate can be created using Class-Responsibility-Collaboration (CRC)
cards. For simple use cases, a set of CRC cards may be sufficient to write code. For more complex use cases,
the CRC cards serve as the beginning point for developing sequence diagrams.

One reason that we suggest a more formal system of design, rather than just starting to write code, is
that the final system is much more robust and maintainable. Doing design as a rigorous activity builds better
systems. Some fundamental principles should be considered as a system is developed; two critical ideas are
coupling and cohesion. A good system has low coupling between the classes, and each of the classes has high cohesion. Another impor-
tant principle is “protection from variations,” meaning that some parts of the system should be protected from, and not tightly coupled to,
other parts of the system that are less stable and subject to change. Being a good developer entails learning and following the principles of
good design.

KEY TERMS

abstract class, p. 413

application program interface or API, p. 394

artifact, p. 401

boundary class or view class, p. 410

class-level attribute, p. 412

class-level method, p. 412

cohesion, p. 421

component diagram, p. 394

concrete class, p. 413

control class, p. 410

coupling, p. 420

data access class, p. 410

deployment diagram, p. 401

encapsulation, p. 420

enterprise-level system, p. 392

entity class, p. 410

indirection, p. 422

information hiding, p. 420

instantiation, p. 390

method signature, p. 411

navigation visibility, p. 414

object responsibility, p. 422

object reuse, p. 420

overloaded method, p. 411

overridden method, p. 412

persistent class, p. 410

protection from variations, p. 421

realization of use cases, p. 408

stereotype, p. 409

visibility, p. 411

C6696_11_CTP.4c 1/28/08 8:24 AM Page 423

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

424 ♦ PART 3 SYSTEMS DESIGN TASKS

REVIEW QUESTIONS

1. List the models that are used for systems design.

2. Which two models are used to do architectural design?

What is the difference between the two?

3. What is an enterprise-level system? Why is it an important

consideration in design?

4. What are some of the differences between a desktop sys-

tem and a Web-based system?

5. What is an API? Why is it important?

6. What notation is used to identify the interface of a

component?

7. What is meant by a three-layer design, and normally what

are the three layers?

8. What is meant by Web services?

9. What is an artifact and how does it relate to a component?

10. What is the difference between the notation for problem

domain classes and design classes?

11. In your own words, list the steps for doing detailed design.

12. What do we mean by use-case driven design, and what is

use case realization?

13. What is a persistent class?

14. What is a class-level method?

15. Describe navigation visibility. Why is it important in detailed

design?

16. List some typical conditions that dictate in which direction

navigation visibility occurs.

17. What information is maintained on CRC cards?

18. What is the objective of a CRC card design session?

19. Compare and contrast the ideas of coupling and cohesion.

20. What is protection from variations and why is it important

in detailed design?

21. What is meant by object responsibility and why is it impor-

tant in detailed design?

THINKING CRITICALLY

1. Given the following system description, develop a compo-

nent diagram for a desktop-operated internal network sys-

tem (in other words, Internet access is not required).

2. Develop a deployment diagram for the network mentioned

in the previous problem.

The new Benefits for Employees, Spouses, and Dependents

(BESD) system will be used primarily by the human resource

department and will contain confidential information.

Consequently, it will be built as a totally in-house system

without any Internet elements. The database for the system

is the human resource employee database (HRED), which is

shared by several other systems within the company.

There are two types of screens, from a systems design

point of view: simple inquiry screens and complex

inquiry/update screens. The simple inquiry screens just

access the database, with no business logic required. The

complex screens usually do fairly complicated calculations

based on sophisticated business rules. These programs

often have to access other data tables from other data-

bases in the company.

The database will always remain on a central database

server. The application program itself will be installed on

each person’s desktop that is allowed access. However,

authentication is a centralized process, and it will control

which screens and program functions can be accessed by

which users.

3. Develop a component diagram for the following descrip-

tion of a Facebook application.

4. Develop a deployment diagram for the following descrip-

tion of a Facebook application.

The Facebook platform is available for entrepreneurs to

develop applications for use among all Facebook users. A

new application is being written that allows Facebook

users to send gifts and greeting cards to their friends.

(These are real gifts and greeting cards, not just electronic

images.) The application running within Facebook is on its

own server and has its own database of information,

which includes a list of gifts and cards that have been sent

or received. The actual retail store of gifts and cards to

send must be located on a different server because it is

part of a regular Internet sales storefront. This storefront

maintains the database of inventory items to sell, and col-

lects credit card payment information.

5. In the chapter we developed a first-cut DCD, a set of CRC

cards, and final DCD for the Process new order use case for

RMO. Create the same three drawings for the Look up

item availability use case.

6. In Chapter 7, Problem 1, you developed a problem domain

class diagram for a library system. Convert that class dia-

gram to a first-cut DCD. Update the attributes and add

navigation visibility as much as possible, using the rules

explained in the chapter.

7. For the previous problem, use the DCD and identify a set

of CRC cards that would be used for the Check out book

use case. You might want to get a set of index cards and

actually do a design session. Either scan your cards or type

the information to give to your instructor. Once you have

identified the responsibilities by class, update the DCD by

adding method names to the classes in the DCD.

C6696_11_CTP.4c 1/28/08 8:24 AM Page 424

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 11 Object-Oriented Design: Principles ♦ 425

8. In Chapter 7, Problem 3, you developed a problem domain

class diagram for a dentist office system. Convert your

class diagram to a first-cut DCD. Update the attributes and

add navigation visibility as much as possible, using the

rules explained in this chapter.

9. For the previous problem, use the DCD and identify a set

of CRC cards that would be used for the Patient visits den-

tist use case. Assume that the visit is a simple checkup and

that no other procedures will be performed. In other

words, entering specific procedures is done with a differ-

ent use case. You might want to get a set of index cards

and actually do a design session. Either scan your cards or

type the information to give to your instructor. Once you

have identified the responsibilities by class, update the

DCD by adding method names to the classes in the DCD.

10. Problems 7 and 8 in Chapter 7 describe a car insurance sys-

tem and identify various problem domain classes. Using

the information in those problems, develop a first-cut

DCD. Update the attributes and add navigation visibility as

much as possible, using the rules explained in the chapter.

11. For the previous problem, use the DCD and identify a set

of CRC cards that would support the Add new vehicle to

existing policy use case. You might want to get a set of

index cards and actually do a design session. Either scan

your cards or type the information to give to your instruc-

tor. Once you have identified the responsibilities by class,

update the DCD by adding method names to the classes in

the DCD.

EXPERIENTIAL EXERCISES

1. Find a company that does object-oriented design using

CRC cards. The information systems unit at your university

often uses OO techniques. Sit in on a CRC design brain-

storming session. Interview some of the developers about

their feelings regarding the effectiveness of doing CRC

design. Find out what documentation remains after the

sessions and how it is used.

2. Find a company that has an internal system. (If you are

working for a company, see what systems they use.)

Analyze the system and develop a component diagram

and a deployment diagram.

3. Find a system that was developed using Java. If possible,

find one that has both an Internet user interface and a net-

work-based user interface. Is it multilayer—three layer or

two layer? Can you identify the view layer classes, the

domain layer classes, and the data access layer classes?

4. Find a system that was developed using Visual Studio .NET

(or Visual Basic). If possible, find one that has both an

Internet user interface and a network-based user interface.

Is it multilayer? Where is the business logic? Can you iden-

tify the view layer classes, the domain layer classes, and the

data access layer classes?

5. Pick an object-oriented programming language with which

you are familiar. Find a programming integrated develop-

ment environment (IDE) tool that supports that language.

Test its reverse-engineering capabilities to generate UML

class diagrams from existing code. Evaluate how well it

does and how easy the models are to use. Does it have any

capability to input UML diagrams and generate skeletal

class definitions? Write a report on how it works and what

UML models it can generate.

CASE STUDIES
THE REAL ESTATE MULTIPLE LISTING SERVICE SYSTEM

In Chapter 7, you developed a use case diagram, a class diagram,

and a system sequence diagram for the real estate company’s use

cases. First develop a three-layer architectural solution, which allows

agents and other clients to browse the database via the Internet.

Internal updates should be done by screens within an internal net-

work system. Also, based on those solutions or others provided by

your teacher, convert the domain class diagram to a first-cut design

class diagram by type casting the attributes and adding navigation

visibility. Next, using the use cases indicated by your teacher,

develop a set of CRC cards for each one. Based on the class

responsibilities identified on the CRC cards, make up method

names for the appropriate classes and add those methods to the

DCD classes.

THE STATE PATROL TICKET PROCESSING SYSTEM

In Chapter 7, you developed a use case diagram, a class diagram,

and a system sequence diagram for the use cases Recording a traffic

ticket and Scheduling a court date. Based on those solutions or oth-

ers provided by your teacher, develop a first-cut DCD by type casting

the attributes and adding navigation visibility. Then, for each use

case, develop a set of CRC cards. Add method names to the classes

in the DCD based on the responsibilities identified on the CRC cards.

C6696_11_CTP.4c 1/28/08 8:25 AM Page 425

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

426 ♦ PART 3 SYSTEMS DESIGN TASKS

THE DOWNTOWN VIDEOS RENTAL SYSTEM

In Chapter 7, you developed a use case diagram, a class diagram,

and a system sequence diagram for the use cases Rent movies and

Return movies. Based on those solutions or others provided by your

teacher, develop a first-cut DCD by type casting the attributes and

adding navigation visibility. Then, for each use case, develop a set

of CRC cards. Add method names to the classes in the DCD based

on the responsibilities identified on the CRC cards.

THEEYESHAVEIT.COM BOOK EXCHANGE

First, develop a three-layer architectural design of the book exchange

system. In Chapter 7, you developed a use case diagram, a class dia-

gram, and a system sequence diagram for the use cases Add a seller

and Record a book order. Based on those solutions or others pro-

vided by your teacher, develop a first-cut DCD by type casting the

attributes and adding navigation visibility. Then, for each use case,

develop a set of CRC cards. Add method names to the classes in the

DCD based on the responsibilities identified on the CRC cards.

RETHINKING ROCKY MOUNTAIN OUTFITTERS

This chapter presented the solutions for two use cases

for RMO—Look up item availability and Process new

order. Design three-layer solutions for two more use

cases, Create new order and Record order fulfillment.

Update the design class diagram for the problem domain classes with

method signatures from these use case designs. Often, the sequence

diagram to produce a report can be quite interesting. Do a three-layer

design for the use case Produce order fulfillment report. Because you

do not have detailed user requirements for this use case, you must

first lay out a sample fulfillment report.

FOCUSING ON RELIABLE PHARMACEUTICAL SERVICE

In Chapter 7, you developed a use case diagram,

a domain model class diagram, and detailed

documentation for three use cases. In your

detailed documentation, you generated a fully developed specifica-

tion and a system sequence diagram. Based on that information and

the guidelines in this chapter, design a three-layer architecture for the

new system. Update the design class diagram with information on

attribute types and navigation visibility. For the same three use cases,

develop a set of CRC cards. Then update the DCD with method

names derived from the class responsibilities on the CRC cards.

C6696_11_CTP.4c 1/28/08 8:25 AM Page 426

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 11 Object-Oriented Design: Principles ♦ 427

FURTHER RESOURCES

Grady Booch, James Rumbaugh, and Ivar Jacobson, The Unified

Modeling Language User Guide. Addison-Wesley, 1999.

Grady Booch, et al., Object-Oriented Analysis and Design with

Applications, Third Edition. Addison-Wesley, 2007.

E. Reed Doke, J. W. Satzinger, and S. R. Williams, Object-Oriented

Application Development Using Java. Course Technology, 2002.

E. Reed Doke, J. W. Satzinger, and S. R. Williams, Object-Oriented

Application Development Using Microsoft Visual Basic .NET. Course

Technology, 2003.

Hans-Erik Eriksson, Magnus Penker, Brian Lyons, and David Fado,

UML 2 Toolkit. John Wiley and Sons, 2004.

Martin Fowler, UML Distilled Third Edition: A Brief Guide to the

Standard Object Modeling Language. Addison-Wesley, 2004.

Ivar Jacobson, Grady Booch, and James Rumbaugh, The Unified

Software Development Process. Addison-Wesley, 1999.

Philippe Kruchten, The Rational Unified Process, An Introduction.

Addison-Wesley, 2000.

Craig Larman, Applying UML and Patterns: An Introduction to

Object-Oriented Analysis and Design and the Unified Process (3rd ed.).

Prentice-Hall, 2004.

Jeffrey Putz, Maximizing ASP.NET Real World, Object-Oriented

Development. Addison-Wesley, 2005.

James Rumbaugh, Ivar Jacobson, and Grady Booch, The Unified

Modeling Language Reference Manual. Addison-Wesley, 1999.

C6696_11_CTP.4c 1/28/08 8:25 AM Page 427

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

428

OBJECT-ORIENTED DESIGN:
USE CASE REALIZATIONS12
L E A R N I N G O B J E C T I V E S

After reading this chapter, you should be able to:

■ Explain the different types of objects and layers in a design

■ Develop sequence diagrams for use case realization

■ Develop communication diagrams for detailed design

■ Develop updated design class diagrams

■ Develop multilayer subsystem packages

■ Explain design patterns and recognize various specific patterns

CHAPTER

C H A P T E R O U T L I N E

Detailed Design of Multilayer Systems

Use Case Realization with Sequence Diagrams

Designing with Communication Diagrams

Updating and Packaging the Design Classes

Design Patterns

C6696_12_CTP.4c 2/6/08 1:26 PM Page 428

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 12 Object-Oriented Design: Use Case Realizations ♦ 429

The integrated customer account system project for New Capital Bank was now two months
old. The first development iteration had gone well, although there were a few snags because
the team was still learning the ins and outs of object-oriented design. Most team members
were beginning to feel more comfortable with detailed design techniques. Bill Santora, the
project leader, was discussing some of the system’s technical details with one of his team lead-
ers, Charlie Hensen.

“How is the team feeling about doing detailed design? I know some of the programmers
wanted to just start coding from the use case descriptions that were developed with the users.
They were not very happy about taking the time to design. Is that still a problem?” Bill asked.

Charlie was one of the early critics of doing more formal design, so Bill was interested to
hear his opinion. “It really has worked out quite well. As you know, I was skeptical at first and
thought it would waste a lot of time. But instead it has enabled us all to work together better
because we know what the other team members are doing. I also think the system is much
more solid. We are all using the same approach and we also have discovered that there are
quite a few classes we share. In other words, reusability really does work for our utility classes.
Of course, we don’t waste a lot of time making fancy drawings. We do document our designs
with some quick drawings, but that is about as far as we take it.”

“What would you say were the strengths and weaknesses of our approach? Or really, are
there ways you think we could do it better in this next iteration?” As the project leader, Bill
was always trying to improve the effectiveness of his team.

“I really like the approach to first do a rough design using CRC cards. It’s nice to have a
couple of users there with us to verify that our collaborations are correct. For the simple use
cases, we then work with the users to lay out the user interface. Between the CRC cards and
the user interface specifications, we often have enough to program from, especially now that
we have the basic structure set up. Then for the more complex use cases, we go ahead and do
a detailed design with sequence diagrams. Even then we need quite a bit of user involvement
to get the GUI windows designed. The nice thing about the sequence diagrams is that they are
detailed enough that we can give those designs to some of the junior programmers. It makes
them much more effective in their team contributions.” Charlie stopped a minute to think.

“So would you change our approach, or do you think it is working the right way?” Bill was
still trying to look for ways to improve the process.

“Well, it really is working pretty well right now. One thing that I really like about it is that
we have a common DCD that everyone can access and review. That really helps when you are
ready to insert some code into a class to check and see what is already there. The central
repository for all our code and for those diagrams that we do formalize is a great tool. I won-
der if there is a way to get more use out of that tool. Other than that, I would say let’s leave it
for another iteration and then see if it needs to be changed.” Charlie seems to have been con-
verted to the benefits of creating design diagrams before actually generating code.

OVERVIEW

Chapter 11 explained the design concepts and models used for multilayer systems and their
architectural design. The latter portion of the chapter introduced the concepts associated with
object-oriented detailed design. You also learned how to begin the detailed design process by
using CRC cards and design class diagrams to identify which classes collaborate to carry out
use cases. Simple use cases can frequently be programmed from the design information devel-
oped with these two steps. In fact, most systems analysis and design textbooks go no further
in teaching detailed design.

NEW CAPITAL BANK: PART 2

C6696_12_CTP.4c 2/6/08 1:26 PM Page 429

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

This chapter pursues object-oriented detailed design in much more depth and formality.
Detailed design is a subject that can be addressed at multiple levels. For the beginner, a fairly
straightforward, yet complete, process can be defined. It can also be pursued in more depth.
This chapter focuses on the foundation principles, which are based on the concepts of use
case realization using sequence diagrams and design patterns. Once you master these two
subjects, you can consider yourself an accomplished object-oriented designer. Again, many
good books are available on design patterns and design methods. If you are considering a
more technical career as a systems developer, you will do further reading and studying. The
resources at the end of the chapter provide a good starting point.

The method we use to extend the process of detailed design is called use case realization.
In use case realization, you take each use case individually and determine all the classes that
collaborate on it. As part of that process, we also determine what other utility or support
classes may be required. These support classes may be user interface classes, data access
classes, and other utility classes. We are careful during this process to define the classes so that
the integrity of the multilayer architectural design is maintained. As we design the details of
the classes, use case by use case, we update the design class diagram as necessary.

The last section of the chapter is a brief introduction to design patterns. As with any engi-
neering discipline, certain standard procedures are tried and proven solutions. Even though
object-oriented development is a relatively young discipline, it offers standard ways to design
use cases that provide solid, well-constructed solutions. You will learn a few of those standard
designs or patterns.

DETAILED DESIGN OF MULTILAYER SYSTEMS

The discussion of CRC cards in the previous chapter introduced you to the idea of collaborat-
ing objects to execute various use cases. However, the focus of design sessions using CRC
cards is on the problem domain classes, with very little about multilayer issues as they affect
the detailed design. This chapter goes into more depth to describe the detailed design of all
layers of a multilayer system.

Referring back to Figure 11-1 in Chapter 11, we note that the three objects represent the
three layers of a system. Each object also has certain responsibilities. The input window object
has primary responsibility to format and present student information on the screen. Another
responsibility is to accept input data, either student ID or changed information, and forward
it into the system. The object probably does some editing of the input data as well. Where
does this object come from? What are the attributes and methods of this object? Identifying
and defining the window objects is part of the application design and the user interface
design. This chapter discusses the more technical issues, while Chapter 14 discusses the
human factors and human-computer interaction issues.

The student object represents the middle layer, or business logic layer, for the use case. A
CRC design session will help you design the structure of the objects in this layer. However,
you probably noted that CRC cards are quite informal, especially when trying to ascertain
class methods from object responsibilities. CRC cards provide little direction in defining
method signatures with appropriate input and output parameters. This chapter will formalize
the process of precisely identifying methods and defining method signatures.

The database access object corresponds to the third layer in the multilayer design. Its
responsibility is to connect to the database, read the student information, and send it back to
the student object. It also has the responsibility of writing the student information back to
the database when it needs to be updated. This object does not come from a problem domain
class; it is a utility object created by the designer.

430 ♦ PART 3 SYSTEMS DESIGN TASKS

use case

realization

the process of
elaborating the detailed
design with interaction
diagrams of a particular
use case

C6696_12_CTP.4c 2/6/08 1:26 PM Page 430

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 12 Object-Oriented Design: Use Case Realizations ♦ 431

Several questions should come to mind as you review detailed systems design. The first
question is: “How do all these objects get created in memory?” For example, how and when
does the student object get created? How about the database access object? Other questions
might be: Will other objects be necessary? What object does authentication? What is the life
span of each of these objects? Maybe the student object should go away after the update, but
how about the database access object?

DESIGN PATTERNS AND THE USE CASE CONTROLLER

Patterns, also called templates, are used repeatedly in everyday life. A chef uses a recipe, which is
just another word for a pattern, to combine ingredients into a flavorful dish. A tailor uses a pat-
tern to cut fabric for a great-fitting suit. Engineers take standard components and combine
them into established configurations, or set patterns, to build buildings, sound systems, and
thousands of other products. Patterns are created to solve problems. Over time, and with many
attempts, people who work on a particular problem develop a set solution to the problem. The
solution is general enough that it can be applied over and over again. As time passes, the solu-
tion is documented and published, and eventually it becomes accepted as the standard.

Standard design templates have become popular among software developers because they
can speed OO design work. The formal name for these templates is design patterns. Design
patterns became a widely accepted object-oriented design technique in 1996, with the publi-
cation of Elements of Reusable Object-Oriented Software by Eric Gamma, Richard Helm, Ralph
Johnson, and John Vlissides. The four authors are now referred to as the Gang of Four (GoF).
As you learn more about design patterns, you will often see references to a particular design
pattern as a GoF pattern. In their book, the authors identified 23 basic design patterns. Today,
scores of patterns have been defined, from low-level programming patterns to mid-level
architectural patterns to high-level enterprise patterns. The two primary enterprise platforms,
Java and .NET, both have sets of enterprise patterns, which are described in various books and
publications.

In Chapter 11 you were introduced to the idea of a use case controller. In this chapter, we
formalize the concept and explain its importance as a design pattern. For any particular use
case, messages come from the external actor to a windows class (that is, an electronic input
form) and then to a problem domain class. One issue in systems design is the question of
which problem domain class should receive input messages to reduce coupling, maintain
highly cohesive domain classes, and maintain independence between the user interface and
the domain layer. Designers often define an intermediary class that acts as a buffer between
the user interface and the domain classes. We call these classes use case controllers. For exam-
ple, the use case Create new order might have a controller class named OrderHandler.

Figure 12-1 provides a more formal specification for the use case controller pattern. Note
that this specification has five main elements:

• The pattern name
• The problem that requires a solution
• The solution, or explanation, of the pattern
• Example of the pattern
• The benefits and consequences of the pattern

You should read this specification to understand the important principles of the con-
troller pattern, what problem it solves, how it works, and its benefits. This same template will
be used later in the chapter with the other design patterns.

design patterns

standard design
techniques and
templates that are widely
recognized as good
practice

C6696_12_CTP.4c 2/6/08 1:26 PM Page 431

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

A use case controller acts as a switchboard, taking input messages and routing them to the
correct domain class. In effect, the use case controller acts as an intermediary between the out-
side world and the internal system. What if a particular window object needs to send messages
to several problem domain objects? To do so, it would need references to all of these objects.
The coupling between the Input window object and the internal system would be very high—
there would be many connections. The coupling between the user-interface objects and the
problem domain objects could be reduced by making a single use case controller object to
handle all of the input messages. A use case controller also contains logic that controls the flow
of execution for the use case. In this way, domain layer design classes can remain more cohe-
sive by focusing only on the precise functions that truly belong to that domain object.

In the examples that follow in this chapter, we define a controller class for each use case.
This is a common practice, and many development environments (such as Java Struts) auto-
matically define a controller class for each use case. Of course, this creates many artifact
objects in a system. If there are 100 use cases, there would be 100 use case controller artifact
objects. To reduce the number of controllers, developers sometimes will combine the control
of several closely related use cases into a single use case controller. Either approach, if done
judiciously, provides a good solution.

432 ♦ PART 3 SYSTEMS DESIGN TASKS

Controller

Domain classes have the responsibility of processing use cases. However,
since there can be many domain classes, which one(s) should be responsible
for receiving the input messages?

User-interface classes become very complex if they have visibility to all of the
domain classes. How can the coupling between the user-interface classes and
the domain classes be reduced?

Assign the responsibility for receiving input messages to a class that receives
all input messages and acts as a switchboard to forward them to the correct
domain class. There are several ways to implement this solution:
(a) Have a single class that represents the entire system, or
(b) Have a class for each use case or related group of use cases to act as a
 use case handler.

The RMO order-entry subsystem accepts inputs from an OrderWindow. These
input messages are passed to an OrderHandler, which acts as the switchboard
to forward the message to the correct problem domain class.

Benefits and
Consequences:

Other examples of the controller can be found for each RMO subsystem.

Coupling between the view layer and the domain layer is reduced.
The controller provides a layer of indirection.

The controller is closely coupled to many domain classes.
If care is not taken, controller classes can become incoherent,
 with too many unrelated functions.
If care is not taken, business logic will be inserted into the controller class.

Example:

Solution:

Problem:

Name:

RMO Order Entry

OrderWindow

startOrder ()

startOrder ()
OrderHandler

createOrder ()
Order

User Interface Domain Classes

Controller Class

OK Cancel

Figure 12-1

Pattern specification for

the controller pattern

C6696_12_CTP.4c 2/6/08 1:26 PM Page 432

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 12 Object-Oriented Design: Use Case Realizations ♦ 433

A use case controller is a completely artificial class created by the person doing the system
design. Sometimes such classes are called artifacts or artifact objects. As we get deeper into the
explanation of design, you will see the need to create many kinds of service classes as artifacts—
classes that are needed to execute the use case but are not based on any domain model classes.

The process illustrated in the preceding paragraphs and in Chapter 11—to balance the design
principles of coupling, cohesion, class responsibility, indirection, and protection from
variations—is precisely the process of systems design. As you read this chapter, you will see the
importance of the design principles discussed in Chapter 11. The next section explains exactly how
use cases are realized—in other words, how the system is designed, using sequence diagrams.

Always identify appropriate controller classes as entry points into the
domain layer.

BEST PRACTICE

USE CASE REALIZATION WITH SEQUENCE DIAGRAMS

Developing interaction diagrams is at the heart of object-oriented detailed design. The real-
ization of a use case—determining what objects collaborate and the messages they send to
each other to carry out the use case—is done through the development of an interaction dia-
gram. Two types of interaction diagrams can be used during design: sequence diagrams or
communication diagrams. This section shows you how to design with sequence diagrams;
then, in the next section, we explain how communication diagrams also can be used for sys-
tems design.

Interaction diagrams are used both as the mechanism for the design activity and as the
tool to document the results. Designers develop design class diagrams and interaction dia-
grams while doing software design. The diagrams communicate structural and behavioral
details to programmers and other developers. But the diagrams are not an end in themselves.
Instead, they represent the results of design decisions and facilitate the inclusion of well-
established design principles such as coupling, cohesion, and separation of responsibilities.
In other words, if a developer jumps right into coding without thinking about design princi-
ples, the created system often is poorly structured. Typically, the most effective designers
develop rough drafts of diagrams and then evaluate their quality by assessing how well they
reflect principles of good design. The diagrams may be refined many times as designers
improve their quality and correct errors. The diagrams are both a scratchpad for the designers’
thinking and a means to communicate the final result of that thinking to programmers.

As noted in the previous section, a set of CRC cards may be sufficient for simple use cases.
For complex use cases, however, it is usually beneficial to develop a fully detailed sequence
diagram. Input for the development of a sequence diagram can come from a set of CRC cards
if the cards were done first. However, they are not necessary. Many developers do not use CRC
cards, but come directly to designing with sequence diagrams.

The following sections explain in detail the steps and techniques required for use case
realization. In the first section, we provide a complete three-layer sequence diagram for a
fairly simple use case, Create new customer. This example illustrates the final form of a com-
plete design. After this first example, the next sections use two separate use cases to explain
how to design the domain layer (also called the business logic layer). The domain layer
focuses exclusively on the problem domain classes. The final examples in this tutorial explain
how to add the data access layer classes and the view layer classes. Each layer is illustrated
with two examples using the same two use cases. The examples include sections that explain
the design steps and guidelines.

C6696_12_CTP.4c 2/6/08 1:26 PM Page 433

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

UNDERSTANDING THREE-LAYER SEQUENCE DIAGRAMS

You first learned about sequence diagrams in Chapter 7 when you learned how to develop a system
sequence diagram (SSD). By now you should feel comfortable reading, interpreting, and developing
an SSD. Remember that an SSD is used to document the inputs to and outputs from the system for a
single use case or scenario. An SSD captures the interactions between the system and the external
world as represented by the actors. The system itself is treated as a single object named :System. The
inputs to the system are messages from the actor, and the outputs are usually return variables show-
ing the data being returned. Figure 12-2 is an SSD for the Create new customer use case. As shown in
the figure, each message has a source and a destination. In an SSD, because only two objects have
lifelines, the source and destination are constrained. When we get to detailed sequence diagrams,
some of the most critical decisions involve the source and destination objects for the messages.
Remember that the syntax of an input message, as discussed in Chapter 7, is:

* [true/false condition] return-value := message-name (parameter-list)

434 ♦ PART 3 SYSTEMS DESIGN TASKS

Clerk

setValues(name, address, phone)

createNewCustomer()

saveCustomer()

custID, name, address, phone

:System

The system object
(underlined)

Input message

Return value or
Output message

A lifeline representing
the timeline for
the object

The external actor
that interacts with
the system

Figure 12-2

SSD for the Create new
customer use case

The starting point for the detailed design of a use case is always its SSD. Remember that
the SSD only has two lifelines—one for the actor and one for the system. The most important
information on an SSD is the sequence of messages between the actor and the system.
Frequently there are both input and output messages. There may be a single input message or
many. The input messages may have data parameters or not. There also may be Loop frames,
Alt frames, and Opt frames and repeating inputs and outputs. A Loop frame denotes a set of
messages within a loop. An Alt frame is similar to an if-then-else statement or switch state-
ment, which allows the firing of different sets of messages. An Opt frame is an optional invok-
ing of a set of messages.

C6696_12_CTP.4c 2/6/08 1:26 PM Page 434

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 12 Object-Oriented Design: Use Case Realizations ♦ 435

The three input messages and one output message in Figure 12-2 characterize the
sequence of actions required to add a customer. The first message might be to click a Create
New Customer button on a main form. After the new customer screen appears, the second
message is required to enter all the customer information. The third message might be a but-
ton click to save the data. Finally, the output message, which is also known as a return value
and denoted by a dashed arrow, is simply a reformat of the input data. A new customer ID is
added, along with a confirmation message that the customer was created and the database
was updated.

Figure 12-3 illustrates a three-level detailed design for this use case. Callouts show the
classes associated with each of the three layers. This use case has two view layer objects—the
:MainMenu and :CustForm objects. Notice that the input messages from the external actor
always go to the view layer objects. The purpose of the design process is to take each input
message and determine what the system must do to respond to the message. For the first mes-
sage, createNewCustomer(), the system simply opens the :CustForm screen. For the second
message, setValues (...), the system accepts the data and perhaps edits it. At this point in the
design, we will not worry about the required editing. The objective of the sequence diagram
is primarily to identify which classes collaborate and what messages they must send to each
other. The requirements and code for editing are usually deferred until programming begins.

setValues(name, address, phone)

createNewCustomer()

display()

saveCustomer()

custID, name, address, phone

getCustDetails()

Activation Lifeline

View layer classes Business layer classes

:MainMenu :CustForm

aC:Customer

:CustomerDA«controller»
:CustController

createCust(name, address, phone)

aC:=create(name, address, phone)

SQL
Insert

save(aC)

custID, name, address, phone

getCustID()

custID

getName()

name

getAddress()

address

getPhone()

phone

Two ways to return
data:
as a value or as a
return message

Data access layer class

Figure 12-3

Sequence diagram for

Create new customer
use case

C6696_12_CTP.4c 2/6/08 1:26 PM Page 435

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The third message, saveCustomer(), triggers the internal messages. After the :CustForm
receives the saveCustomer() message, it sends a message to the :CustController, which in turn
sends a message to the customer class, asking it to instantiate a new customer object. This
message is sent directly to the object’s rectangle, which is an optional but preferred notation
to indicate a message that invokes a constructor. The label in the rectangle, aC:Customer,
indicates that the box represents a customer object with a reference variable name of aC.
Notice on the create message that the object reference is returned to the controller, which
gives it visibility to the customer object. It will need this reference later to send the
getCustDetails() message.

After the customer object is created, it has responsibility to save itself to the database. It
sends a message to the :CustomerDA object, which is the data access object for all the cus-
tomer objects, requesting that the data be saved to the database. Notice that the message also
sends the customer reference, aC, so that :CustomerDA has visibility to be able to request the
attribute values from the customer. Once the data access object has all the data, it invokes an
SQL insert instruction to the database.

Once the customer object is created and saved to the database, the controller requests all
of the newly generated data, including the system-generated custID. The data is returned to
the controller, which then returns it to the :CustForm screen, which is visible to the external
actor. Optionally, we could have shown another dashed line going to the external actor, which
would simply mean the actor looks at the form.

One thing should be evident at this point. When a message is sent from an originating
object to a destination object, in programming terms it means that the originating object is
invoking a method on the destination object. Thus, by defining the messages to various inter-
nal objects, we are actually identifying the methods of that object. The data that is passed by
the messages corresponds to the input parameters of the methods. The return data on a mes-
sage is the return value from a method. Hence, once a use case is realized with this detailed
design process, the set of classes and required methods can be extracted so that programming
can be completed.

You should learn one final point from this diagram. A new notation is the activation lifeline,
as represented by the small vertical rectangles. Because a message invokes a method on the desti-
nation object, one valuable piece of information might be the duration of that method’s execu-
tion (in other words, the time a method is active). The activation lifeline represents that
information. That is why the input message is normally at the top of the rectangle and the return
message is at the bottom. Notice that the customer object has the constructor method attached to
the bottom of the object. It remains active until all the data is saved, even while other get meth-
ods are invoked.

DESIGN PROCESS FOR USE CASE REALIZATION

Before we jump into the examples, let’s first review the final outcomes and the required steps
to get there. As indicated in Chapter 11, the purpose of detailed design is to identify the
classes required for the new system and the methods in each of those classes. Therefore, one
outcome is a comprehensive design class diagram with the attributes elaborated and the
method signatures specified. This DCD may be modeled as one large diagram or several sub-
system diagrams. The other final outcome is a detailed sequence diagram for each use case or
each use case scenario. These two models are the primary input that programmers will need
to program the methods in the classes.

Figure 11-15 listed the steps for doing detailed design. We continue to follow those steps in
this chapter. In the examples that follow, we first develop a first-cut DCD. The next step is a
first-cut sequence diagram that uses only the problem domain classes and perhaps any specific
utility classes that are part of the business logic. To develop the first-cut sequence diagram, each

436 ♦ PART 3 SYSTEMS DESIGN TASKS

activation lifeline

a representation of the
period in which a method
of an object is alive and
executing

C6696_12_CTP.4c 2/6/08 1:26 PM Page 436

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 12 Object-Oriented Design: Use Case Realizations ♦ 437

input message is reviewed, one at a time, to determine what other internal messages and
classes are required to fully process the input request. Once the processing with the problem
domain classes is known, the data access layer and the view layer classes and messages are
added to the diagram. Finally, the DCD is updated with method signatures from the details
generated during use case realization.

In the next two sections, we realize two use cases, Cancel an order and Create new phone order.
We address Cancel an order first because it is the simpler use case. The Create new phone order use
case is a specific scenario of Process new order, which was done in Chapter 11 with CRC cards.

FIRST-CUT SEQUENCE DIAGRAM—CANCEL AN ORDER USE CASE

A detailed sequence diagram uses all of the elements that an SSD uses. The difference is that
the :System object is replaced by all of the internal objects and messages within the system. We
will identify the internal objects that collaborate and the messages they send to each other to
carry out the use case or the use case scenario. Figure 12-4 is the SSD for this use case. The SSD
has only one input message, cancelOrder (orderID), which passes the identifier for the order
to be canceled. In this situation, we assume that another use case provided the processing to
search for and identify the order to cancel.

Clerk

cancelOrder (orderID)

:System

Figure 12-4

SSD for Cancel an order
use case

The next step is to look at the problem domain classes and determine which classes are
required for this use case. Obviously, the Order class is needed. Assuming that inventory was
reserved when the order was made, the order items and any individual inventory items need
to be included. Let’s assume a business rule that orders must be cancelled before they are
shipped, and that a credit card payment is not initiated until the items are shipped. Therefore,
no credit card refund will be required, but an order transaction is needed to specify the
charge. The transaction and charge must both be canceled. With these classes, the next step is
to develop the first-cut DCD of the problem domain classes. Figure 12-5 shows the first-cut
DCD with visibility identified.

Based on Figures 12-4 and 12-5, we proceed with the detailed design of the Cancel an order
use case. The first step in expanding an SSD is to place the problem domain objects in the dia-
gram, along with the input messages from the SSD. Figure 12-6 shows this first step in the
detailed design.

The next step is to determine the internal messages that must be sent between the objects,
including which object should be the source and destination of each message. Decisions
about what messages are required and which objects are involved are based on the design
principles described earlier—coupling, cohesion, object responsibility, and controllers.

C6696_12_CTP.4c 2/6/08 1:26 PM Page 437

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 12-7 is the completed first-cut sequence diagram for the design of the Cancel an
order use case. The :OrderHandler controller receives the input message, searches for the cor-
rect order object, and then forwards the cancelOrder message to the correct :Order object. The
:Order object takes responsibility to do all the cleanup for the cancellation. It loops through

438 ♦ PART 3 SYSTEMS DESIGN TASKS

Order

-orderID int {key}
-orderDate: Date
-priorityCode: string
-shipping&Handling: float
-tax: float
-grandTotal: float

«controller»
OrderHandler

OrderItem

-orderItemID int {key}
-catalogID: string
-productID: string
-inventoryID: string
-quantity: int
-price: float
-backorderStatus: string

OrderTransaction

-transactionID: int {key}
-date: date
-transactionType: string
-amount: float
-paymentMethod: string
-creditCardInformation: string

InventoryItem

-inventoryID: string {key}
-size: string
-color: string
-options: string
-quantityOnHand: int
-averageCost: float
-reorderQuantity: int

Figure 12-5

First-cut DCD for Cancel
an order use case

:OrderItem:Order :InventoryItem :OrderTransaction«controller»
:OrderHandler

cancelOrder(orderID)

Clerk

Figure 12-6

Objects included in

Cancel an order

C6696_12_CTP.4c 2/6/08 1:26 PM Page 438

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 12 Object-Oriented Design: Use Case Realizations ♦ 439

all of the order items associated with the order and sends each one a cancelItem() message.
Each :OrderItem object in turn sends a quantity update to the appropriate :InventoryItem
object. In other words, the quantity reserved for the order in the :OrderItem object is added
back to the inventory item when the order is canceled. The rectangle loop frame indicates that
these two messages are part of multiple occurring sets. Finally, the :Order object also sends
the cancelPayment() message to the :OrderTransaction to stop the charges to the customer.

Notice the use of the activation lifeline. It is important on the :Order object because it
indicates that both outgoing messages are part of the same execution. Activation lifelines help
you to understand the time period when an object is executing some code. Some developers
put them on all lifelines whenever there is a message arrowhead. Other developers only
include them when there may be some ambiguity. Figure 12-7 shows both examples. If there
is any chance of misreading the diagram, such as on the first three messages, the activation
lifelines are included. The final two messages do not have activation lifelines because there is
little chance of misunderstanding.

:OrderItem:Order :InventoryItem :OrderTransaction«controller»
:OrderHandler

cancelOrder(orderID)

cancelOrder()

cancelItem()

updateQty (qty)

cancelPayment ()

Clerk

Loop for all items

Figure 12-7

First-cut sequence

diagram for Cancel an
order use case

Two questions require careful consideration when identifying and creating messages:
Which objects are involved and what should we name the message? First, we must determine
the origin and destination objects for the message. The origin object is obviously the one that
needs information or help in carrying out a responsibility. The destination object is the one
that has the information to help in the solution. Second, what should we name the message?
Because a message is requesting a service from the destination object, the message name
should reflect the requested service. For example, when a quantity needs to be updated in the
destination object, the message name indicates the requested process to update the quantity.
Notice also that the input parameters provide the information that the destination object
needs to be able to provide the service.

Before moving on, let’s analyze this solution based on some principles of good design that
we discussed previously—coupling, cohesion, object responsibility, and use case controllers.

The use case controller provides the link between the internal objects and the external
environment. This intermediary limits the coupling to the external environment to the con-
troller object. The responsibilities assigned to :OrderHandler are to catch incoming messages,
distribute them to the correct internal domain objects, and return the required information

C6696_12_CTP.4c 2/6/08 1:26 PM Page 439

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

to the external environment. By using a use case controller as the switchboard, overall cou-
pling is limited between the domain objects and the environment.

The responsibility assigned to :Order is to be in charge of canceling itself and to control
all of the other required updates. The :OrderItem object cancels itself and has responsibility
to notify the appropriate inventory item. Coupling is straightforward, being basically vertical
on the hierarchy. Thus, the assignment of responsibilities and corresponding messages seems
to conform to good design principles. Many other issues will need to be addressed as the
design expands to include all three layers. We develop the domain layer with the data access
layer later in the chapter.

GUIDELINES AND ASSUMPTIONS FOR PRELIMINARY SEQUENCE
DIAGRAM DEVELOPMENT

Even though the example in Figure 12-7 was fairly simple, we can distill several tasks to help
you learn to develop a design for a use case or scenario using sequence diagrams. Several
assumptions are also implicit in this process.

Guidelines

Note that the following design tasks are not done sequentially but only when necessary to
build the sequence diagram. We identify them here as separate tasks simply to ensure that all
three are completed.

• Take each input message and determine all of the internal messages that result from that
input. For each message, determine its objective. Determine what information is needed,
what class needs it (the destination) and what class provides it (the source). Determine
whether any objects are created as a result of the input. This will help you to define inter-
nal messages, their origin objects, and their destination objects. In other words, you are
trying to define which classes and which internal messages are needed to support the
input message.

• As you work with each input message, be sure to identify the complete set of classes that
will be affected by the message. In other words, select all the objects from the domain
class diagram that need to be involved. In Chapter 7, you learned about use case precon-
ditions and postconditions. Any classes that are listed in either the preconditions or post-
conditions should be included in the design. Other classes to include are those that are
created, classes that are the creators of objects for the use case, classes updated during the
use case, and those that provide information used in the use case.

• Additionally, flesh out the components for each message. Add iteration, true/false condi-
tions, return values, and passed parameters. The passed parameters should be based on
the attributes found in the domain class diagram. Return values and passed parameters
can be attributes, but they may also be objects from classes.

These three steps will produce the preliminary design. Refinements and modifications may
be necessary; again, we focused only on the problem domain classes involved in the use case.

Assumptions

The development of the first-cut sequence diagram is based on several simplifying assump-
tions, including the following three:

• Perfect technology assumption. We first encountered this assumption in Chapter 5 when
we identified business events. We continue that assumption here. We do not include steps
such as the user having to log on or testing the availability of the network.

• Perfect memory assumption. You might have noticed our assumption that the necessary
objects were in memory and available for the use case. We did not ask whether those
objects were created in memory. We will change this assumption when we get to multi-
layer design. In multiple-layer design, we do include the steps necessary to create objects
in memory.

440 ♦ PART 3 SYSTEMS DESIGN TASKS

C6696_12_CTP.4c 2/6/08 1:26 PM Page 440

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 12 Object-Oriented Design: Use Case Realizations ♦ 441

Another way to think about this assumption is that memory is infinite, or that the com-
puter’s hard drives are just an extension of memory and we do not have to worry about how
things get into memory. You may think this is not a realistic assumption; however, object-
oriented languages that include embedded object-oriented databases do implement this
assumption. Those languages include an underlying database; if you need an object, the sys-
tem automatically moves it from hard drive storage to memory and back, without any
requirement by the programmer.

• Perfect solution assumption. The first-cut sequence diagram assumes that there are no
exception conditions. No logic is included to handle a situation in which the requested
catalog or product is not found. More serious exception conditions, such as the failure of
a credit check, might also be encountered. Many developers design the basic processing
steps first, and later add the other messages and processes to handle the exception condi-
tions. We do the same here.

FIRST-CUT SEQUENCE DIAGRAM—CREATE NEW PHONE ORDER
USE CASE

Before moving ahead to multilayer design, let’s work through a slightly more complex example
of a first-cut diagram. Figure 12-8 is a simple version of an SSD for the Create new phone order
scenario. This SSD is for the telephone scenario of the Create new order use case. As before, we
will create a design for each input message in the SSD. The design components for all the mes-
sages are combined to provide a comprehensive sequence diagram for the entire use case.

Order Clerk
startOrder (accountNo)

Loop for all items

completeOrder ()

totalDue

addItem (catalogID, prodID, size, quantity)

makePayment (ccInformation)

description, price, extendedPrice

:System

Figure 12-8

SSD for the Create new
phone order scenario

First we review the class diagram and create the first-cut design class diagram. We created
a similar example with the CRC design in Chapter 11. Figure 12-9 illustrates the navigation
visibility that corresponds to the rules and example from Chapter 11. Information from the
SSD and the first-cut design class diagram will again be used to develop the sequence dia-
gram. We will use the same controller object that we used for the Cancel an order use case. We
anticipate that this controller may also serve for creating new orders and maintaining existing
orders. We will decide whether this is the best design after designing other use cases and
reviewing the design for good design principles.

C6696_12_CTP.4c 2/6/08 1:26 PM Page 441

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 12-10 illustrates the first-cut sequence diagram for the first input message only. This
message is startOrder(accountNo); it originates with the order clerk and is input to the :System. To
start an order, the system needs to create a new Order object and then connect it to a Customer
object. Thus, a message to create a new order is needed. The destination of the message will be the
:Order object itself. In fact, if you remember your programming class, the create message invokes a
constructor method on the object, which will create a new object. In UML, when a create message
is sent to an object, it is often drawn directly to the object’s box and not to the lifeline.

One important question is: What object should be the source object for the createOrder
message? Should it be the :OrderHandler itself, or should it be some other object?
Information included in the domain model indicates that the :Order object has a relation-
ship or link with the :Customer object. This link could be built in several ways. One option
would be to have the :OrderHandler object send the create message directly to the :Order
object, then send another message to the :Customer object with a reference to the order.
Another option is simply to let the :Customer object create the :Order object. Because order
objects are not allowed unless a customer object exists, this option is one way to ensure that
the customer existence precondition is met. Figure 12-10 shows the results using the second
approach. Note that a specific identifier is given to the new Order object—anOrd. That refer-
ence is passed back to the Customer object, which passes it back to the :OrderHandler. We
will see the need for this approach in later steps.

442 ♦ PART 3 SYSTEMS DESIGN TASKS

Customer

-accountNo: string {key}
-name: string
-billingAddress: string
-shippingAddress: string
-dayPhone: string
-nightPhone: string

«controller»
OrderHandler

Order

-orderID: int {key}
-orderDate: date
-priorityCode: string
-shipping&Handling: float
-tax: float
-grandTotal: float

CatalogProduct

-catalogID: string {key}
-productID: string {key}
-price: float
-specialPrice: float

ProductItem

-productID: string {key}
-vendor: string
-gender: string
-description: string

InventoryItem

-inventoryID: string {key}
-size: string
-color: string
-options: string
-quantityOnHand: int
-averageCost: float
-reorderQuantity: int

OrderItem

-orderItemID: int {key}
-catalogID: string
-productID: string
-inventoryID: string
-quantity: int
-price: float
-backorderStatus: string

Figure 12-9

First-cut DCD for Create
new phone order scenario

C6696_12_CTP.4c 2/6/08 1:26 PM Page 442

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 12 Object-Oriented Design: Use Case Realizations ♦ 443

The next input message is addItem (catalogID, prodID, size, quantity), a repeating mes-
sage to add line items to the order. This message is shown in Figure 12-11. By referencing the
OrderItem class in the domain model, we find that the necessary attributes for an OrderItem
are quantity, price, description, and back-order status. The price can be obtained from the
CatalogProduct class. The description comes from the ProductItem class. The quantity is
input by the clerk, although the system must check the InventoryItem class to see whether
items are in stock. (The detailed description of the use case also indicates that inventory
should be checked by the system.) So, the sequence diagram will also need objects for
:OrderItem, :CatalogProduct, :ProductItem, and :InventoryItem.

As we identify the specific messages, along with source and destination and the passed para-
meters, we need to consider some critical issues. As before, an important question is: Which
object is the source or initiator of a message? If the message is a query message, the source is the
object that needs information. If the message is an update or create message, the source is the
object that controls the other object or that has the information necessary for its creation.

Another important consideration is navigation visibility—to send a message to the correct
destination object, the source object must have visibility to the destination object. Remember
that the purpose of doing design is to prepare for programming. As a designer, you must think
about how the program will work and consider programming issues. Given these two consid-
erations and the source considerations discussed in the previous paragraph, we have deter-
mined that the following internal messages will be required. For each message, a source
object and a destination object have been identified.

• addItem(). Original message, from Order Clerk to :OrderHandler
• addItem(). A forwarded version of the input message from :OrderHandler to :Order.

Because :OrderItem objects are dependent on an order, :Order is the logical object to cre-
ate :OrderItem objects. System has visibility to :Order from the previous return message,
when anOrd was returned to the system.

• createOrdItem(). The internal message from :Order to :OrderItem. Because the
OrderItem will be responsible for obtaining the data for its attributes, it needs visibility to
:CatalogProduct, :ProductItem, and :InventoryItem. As a result, those keys are sent as
parameters. An alternate approach is to let :Order collect the required information, such

startOrder (accountNo)

createOrder (accountNo)

anOrd := createOrder ()

anOrd

:Customer

anOrd:Order

:OrderHandler

Order Clerk

Figure 12-10

Sequence diagram for

the first input message

for the phone order

scenario

C6696_12_CTP.4c 2/6/08 1:26 PM Page 443

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

as price and backOrderStatus, and send it to the :OrderItem as parameters. However,
because the domain model indicates a link between an order item and an inventory item,
the first approach is better.

• getPrice(). The message to get the price from the :CatalogProduct object. The :OrderItem
initiates the message. It has visibility because it has the key values.

• getDescription(). The message initiated by :OrderItem to get the description from
:ProductItem.

• updateQty(qty). The message that checks for sufficient quantity on hand. This message
also initiates updates of the quantity on hand. The :OrderItem initiates the message. It
does not have key visibility, but it has enough information to search on an index of
catalogID, prodID, and size.

Figure 12-11 shows the results of the design for the addItem message. The input parame-
ters and return values have also been added. Review the design, including the parameters, to
ensure that you understand all aspects of it.

444 ♦ PART 3 SYSTEMS DESIGN TASKS

orderItem details

description := getDescription ()

status := updateQty (quantity)

price := getPrice ()

anOrd

addItem
(catalogID, prodID, size, quantity)

Order Clerk

addItem (catalogID, prodID, size, quantity)

orderItem
details

createOrdItem
(catalogID, prodID,
size, quantity)

:OrderHandler :Customer :ProductItem

anOrd:Order

startOrder (accountNo)

createOrder (accountNo)

anOrd:=createOrder ()

:CatalogProduct :InventoryItem

:OrderItem

Loop for all items

Figure 12-11

A more complete

sequence diagram for the

phone order scenario

After each item is added to the order, control is returned to the order clerk. The clerk will
add another item or, at the end of the order, will send a completeOrder() message. This mes-
sage has no parameters. Its purpose is simply to tell the order to calculate the total amount
due. If we assume, as designers, that the :Order object keeps a running total of the individual
line items that were added, then it simply calculates the appropriate tax and shipping and
sends back a total amount. This is a valid and solid design. Another alternative is that the

C6696_12_CTP.4c 2/6/08 1:26 PM Page 444

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 12 Object-Oriented Design: Use Case Realizations ♦ 445

:Order object does not keep a running total but must query each of the line items and accu-
mulate a total. The second design requires additional detailed messages to be sent to the
:OrderItem objects.

The final message on the SSD is makePayment (ccInformation). For simplicity’s sake, we
assume that payments are always via credit card. In reviewing the domain model, we see that
a new object must be created—the OrderTransaction object. Because transactions are con-
nected to orders in the model, an Order object should create a transaction. Thus, the system
forwards the completion message to the :Order, which in turn creates a payment for
:OrderTransaction. These new messages are shown in Figure 12-12.

orderItem details

description := getDescription ()

status := updateQty (quantity)

price := getPrice ()

anOrd

addItem
(catalogID, prodID, size, quantity)

Order Clerk

:OrderItem

orderItem details

createOrdItem
(catalogID, prodID,
size, quantity)

:OrderHandler :Customer :ProductItem

anOrd:Order

startOrder (accountNo)

completeOrder ()

makePayment (ccInformation)

createOrder (accountNo)

:CatalogProduct :InventoryItem

completeOrder ()

createPayment
(paymentAmt, payMethod,ccInformation)

:OrderTransaction

makePayment (ccInformation)

addItem (catalogID, prodID, size, quantity)

totalAmount

Loop for all items

anOrd:=createOrder ()

Figure 12-12

Sequence diagram for

the Create new phone
order scenario

C6696_12_CTP.4c 2/6/08 1:26 PM Page 445

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 12-12 contains the final design of the domain model classes and all the internal
messages that are required to execute the use case. This section focused only on the classes
from the domain model, plus one additional object called :OrderHandler. By focusing only
on the domain classes, we could design the core processing for the use case without having to
worry about the user interface or the database. Figure 12-12 is rather complex, even though it
only contains domain objects. However, this design provides a solid base for programming.
Working with design models enables the designer to think through all the requirements to
process a use case without having to worry about code. More importantly, it enables the
designer to modify and correct a design without having to throw away code and write new
code. In the next section, we will add the view layer and data access layer objects to the tele-
phone order scenario.

DEVELOPING A MULTILAYER DESIGN

The development of the first-cut sequence diagram focuses only on the classes in the problem
domain layer. However, as explained previously, in systems design we must also design the user-
interface classes and data access classes. In this section, we expand the designs in Figures 12-7
and 12-12 to make them multilayer designs, including both the view layer and data access layer.
We first design the data access layer.

446 ♦ PART 3 SYSTEMS DESIGN TASKS

Designing the Data Access Layer

The principle of separation of responsibilities is the motivating factor behind the design of
the data access layer. On smaller systems, two-layer designs include a view layer and a busi-
ness logic layer. In OO two-layer designs, the Structured Query Language (SQL) statements to
access a database are part of the business logic layer. In other words, the SQL statements are
included in methods of the problem domain classes. On larger, more complex systems,
designers create three-layer designs, creating classes whose sole responsibility is to execute
database SQL statements, get the results of the query, and provide the information to the
domain layer. As hardware and networks became more sophisticated, multilayer design was
used to support multitier networks in which the database server was on one machine, the
business logic was on another server, and the user interface was on several desktop client
machines. This new way of designing systems creates more robust and more flexible systems.

In Chapter 5, you learned how to build a domain model class diagram to describe the
“things,” or entities, about which information is to be maintained. The domain model serves
two purposes. First, of course, it is used to develop the database for the new system. Chapter 13
explains how to use the domain model to design the database. The second purpose, as we have
just seen, is to identify the internal classes that make up the new system. It should be apparent
that a close correlation will exist between the database tables and the design classes because
both come from the same domain model.

In your database course, you learn how to access the tables in the relational database by
using SQL statements. Executing SQL statements on a database enables a program to access a
record or a set of records from the database. One of the problems with object-oriented pro-
grams that use relational databases is a slight mismatch between programming languages and
database SQL statements. For example, in a database, tables are linked through the use of for-
eign keys (see Chapter 13), such as an Order having a CustomerID as a column so that the
order can be joined with the customer in a relational join. However, in OO programming lan-
guages, the navigation is often in the opposite direction—the Customer class may have an

Be sure the use case design for the domain layer classes is solid before
adding data access or view layer classes.

BEST PRACTICE

separation of

responsibilities

a design principle to
segregate classes into
separate components
based on the primary
focus of the classes

C6696_12_CTP.4c 2/6/08 1:26 PM Page 446

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 12 Object-Oriented Design: Use Case Realizations ♦ 447

array of references that point to the Order objects, which are in computer memory and are
being processed by the system. In other words, design classes do not have foreign keys.

These differences between programming languages and database languages have partially
driven the trend to a multilayer design. The design, programming, and maintenance of a sys-
tem are easier if separate classes are defined to access the database and format the data so that
it is conducive to computer processing. Rather than mix the business logic with the data
access logic, it is better to define separate classes and let each focus on its primary responsi-
bility. This idea is an application of the good design principles of highly cohesive classes with
separate responsibilities.

In this chapter, we take a somewhat simplified design approach to teach the basic ideas
without getting embroiled in the complexities of database access. Let us assume that every
domain object will have a table in a relational database. There are several techniques, which
provide different designs, to linking the domain layer to the data access layer. Within the con-
structor of each problem domain object, the data access object would be invoked to get the
necessary information to complete the instantiation of the new object. Another way is to send
a message to the data access layer object and have it read the database and then instantiate a
new problem domain object. Either way works, and both are good solutions.

Figure 12-13 illustrates these two methods for instantiating a customer object in memory
from the database. In method (a), the controller invokes the constructor for a :Customer and
passes it the custID. The customer constructor invokes the :CustomerDA object, passing a ref-
erence to itself, aC. The :CustomerDA first gets the custID from the customer object. Using the
custID, it then reads the database and populates all of the fields in aC. The reference to the new
customer object, referred to as aC, is then passed to the controller, and it proceeds with other
messages that need to be passed to the customer object. This method is used in the example
shown in Figure 12-3.

In method (b), the controller sends a message to the :CustomerDA object, passing a key
or some other field value. The :CustomerDA object uses the key to access the database, and
then it invokes a constructor for :Customer with data for the fields sent as parameters. We use
the shortcut “parameter list” to indicate that values for all the attributes are being passed in as
parameters on the constructor. The controller then continues with the messages that need to
be sent to the customer object.

The logical question is “Which method is best?” From a theoretical point of view, method
(a) assigns responsibility for creating a customer object to the customer class. The new
:Customer object then has the responsibility to populate itself by calling the :CustomerDA.
However, method (b) works better when you need to create a list of objects from a database.
In the example of reading an order and all of its line items, the order normally does not know
how many objects need to be created. Therefore, it is better to send a message to the order
item data access object and tell it to create as many as needed. For this reason, method (b)
has become popular among programmers because it is efficient and easy. In fact, it has
become a popular standard pattern, and it is also a good solution.

The Data Access Layer for Cancel an order

To design the data access layer, we no longer assume that the objects are automatically in
memory when we need them—that is, we disregard the perfect memory assumption. The
design of the use case now requires additional messages to get data from the database to
instantiate classes. In this example, we use the second approach, as shown in method (b) of
Figure 12-13, which works best for retrieving a list of items from the database.

Figure 12-14 illustrates the use case design with all of the data access classes included.
Because the original solution included four problem domain objects, this solution has four
additional classes for accessing the database. All the classes and messages may seem daunting
at first, but accessing the database is really just the same pattern repeated several times.

C6696_12_CTP.4c 2/6/08 1:26 PM Page 447

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

As you examine the figure, you will notice all of the original messages such as
cancelOrder(), cancelItem(), and cancelPayment(), but each one is preceded by a pair of mes-
sages involving the data access class. The first part of the pair is a request to find the object,
which means to read it from the database. The second part of the pair creates the object with
the information from the database. The first part of the pair has a return value that is the ref-
erence to the created object. In the creation of :OrderItem objects, a list is returned because
an order normally will have more than one item. The other addition in the figure is that each
object is saved back to the database through the data access object after it has been updated.

One important point during this process is ensuring that source objects have navigation
visibility to destination objects so that messages can be sent. We assume, but do not show,
that the data access objects have global visibility. (In your programming class, you will learn
that factory or singleton classes often are designed with global methods.) After the appropri-
ate problem domain object is created, a reference to it is returned to the object that needs vis-
ibility. As you look closely at Figure 12-14, you will note that every object that sends a
message to another object first has navigation visibility to that object. Remember this impor-
tant design point as you develop your design solutions.

Let’s next look at the problem domain layer and data access layer for the Create new phone
order use case in Figure 12-12. Remember that this figure is already quite complex. To add the

448 ♦ PART 3 SYSTEMS DESIGN TASKS

aC:Customer

(b) The CustomerDA object instantiates the Customer object

:Controller

aC: = findCust (custID)

getCustDetails ()

cust details

Select…Where…

createCust(parameter list)

:CustomerDA

:Controller

aC:Customer

(a) The Controller object instantiates the Customer object.

aC: = findCust (custID)

readCust (aC)

getCustDetails ()

cust details

getCustID ()

CustID
Select…Where…

setName(aName)

setAddress(anAddress)

setPhone(aPhone)

:CustomerDA

Relational
Database

Relational
Database

Figure 12-13

Two methods for

accessing the database

and instantiating objects

C6696_12_CTP.4c 2/6/08 1:26 PM Page 448

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 12 Object-Oriented Design: Use Case Realizations ♦ 449

data access layer, the best approach is to focus on each input message separately, just as we did
with the initial design. In these figures we use method (a) of the data access technique; that is,
the initializing message goes first to the class that then instantiates a new object. After the object
is instantiated, it sends a message to the data access object to obtain any required data. However,
due to the complexity of these drawings, we do not show all of the get and set messages. You
should review Figure 12-13(a) to ensure that you understand how method (a) works.

Figure 12-15 illustrates the sequence diagram with data access objects for the
startOrder(...) message. The message name we chose to represent the creation of the required
customer object in memory is findCustomer(). This creates an empty :Customer object,
which then accesses the :CustomerDA object to read the database and populate the data fields
with set messages. Inasmuch as the purpose of this use case is to create a new order, after a
new :Order object is created, it calls the :OrderDA object to write it to the database.

anOrd:Order ordlt:OrderItem anll:InventoryItem aTxn:OrderTransaction

:OrderItemDA :InvItemDA:OrderDA :OrdTxnDA

«controller»
:OrderHandler

Clerk

cancelOrder (orderID)

anOrd :=findOrder (OrderID)

listOfOrdItems:=findOrdItems (OrdID)

cancelOrder ()

cancelItem ()

anll :=findInvItem (InvItemID)

aTxn := findTxn (OrdID)

cancelPayment ()

updateQty (qty)

saveOrdItem (ordIt) saveInvItem (anll)

createOrd (info…)

*createOrd (info…)

createInvItem (info…)

createTxn (info…)

saveTxn (aTxn)saveOrd (anOrd)

Loop for all items

Figure 12-14

Problem domain and

data access layers for

Cancel an order

C6696_12_CTP.4c 2/6/08 1:26 PM Page 449

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 12-16 illustrates the business and data access objects for the second message,
additem(...). Even though the diagram looks complex, it contains many repeating patterns.
Compared to Figure 12-12, it contains data access objects for each persistent object. The addi-
tional messages consist of an initializing message to each object to ensure that the correct
object is in memory. Then, at the end of the update, the :InventoryItem and :OrderItem
objects are both updated with a save message to the appropriate data access object. It is
important to pay special attention to the parameters passed with the message. To read the
database, the data access object needs to have a reference to the object to be read, as shown in
method (a) of Figure 12-13. Again, note that the get and set messages are omitted.

Figure 12-17 contains the problem domain and data access layers for the two final input
messages. At this point in the use case processing, all the objects are in memory and none
need to be initialized. Data access consists solely of writing out the :OrderTransaction object
and the :Order object.

Designing the View Layer

The final step in multilayer design of a particular use case is to add the view layer. For many use
cases, the view layer consists of a single user-interface window. Some use cases are more complex,
and require multiple windows to enter and view the data associated with a use case or business
transaction. At this point in the design, we do not go into great detail about the contents of the
window class itself. Simply identifying the user-interface window is sufficient. Obviously, detailed
design of the user interface is much more complex. The detailed design of the windows classes,
including the window controls and form layout, is described in Chapters 14 and 15.

450 ♦ PART 3 SYSTEMS DESIGN TASKS

anOrd

createOrder ()

aC, anOrd

anOrd

Order Clerk

:OrderDA

:OrderHandler aC:Customer

anOrd:Order

aC := findCustomer (account No)

createOrder (accountNo)

:CustomerDA

startOrder (accountNo)

readCustomer (aC)

saveOrder (anOrd)

Figure 12-15

Problem domain and

data access layers for

first input message for

Create new phone order

C6696_12_CTP.4c 2/6/08 1:26 PM Page 450

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 12 Object-Oriented Design: Use Case Realizations ♦ 451

In the early days of interactive systems and graphical user interfaces (GUIs), developers
invented languages and tools that made it easy to develop systems with GUI elements such as
windows and buttons. Early versions of languages such as Visual Basic, Delphi, and
PowerBuilder were designed to make it easy to build interactive, event-driven, graphical sys-
tems. However, in these languages, the program logic was attached to the windows and other
graphical components. So, to move these systems to other environments, such as browser-
based systems, designers had to completely rewrite the system. In fact, systems developed in
this way became good illustrations of the problems that follow when programmers violate
design principles such as highly cohesive classes and separating responsibilities. When a class
mixes user-interface functions and business logic, upgrading and maintaining the system
become more difficult.

anOrd:Order anOI:OrderItem cp:CatalogProduct pi:ProductItem ii:InventoryItem

:OrderItemDA :CatalogProductDA :ProductItemDA :InventoryItemDA

«controller»
:OrderHandler

Order Clerk

anOI
anOI

anOI

addItem
(catalogID, prodID,

size, qty)

addItem
(catalogID, prodID,

size, qty)

findCP
(catalogID, prodID)

price := getPrice ()

findProdItem (prodID)

findInvItem (prodID, size)

status := updateQty (qty)

saveOrdItem (anOI)

readCP (cp)

description := getDescription ()

readPI (pi)

readInvItem (ii)

saveInvItem (ii)

createItem
(catalogID, prodID,

size, qty)

Figure 12-16

Business and data

access layers for second

input message for Create
new phone order

C6696_12_CTP.4c 2/6/08 1:26 PM Page 451

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

As object-oriented programming became more prevalent and tools integrated both object-
oriented programming and graphical interfaces, it became easier to build systems that could
be partitioned and in which responsibilities could be separated. User-interface classes did not
need to have business logic, other than edits on the input data. Designers could build multi-
layer systems that were more robust and easier to maintain, and they could apply the princi-
ples of good design. Tools such as Java Swing and Visual Studio .NET provide the capability
to easily build GUIs as well as sophisticated problem domain classes.

As the dialog design for a use case progresses, windows classes are added to the sequence
diagram—as the view layer. Typically, designers include one input form for all messages enter-
ing the system for the use case. If the messages are unique, however, then each may require its
own input form. Each message from an external actor must be entered into the system in
some way, and output messages must be displayed. One logical way to make this happen is
through a window form class that can accept input data and possibly display output data.
Returning to the Cancel an order use case, Figure 12-18 illustrates the result of defining a win-
dow class named :OrderWindowForm, which the clerk uses to start the use case. Remember
that when the use case was first described, we noted that some other search forms and use
case probably existed to help locate the correct order to cancel. In this figure, we maintain this
simple approach and only show the single form to cancel an order. The input form merely
allows the user to invoke the use case. It passes the message on to the controller. From there,

452 ♦ PART 3 SYSTEMS DESIGN TASKS

makePayment (ccInformation)

createPayment(paymentAmt,
payMethod, ccInformation)

Order Clerk

:OrderTranDA

:OrderHandler

anOT:OrderTransaction

completeOrder ()

completeOrder ()

anOrd:Order :OrderDA

makePayment (ccInformation)

totalAmount

totalAmount

saveOrdTran (anOT)

saveOrder (anOrd)

Figure 12-17

Business and data

access layers for final

input messages for

Create new phone order

Don’t be tempted to put business logic in the view layer classes.

BEST PRACTICE

C6696_12_CTP.4c 2/6/08 1:27 PM Page 452

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 12 Object-Oriented Design: Use Case Realizations ♦ 453

processing occurs as shown previously. Figure 12-18 only shows the :Order business object and
the :OrderDA data access object. However, all the other objects are part of the final solution.

Although adding the user interface class may sound simple, it must be done in conjunc-
tion with the detailed design of the user-interface forms, as described in Chapter 14. For
example, for the Cancel an order use case, are there two forms—one for input and another to
display the results of the cancellation—or is a single form used both for input and display? In
this design, we have assumed only one form. However, until the user sees one or two alterna-
tives, the design must remain tentative. Often, the preliminary use case design deals with two
layers—the business logic layer and the data access layer—and the user-interface layer design
is done concurrently with the detailed user-interface design.

We next turn to the view layer for the Create new phone order use case. As we just indicated,
identifying the user-interface classes is part of the user-interface design. In this case, we will
show the user interface classes to start a new order. The first message is to a main window that
will link to open other windows, including the new order window. The second input message
will be to the new :OrderWindowForm to begin processing a new order. Figure 12-19 is an
update of Figure 12-15, with the two view layer classes added and the data access classes
included. The additional objects have been added to the use case design based on the user-
interface decisions.

In the Cancel an order use cases, we first designed the business layer, then the data access
layer, and finally the view layer. For Create new phone order, we only began the design of the
view layer. We leave the rest of the view layer design and the data layer design as an exercise
for the student. Developers always start with the business layer. However, the order of design
for the data access layer and view layer varies. Some developers prefer doing the data access
layer first, while others do the view layer. The order often depends on the schedule and the
availability of users to help with the user interface.

cancelOrder (orderID)

beginCancel ()

Clerk

display()

:OrderDA

«controller»
:OrderHandler

anOrd:Order

«view»
:MainWindow

«view»
:OrderWindowForm

cancelOrder (orderID)

cancelOrder ()

saveOrd (anOrd)

anOrd := findOrder (OrderID)

createOrd (info…)

Figure 12-18

Partial sequence

diagram for Cancel an
order showing the view

layer objects

C6696_12_CTP.4c 2/6/08 1:27 PM Page 453

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

DESIGNING WITH COMMUNICATION DIAGRAMS

Communication diagrams and sequence diagrams are both interaction diagrams, and they
capture the same information. The process of designing is the same whether you use commu-
nication diagrams or sequence diagrams. Which model you use for design is primarily your
own personal preference. Many designers prefer to use sequence diagrams to develop the
design because use case descriptions and dialog designs follow a sequence of steps.
Communication diagrams are useful for showing a different view of the use case—one that

454 ♦ PART 3 SYSTEMS DESIGN TASKS

createOrder ()

anOrd

aC, anOrd

anOrd

Order Clerk

:OrderDA

«view»
:MainWindow

:OrderHandler aC:Customer

anOrd:Order

newOrder ()

newOrder (accountNo)

aC := findCustomer (accountNo)

createOrder (accountNo)

:CustomerDA

«view»
:OrderWindowForm

display ()

startOrder (accountNo)

readCustomer (aC)

saveOrder (anOrd)

Figure 12-19

Partial Create new phone
order with view layer

C6696_12_CTP.4c 2/6/08 1:27 PM Page 454

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 12 Object-Oriented Design: Use Case Realizations ♦ 455

emphasizes coupling. Communication diagrams are also easier to use to sketch design ideas
in a meeting, as they are easier to change and rearrange on the fly. We provide a brief intro-
duction to communication diagrams in this section.

A communication diagram uses the same symbols for actors, objects, and messages as a
sequence diagram. The lifeline and activation lifeline symbols are not used. However, a differ-
ent symbol, the link symbol, is used. Figure 12-20 illustrates the four symbols used in most
communication diagrams.

An actor who sends
the initial message

An object that
receives a message
and sends other
messages

1: firstMessage ()

4: finalResponse ()

2: secondMessage ()

3: returnMessage ()
Actor

:Object :Object2

A message arrow and
descriptive name

A link between
symbols that send or
receive messages

Figure 12-20

The symbols of a

communication diagram

The format of the message descriptor for a communication diagram differs slightly from
that for a sequence diagram. Because no lifeline shows the passage of time during a scenario,
each message is numbered sequentially to indicate the order of the messages. The syntax of
the message descriptor in a communication diagram is the following:

[true/false condition] sequence-number: return-value := message-name (parameter-list)

As you can see in Figure 12-20, a colon always directly follows the sequence number.
The connecting lines between the objects or between actors and objects represent links.

In a communication diagram, a link shows that two items share a message—that one sends a
message and the other receives it. The connecting lines are essentially used only to carry the
messages, so you can think of them as the wires used to transmit the messages.

Figure 12-21 presents a communication diagram for the RMO use case shown earlier with
the sequence diagram in Figure 12-12, Create new phone order. This communication diagram
contains only domain model objects and not the view layer or data access layer. However,
multilayer design can be done just as effectively with communication diagrams as with
sequence diagrams.

The numbers on the messages indicate the sequence in which the messages are sent. The
hierarchical dot numbering scheme is used when messages depend on other messages. In this
instance, the primary message, 1: startOrder (accountNo), is sent to :OrderHandler, which
then forwards a similar message, 1.1: createOrder (accountNo), to :Customer. The second
message is a direct result of the first, so it is numbered 1.1, as a subordinate to the primary
message. Sometimes new designers struggle with determining when to number messages as
subordinate and when to number them at the same level. For example, you could argue that
the entire sequence of messages depends on the first one being sent and that the entire set
should be subordinated to the initial message. One good way to determine how to number
messages is to have the first message start with an external actor. Other messages triggered by
the first message are dependent on it, and can be numbered with lower-level numbers. When
control returns to the sender, a new hierarchy begins. The hierarchy of messages can go as

link

in a communication
diagram, the connection
between classes that
indicates messages can
be passed

C6696_12_CTP.4c 2/6/08 1:27 PM Page 455

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

deep as required to indicate dependency. In Figure 12-21, the numbering sequence goes down
several levels. Because multiple input messages initiate a series of other messages, this dia-
gram is explicit in using the hierarchical numbering scheme.

When you compare the communication diagrams with the sequence diagrams, it should
be evident that the focus of a communication diagram is on the objects themselves. Drawing
a communication diagram is an effective way to get a quick overview of the objects that work
together. However, as you look at the diagrams, you should see that it is more difficult to visu-
alize the sequence of the messages. You have to hunt to find the numbers to see the sequence
of the messages. On the other hand, a communication diagram is an effective way to get a
quick overview of the collaborating objects.

Many designers use communication diagrams to sketch out a solution. If the use case is
small and not too complex, a simple communication diagram may suffice. However, for more
complex situations, a sequence diagram may be required to allow you to visualize the flow and
sequence of the messages. It is not unusual to find a mix within the same set of specifications:
some use cases are described by communication diagrams and others are shown with sequence
diagrams. As a system developer, you should be comfortable using both types of diagrams.

456 ♦ PART 3 SYSTEMS DESIGN TASKS

:Customer

:OrderHandler

:OrderItem

anO:Order

:Product :InventoryItem:CatalogProduct

Order Clerk

1:startOrder (accountNo)

2: addItem (catalogID, prodID, size, quantity)
3: completeOrder ()
4: makePayment (ccInformation)

2.1: addItem (catalogID, prodID, size, quantity)
3.1: completeOrder ()
4.1: makePayment (ccInformation)

1.1:createOrder (accountNo)

1.1.1: anOrd : = createOrder ()

4.1.1: createPayment
(paymentAmt,payMethod,
ccInformation)

:OrderTransaction

2.1.1: createOrdItem
(catalogID, prodID, size, quantity)

2.1.1.1: price := getPrice ()

2.1.1.2: description := getDescription ()

2.1.1.3: status := updateQty (quantity)

Figure 12-21

A communication

diagram for Create new
phone order

C6696_12_CTP.4c 2/6/08 1:27 PM Page 456

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 12 Object-Oriented Design: Use Case Realizations ♦ 457

UPDATING AND PACKAGING THE DESIGN CLASSES

Design class diagrams can now be developed for each layer. In the view layer and the data
access layer, several new classes must be specified. The domain layer also has some new
classes added for the use case controllers.

In Figure 12-5, we developed a partial first-cut design class diagram for the domain layer
based on the Cancel an order use case. At that point in the development, no method signatures
had been developed. Now that several sequence diagrams have been created, method informa-
tion can be added to the classes. We also mentioned that the navigation arrows may need updat-
ing from the decisions that were made during sequence diagram development. In Chapter 11, we
briefly introduced the idea of creating method names in the classes based on responsibilities
identified on the CRC cards. However, at that point, we did not have enough information to rig-
orously define method signatures with names, return types, and parameter lists. Use case realiza-
tion with sequence diagrams generates enough information to be rigorous in defining methods.

First, we add method signatures before finalizing visibility. Three types of methods are
found in most classes: (1) constructor methods, (2) data get and set methods, and (3) use case
specific methods. Remember that constructor methods create new instances of objects. Get and
set methods retrieve and update attribute values. Because every class must have a constructor,
and most usually have get and set methods, it is optional to include those method signatures
in the design class diagram. In fact, to avoid information overload, most developers do not
include those methods in the DCD. The third type of method—use case specific methods—
must be included in the design class diagram.

As in sequence diagrams, every message has a source object and a destination object. When
a message is sent to an object, it must be prepared to accept the message and initiate some
activity. This process is nothing more than invoking or calling a method on an object. In other
words, every message that appears in a sequence diagram requires a method in the destination
object. In fact, the syntax for a message looks very much like the syntax for a method. Thus, the
process of adding method signatures to a design class is to go through every sequence diagram
and find the messages sent to that class. Each message indicates a method.

Let’s work through one example based on the InventoryItem class. In Figure 12-14, two
messages are sent to InventoryItem. The first is a constructor and the other is an update mes-
sage, updateQty(qty). The update message return can be void, or it can return a success status
code as an int. We need to add a method signature that corresponds to this message. Adding
this method to the InventoryItem class is shown in Figure 12-22.

InventoryItem

+updateQty (qty): int

-inventoryID: string {key}
-size: string
-color: string
-options: string
-quantityOnHand: int
-averageCost: float
-reorderQuantity: int

Figure 12-22

Design class diagram for

the InventoryItem class

showing a method

signature

This process is continued for every class in the domain layer, including the added use case
controller classes. Figure 12-23 contains the completed design class diagram for the domain
layer classes. As you can see, this diagram provides excellent, thorough documentation of the
design classes and serves as the blueprint for programming the system.

C6696_12_CTP.4c 2/6/08 1:27 PM Page 457

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

458 ♦ PART 3 SYSTEMS DESIGN TASKS

Shipment

-trackingNo: string
-dateSent: date
-timeSent: time
-shippingCost: float
-dateArrived: date
-timeArrived: time

+createOrder (accountNo):Order
+getCustDetails ()
+findCustomer (accountNo)

Customer

-accountNo: string
-name: string
-billingAddress: string
-shippingAddress: string
-dayPhone: string
-nightPhone: string

-inventoryID: string
-price: float
-reason: string
-condition: string
-disposal: string

ReturnItem

«controller»
CustController

createCust (name, address, phone)

Order

-orderID: integer
-orderDate: date
-priorityCode: string
-shipping&Handling: float
-tax: float
-grandTotal: float

+createOrder (accountNo)
+cancelOrder (): int
+addItem (catalogID, prodID, size, quantity) : orderItem
+completeOrder () : float
+makePayment (ccInformation): int

+startOrder (accountNo)
+addItem (catalogID, prodID, size, quantity)
+completeOrder ()
+makePayment (ccInformation)

«controller»
OrderHandler

CatalogProduct

-catalogID: string
-productID: string
-price: float
-specialPrice: float

+findCP (catalogID, prodID)
+getPrice (): float

+getQOH (): integer
+updateQty (quantity): int
+findInvItem (prodID, size)

InventoryItem

-inventoryID: string
-size: string
-color: string
-options: string
-quantityOnHand: integer
-averageCost: float
-reorderQuantity: integer

Shipper

-shipperID: integer
-name: string
-address: string
-contactName: string
-telephone: string

OrderTransaction

-transactionID: integer
-date: date
-transactionType: string
-amount: float
-paymentMethod: string
-creditCardInformation: string

+createPayment (paymentAmt,
 payMethod, ccInformation)
+cancelPayment ()

-catalogID: string
-season: string
-year: string
-description: string
-effectiveDate: date
-endDate: date

Catalog

+inquireOnItem (prodID, size)

ProductItem

-productID:string
-vendor:string
-gender: string
-description: string

+getDescription (): string
+getQty (size): integer
+findProdItem (prodID)

+createOrderItem
 (catalogID, prodID, size, quantity)
+cancelItem ()

OrderItem

-productID: integer
-inventoryID: integer
-description: string
-price: float
-quantity: integer
-backorderStatus: string

Figure 12-23

Updated design class

diagram for the

domain layer

C6696_12_CTP.4c 2/6/08 1:27 PM Page 458

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 12 Object-Oriented Design: Use Case Realizations ♦ 459

The two major additions to the domain layer classes are the two use case handlers.
Additional navigation arrows have also been added to document which classes are visible from
the controller classes. The other navigation arrows, which were defined during the first cut of
the class diagram, have proved to be adequate for these two use cases. Additional use case
development will enable us to add more navigation arrows, such as those to the Order,
Shipment, and ReturnItem classes, as well as additional controller classes.

STRUCTURING THE MAJOR COMPONENTS WITH PACKAGE
DIAGRAMS

As you learned previously, a package diagram in UML is simply a high-level diagram that
allows designers to associate classes of related groups. The preceding sections illustrated three-
layer design, which includes the view layer, the domain layer, and the data access layer. In the
interaction diagrams, the objects from each layer were shown together in the same diagram.
However, designers sometimes need to document differences or similarities in the objects’
relationships in these different layers—perhaps separating or grouping them based on a dis-
tributed processing environment. This information can be captured by showing each layer as
a separate package. Figure 12-24 illustrates how these layers might be documented.

View Layer

Data Access Layer

MainWindow

y

Domain Layer

OrderHandler CustomerHandler

Catalog CatalogProduct ProductItem InventoryItem

Customer Order OrderItem OrderTransaction

CatalogDA

CustomerDA OrderDA OrderItemDA

CatalogProductDA ProductItemDA

OrdTransactionDA

InventoryDA

ProductQueryForm OrderWindowForm NewItemForm

Figure 12-24

Partial design of three-

layer package diagram

for RMO

C6696_12_CTP.4c 2/6/08 1:27 PM Page 459

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The package name is usually shown on the tab, although it also can be placed inside the
package rectangle for high-level views if no details are shown inside the package. In this
instance, the classes that belong to the package are placed inside the package rectangle.

The classes are placed inside the appropriate package based on the layer to which they
belong. Classes are associated with different layers as they are developed in the interaction
diagrams. To develop this package diagram, we simply extracted the information from design
class diagrams and interaction diagrams for each use case. Figure 12-24 is only a partial pack-
age diagram, because the packages contain only the classes from the use case interaction dia-
grams that were developed in this chapter.

The other symbol used on a package diagram is a dashed arrow, which represents a
dependency relationship. The arrow’s tail is connected to the package that is dependent, and
the arrowhead is connected to the independent package. Dependency relationships are used
in package diagrams, class diagrams, and even interaction diagrams. A good way to think
about a dependency relationship is that if one element changes (the independent element),
the other, dependent element might also have to be changed. Dependency relationships can
be between packages or between classes within packages. Figure 12-24 indicates that three
classes in the view layer are dependent on classes in the domain layer. So, for example, if a
change is made in the Order class, the OrderWindowForm class should be evaluated to cap-
ture that change. However, the reverse is not necessarily true. Changes to the view layer usu-
ally do not carry through to the domain layer.

Two examples of dependency relationships are given in Figure 12-24. The first, we have
seen, is between classes. Another example is less detailed and indicates a dependency between
packages. Figure 12-24 indicates that both the view layer and the domain layer depend on the
data access layer. For some simple queries against the database, the view layer may directly
access the data layer without requiring any involvement of the domain layer. These depen-
dencies indicate that changes to the data structures, as reflected in the data access layer, usu-
ally require changes at the domain layer and the view layer.

Package diagrams can also be nested to show different levels of packages. Figure 12-25
indicates that the packages, and some of the classes contained within them, are all part of the
order-entry subsystem. The RMO system can be divided into subsystems, and one way to doc-
ument them is with package diagrams. A major benefit of this documentation is that differ-
ent packages can be assigned to different teams of programmers to program the classes. The
dependency arrows will help them recognize where communication among teams is needed
to ensure an integrated system.

As shown in Figure 12-25, dependency is indicated from order fulfillment to order entry.
Also, order entry depends on the customer maintenance and catalog maintenance subsys-
tems. The order fulfillment subsystem may use the order classes defined in the order-entry
subsystem, or information may be sent from the order-entry subsystem. In any event, if any-
thing changes in the order-entry subsystem, the order fulfillment subsystem may also require
modification. As the classes are added to individual packages, the use of objects in a class will
determine the dependencies. For example, dependency arrows can also be determined after
the classes are assigned to packages. The order-entry subsystem obviously needs to access the
Customer class; thus, it depends on the customer maintenance package.

In summary, package diagrams show related components and dependencies. Generally,
we use package diagrams to relate classes or other system components such as network nodes.
The preceding figures show two uses of package diagrams—to divide a system into subsys-
tems and to show nesting within packages.

460 ♦ PART 3 SYSTEMS DESIGN TASKS

dependency

relationship

a relationship between
packages, classes, or use
cases that indicates a
change in the independent
item will require a
corresponding change in
the dependent item

C6696_12_CTP.4c 2/6/08 1:27 PM Page 460

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 12 Object-Oriented Design: Use Case Realizations ♦ 461

IMPLEMENTATION ISSUES FOR THREE-LAYER DESIGN

Using design class diagrams, interaction diagrams, and package diagrams, programmers can
begin to build the components of a system. So, implementation in this sense means con-
structing the system with a programming language such as Java or VB. NET. Over the last few
years, powerful integrated development environment (IDE) tools have been developed to
help programmers construct systems. Such tools as Jbuilder and Eclipse for Java, Visual Studio
for Visual Basic and C#, and C++Builder for C++ provide a high level of programming sup-
port, especially in building the view layer classes—the windows and window components of
a system.

Unfortunately, these same tools have propagated some bad programming habits in some
developers. The ease with which programmers can build GUI windows and automatically
insert code has allowed them to put all of the code in the windows. Each window component
has several associated events where code can be inserted. So, some programmers find it easy
to build a window with an IDE tool, let the tool automatically generate the class definition,

Order-Entry Subsystem

Data Access Layer

MainWindow ProductQuery

OrderWindow NewItemWindow

Domain Layer

OrderHandler AvailabilityHandler

Order OrderItem

OrderTransaction

OrderItemDA

OrdTransactionDA

View Layer

OrderDA

Shipper Shipment

Order Fulfillment Subsystem

Customer

Customer Maintenance
Subsystem

Catalog

Catalog Maintenance
Subsystem

CatalogProduct

ProductItem InventoryItem

Figure 12-25

RMO subsystem

packages

C6696_12_CTP.4c 2/6/08 1:27 PM Page 461

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

and merely insert business logic code. No new classes need to be defined, and little other cod-
ing is required. Many of these tools also have database engines, so the entire system can be
built with windows classes. Taking such shortcuts exacts a price later, however.

The problem with this approach is the difficulty of maintaining the system. Code snip-
pets scattered throughout the GUI classes are hard to find and maintain. Plus, when the user-
interface classes need to be upgraded, the programmer must also find and update the
business logic. If a network-based system needs to be enhanced to include a Web front end, a
programmer must rebuild nearly the entire system. Or, if two user interfaces are desired, all of
the business logic is programmed twice. Finally, without the tool that generates the code, it is
almost impossible to keep the system current. This problem is exacerbated by new releases of
the IDE tools, which may not be compatible with earlier versions. Many programmers have
had to completely rewrite the front end of a system because the new release of an IDE tool
did not generate code the same way the previous release did. So, we advise analysts and pro-
grammers to use good design principles in the development of new systems.

Based on the design principle of object responsibility, it is possible to define which pro-
gram responsibilities belong to each layer. If you follow these guidelines when writing code, a
system will be much easier to maintain throughout its lifetime. Let’s summarize the primary
responsibilities of each layer.

View layer classes should have programming logic to perform the following:

• Display electronic forms and reports.
• Capture input events such as clicks, rollovers, and key entry.
• Display data fields.
• Accept input data.
• Edit and validate input data.
• Forward input data to the domain layer classes.
• Start and shut down the system.

Domain layer classes should have the following responsibilities:

• Create problem domain (persistent) classes.
• Process all business rules with appropriate logic.
• Prepare persistent classes for storage to the database.

Data access layer classes should include the following:

• Establish and maintain connections to the database.
• Contain all Structured Query Language (SQL) statements.
• Process result sets (the results of SQL executions) into appropriate domain objects.
• Disconnect gracefully from the database.

DETAILED OO DESIGN AT RMO

Barbara Halifax and the RMO project team are in the middle of the first iteration. They have
been designing use cases based on the techniques explained earlier in this chapter. Each use
case is assigned to a particular developer. The team usually meets in a brainstorming session
to do a quick design for each use case using CRC cards. Then, if the developer in charge has
any concerns about the complexity of the solution, he or she will create a sequence diagram
for the use case. Before programming starts on a use case, the team will do one more walk-
through of the sequence diagrams. This may sound like a slow process, but the team works
together so closely that a walkthrough of a given use case usually takes only 15 to 30 minutes.
The team considers a walkthrough a small price to pay compared with the hours of program-
ming time than can be lost from a serious mistake. The other benefits of walkthroughs are
that all team members know what is going on, all programmers are using the same tech-
niques and patterns, and new team members get good mentoring. The discussions often cen-
ter not only on solutions, but on the patterns used to make the solutions better.

462 ♦ PART 3 SYSTEMS DESIGN TASKS

C6696_12_CTP.4c 2/6/08 1:27 PM Page 462

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 12 Object-Oriented Design: Use Case Realizations ♦ 463

DESIGN PATTERNS

We have stated many times that developing software systems is difficult and complex.
Historically, developers have not routinely developed systems that work correctly and solve the
right business problem. In addition, every system requires constant modification and upgrading.
Perhaps functions that were not added in the first version need to be added later, or errors need
to be fixed. Or maybe the business requirements have changed and the system needs to be
upgraded. The cost of maintaining a system over its lifetime can be many times the cost of the
original development. However, systems that are based on good design principles are not only
easier to develop and put into operation the first time, they are much easier to maintain. Such
concepts as object responsibility, coupling, cohesion, protection from variations, and indirection
were introduced in Chapter 11, and have been applied throughout the discussion in Chapter 12.

Continually think about protection from variations as you design—during
user-interface design, program logic design, and database design.

BEST PRACTICE

You are also familiar with the concepts of design patterns and with two specific patterns—
three-layer design and use case controllers. Patterns exist at various levels of abstraction. At a
concrete level, a pattern may be a class definition that is written in code to be used by any
developer. At the most abstract level, a pattern might only be an approach to solving a prob-
lem. For example, the multilayer design pattern tends to be more abstract, and states that it is
better to separate system functions into three layers of classes: the GUI logic is placed in a set
of view-layer classes that are separate and distinct from the domain layer and data access layer.
So, multilayer design is an approach to building a system rather than a specific solution.

C6696_12_CTP.4c 2/6/08 1:27 PM Page 463

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The use case controller pattern is more concrete. It defines a specific class or classes that
act as the switchboard for all incoming messages from the environment. As with all patterns,
there are multiple ways to implement the controller pattern. A single controller class can be
defined to handle all messages from the view layer to the domain layer. Alternatively, a class
can be defined for each use case, or some combination of the two can be used. Regardless of
the specific approach, the controller pattern does require a separate, specified class.

In their pioneering work, the GoF developed a basic classification scheme for patterns.
Figure 12-26 lists most of the original patterns and shows their classifications. The rows of the
table identify the scope of the pattern—whether the design is a class-level or object-level pattern.
Class-level patterns define solutions such as abstract classes that apply to static methods—in
other words, that do not actually instantiate objects. Object-level patterns apply when the
implementation of the pattern results in specific objects being instantiated from classes. The
columns of the table in Figure 12-26 classify the patterns as creational, structural, or behav-
ioral. Creational patterns help assign responsibilities to classes to instantiate new objects.
Structural patterns provide solutions to meet the architectural needs of the system—that is,
the set of classes and the ways they are related. Structural patterns help solve problems associ-
ated with indirection. Behavioral patterns provide solutions to problems that are related to
the way internal system processes execute. For example, the iterator pattern solves the prob-
lem of how to process arrays and lists effectively.

464 ♦ PART 3 SYSTEMS DESIGN TASKS

Creational Structural Behavioral

Class-level patterns Factory method Adapter Interpreter
Template Method

Object-level patterns Abstract Factory Adapter Chain of Responsibility
Builder Bridge Command
Prototype Composite Iterator
Singleton Decorator Mediator

Façade Memento
Proxy Flyweight

Observer
State
Strategy
Visitor

Scope of pattern Type of patternFigure 12-26

Classification of GoF

design patterns

Even though GoF patterns are some of the most fundamental and important, many other pat-
terns are also frequently used. We will limit our discussion to a few GoF patterns. To help you
begin learning about design patterns, we present at least one pattern from each category. The fol-
lowing sections explain the adapter, factory, singleton, and observer patterns. As you continue your
career, you can learn about the other patterns and add them to your knowledge and vocabulary.

C6696_12_CTP.4c 2/6/08 1:27 PM Page 464

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 12 Object-Oriented Design: Use Case Realizations ♦ 465

The adapter design pattern works just like the electrical adapter; it plugs an external class
into an existing system. The method signatures on the external class are different from the
method names being called from within the system, so the adapter class is inserted to convert
the method calls from within the system to the method names in the external class.

This pattern is a standard solution for protection from variations. The external class could
be a variable class—that is, it could be replaced at any time by an upgrade or an entirely dif-
ferent class. This situation often occurs when commercial software libraries are purchased to
provide special services. For example, in an organization’s internal payroll system, designers
might purchase a set of classes to calculate all of the complex income tax deductions. Because
tax deductions are a specialized area, and most companies do not have tax specialists on their
IT staff, an easy solution is simply to purchase those classes. However, knowing that the
classes could be replaced later if the tax law changes, a designer would be wise to create an
adapter class between the system and the tax calculation classes.

Figure 12-28 describes the details of the adapter design pattern. Be sure to read it carefully.
The sample diagram has four UML classes. The one labeled System represents the entire sys-
tem. The classes within the system use method names such as getSTax() and getUTax() to
access the tax routines. The tax calculator class has method names of findTax1() and
findTax2(). The two UML classes in the middle represent the adapter. The top class symbol
represents an interface class; an interface is useful to specify the method names. Although not
absolutely necessary, it is a simple way to specify and enforce the use of the correct method
names. The adapter class then inherits those method names and provides the method logic
for those methods. The body of each method simply extends a call to the final method name
of findTax1() or findTax2(). In other words, it “adapts,” or translates, the method names from
one to the other.

Figure 12-27

Electrical adapter

ADAPTER

We start with the adapter pattern because the concept is straightforward. The adapter pattern
is also a good example of the design principles of protection from variations and indirection.
An adapter pattern is roughly akin to an electrical adapter used for international travel. For
example, if you are traveling to England, you might decide to take your hair dryer with you. It
has a switch for either 110 volts or 220 volts, so you think you can run it on either voltage.
However, the plug on the end of the power cord has two flat prongs. Unfortunately, wall sock-
ets in England have slots for three large prongs set at angles. You need something that can
adapt the power cord’s two prongs to the wall’s three angled slots. Figure 12-27 shows a typi-
cal electrical adapter you might use.

C6696_12_CTP.4c 2/6/08 1:27 PM Page 465

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

As you become familiar with this design pattern, you will find that it has a multitude of
uses. It is a powerful and elegant solution to making a system more maintainable.
Experienced developers use this pattern frequently, both for foreign classes and for internally
written classes that may need frequent upgrades. It is an excellent way to insulate the system
from frequently changing classes.

FACTORY

In the discussions of detailed design, we have often expressed the need to have utility classes,
which include the data access objects or controller classes. An adapter in an adapter pattern sit-
uation is also a utility class. What class should create these utility objects? In most situations it
does not make sense for domain classes to create them, because it is not a listed responsibility

466 ♦ PART 3 SYSTEMS DESIGN TASKS

TaxCalculator

Adapter

A class must be replaced, or is subject to being replaced, by another standard
or purchased class. The replacing class already has a predefined set of method
signatures that are different from the method signatures of the original class.
How do you link in the new class with a minimum of impact so that you don’t
have to change the names throughout the system to the method names in
the new class?

Write a new class, the adapter class, which serves as a link between the original system
and the class to be replaced. This class has method signatures that are the same as
those of the original class (and the same as those expected by the system). Each method
then calls the correct desired method in the replacement class with the method signature.
In essence, it “adapts” the replacement class so that it looks like the original class.

There are several places in the RMO system where class libraries were purchased to
provide special processing. These purchased libraries provide specialized services
such as tax calculations and shipping and postage rates. From time to time, these
service libraries are updated with new versions. Sometimes a service library is even
replaced with one from an entirely different vendor. The RMO systems staff applies
protection from variations and indirection design principles by placing an adapter
in front of each replaceable class.

Benefits and
Consequences:

Example:

Solution:

Problem:

Name:

ABCTaxCalculator

«interface»
TaxCalculatorIF

TaxCalcAdapter

System

The adaptee class can be replaced as desired. Changes are confined to the adapter
class and do not ripple through the system.

Two classes are defined, an interface class and the adapter class.

Passed parameters may add more complexity, and it is difficult to limit changes to
the adapter class.

getSTax ()
getUTax ()

findTax1 ()
findTax2 ()

getSTax ()
getUTax ()

Figure 12-28

Adapter pattern template

C6696_12_CTP.4c 2/6/08 1:27 PM Page 466

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 12 Object-Oriented Design: Use Case Realizations ♦ 467

of domain classes. A popular solution in object-oriented programming is to have some classes
that are factories. In other words, these classes instantiate objects from utility classes.

For example, an executing customer object may need to write some data. If the factory
class is designed with static methods, which means they have global visibility, then the cus-
tomer object can just say to the factory, “Get me a reference to a data access object for the cus-
tomer table.” The factory will create a new data access object and return the reference. If a
customer data access object already exists in memory, it simply returns the reference. The cus-
tomer object does not have to be concerned about creating objects to access the database. It
just uses whatever is passed to it. This reduces coupling, enhances cohesion, and assigns
responsibilities to the right classes. Figure 12-29 is an example of a factory class.

Benefits and
Consequences:

Example:

Solution:

Problem:

Name: Factory or Factory Method

Who should be responsible for creating utility type objects that do not specifically
belong to the problem domain classes? These utility objects may also be accessed
from various places within the system, so a given object may need to be instantiated
from several classes.

Create an artifact that is a factory class. Its responsibility is only to instantiate utility
classes. In many situations only one instance of a particular utility class is allowed.
Hence, all classes that need access to the class come through the factory. The
factory ensures that only one instance is created.

Several places in the RMO system need to get data from an Order object and need
to have a reference to an Order_DA [data access] object. The Order_DA object may
or may not already have been instantiated. A data access factory is defined and an
interface is created. The requesting object uses the methods defined in the interface
to request the reference to the Order_DA object. It then can read the database
of orders.

Higher cohesion of problem domain classes
Less coupling between business logic layer and data layer
Smaller, more maintainable classes

Customer

Shipment

Order

Order_DA

«interface»
DAFactory_iF

getOrder_DA ()
getCustomer_DA ()
getShipment_DA ()

DAFactory

getOrder_DA ()
getCustomer_DA ()
getShipment_DA ()

-myODA: Order_DA
-myCDA: Customer_DA
-mySAD: Shipment_DA

:System «uses»

«creates»

«requiresDA»

public synchronized Order_DA getOrder_DA () {
 if (myODA == null) {
 myODA = new Order_DA ();
 }
 return myODA;
}

Figure 12-29

Factory method pattern

template

C6696_12_CTP.4c 2/6/08 1:27 PM Page 467

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The factory class has private attributes to hold the references to the data objects that are cre-
ated. When a request is made to get the reference to a data object, the method simply checks to
see if the attribute is null. If so, it creates a new object, places its reference in the attribute, and
returns the value. Otherwise, it just returns the parameter with the reference already in it.

SINGLETON

Some classes must have exactly one instance—for example, a factory class or the main win-
dow class. These classes have only one instance, but because they are instantiated from only
one place, it is easy to limit the logic to create only one object.

Other classes must have exactly one instance, but cannot be easily controlled by having
only one place to invoke the constructor. Depending on the flow of logic of the system, a par-
ticular class might get instantiated from multiple locations. However, only one instance needs
to be created, so the first one that needs it creates it and every other class uses the one that
was initially created. Usually, these classes are service classes that manage a system resource,
such as a database connection. In fact, the factory class that was just described is an excellent
example. This common problem has a standard solution: the singleton pattern.

Figure 12-30 presents the template of the description for the singleton pattern. Carefully study
the figure, especially the example section, to ensure that you understand how it works. The single-
ton pattern provides a solution in which the class itself controls the creation of only one instance.

Notice that the singleton pattern has the same basic logic as the factory method pattern.
The difference is that the singleton class has code that applies to itself as static methods. The
approach of the singleton solution is that the class has a static variable that refers to the cre-
ated object. A method such as getConnection is defined and used to get the reference to the
object. The first time the getConnection method is called, it instantiates an object and returns
a reference to it. On later calls to the method, it simply returns a reference to the already instan-
tiated object. As shown in the figure, the code is simple and elegant. The example does not
show the constructor; however, to ensure that only one instance is created, all constructors are
specified as private—not accessible—so that no other class can accidentally invoke one.

In the singleton template, the pattern is represented by code. To specify this in your
design, you should stereotype the class as a «singleton». Good programmers will recognize
the stereotype and know exactly how to code the class.

OBSERVER

The observer pattern is a powerful and comprehensive approach to solving an important sys-
tem problem, and has been used in practice for a long time. The observer pattern has been
used with all types of system development, even before object-oriented techniques were used.
It has several names—observer, listener, publish/subscribe. Sometimes you may hear developers
refer to it as the callback technique.

Let’s first describe a scenario to illustrate the problem. As discussed previously, a view
layer’s classes may have navigation visibility to the problem domain layer classes. This occurs
when the system has simple updates to classes that do not use a use case controller. In other
words, the windows classes know about and have visibility to various domain layer classes,
such as Customer and Order, and can send messages to those internal classes. However, when
the design is being developed, it is better if the domain layer classes are not coupled back to
the view layer classes. So, even though a Customer window can send a message to a Customer
object, the Customer object should not have navigation visibility to the Customer window
and should not be able to send a message to it.

468 ♦ PART 3 SYSTEMS DESIGN TASKS

C6696_12_CTP.4c 2/6/08 1:27 PM Page 468

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 12 Object-Oriented Design: Use Case Realizations ♦ 469

In this hypothetical example, let’s use three classes: a Customer window, an Order win-
dow, and an Order class. The first two are windows classes and part of the view layer. The
Order class is a domain layer class. The use case is Create new order. When the order was cre-
ated, navigation visibility was provided from both the Customer window and the Order win-
dow to the Order class. Figure 12-31 illustrates the three classes, with two windows and the
Order class. The navigation arrows show how messages can be sent.

Singleton

Only one instantiation of a class is allowed. The instantiation (new) can be
called from several places in the system. The first reference should make a
new instance, and later attempts should return a reference to the already
instantiated object. How do you define a class so that only one instanceis
ever created?

A singleton class has a static variable that refers to the one instance of itself.
All constructors to the class are private and are accessed through a method
or methods, such as getInstance(). The getInstance() method checks the variable;
if it is null, the constructor is called. If it is not null, then only the reference to
the object is returned.

In RMO’s system, the connection to the database is made through a class called
Connection. However, for efficiency, we want each desktop system to open
and connect to the database only once, and to do so as late as possible. Only
one instance of Connection, that is, only one connection to the database, is
desired. The Connection class is coded as a singleton. The following coding
example is similar to C# and Java.

Class Connection
{
private static Connection conn = null;
public synchronized static getConnection ()
 {
 if (conn == null) {
 conn = new Connection () ;}
 return conn;
 }
}

Another example of a singleton pattern is a utilities class that provides services for the system,
such as a factory pattern. Since the services are for the entire system, it causes confusion if
multiple classes provide the same services.

An additional example might be a class that plays audio clips. Since only one audio clip should
be played at one time, the audio clip manager will control that.
must be only one instance of the audio clip manager.

There are other times when only one instance of an object is needed, but if it is instantiated from
only one place, then a singleton may not be required. The singleton object controls itself
and ensures that only one instance is created—no matter how many times it is called and
wherever the call occurs in the system.

The code to implement the singleton is very simple, which is one of the desirable characteristics
of a good design pattern.

Benefits and
Consequences:

Example:

Solution:

Problem:

Name:

However, for this to work, there

Figure 12-30

Singleton pattern

template

C6696_12_CTP.4c 2/6/08 1:27 PM Page 469

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Notice that the Customer window includes fields called Past Purchases, Current Order
Amount, and Year-to-date Purchases. Because Rocky Mountain Outfitters (RMO) provides
special discounts to customers when their year-to-date purchases exceed a certain amount,
the telephone clerk watches these amounts as the order is being taken, and if necessary sug-
gests additional purchases to take advantage of the discounts. As items are added to the order,
the Current Order Amount and Year-to-date Purchases fields need to be updated. The data to
update these fields is contained in the Order class. But, because Order does not have naviga-
tion visibility to the Customer window, how can it send information to that window? A
novice designer would probably say, “Let’s just put a reference to the Customer window in
the Order object.” But that violates the loose coupling principle. Instead, the observer pattern
has been developed to handle this problem. Let’s see how that solution works.

The concept of the observer, or listener, pattern is to have the Customer window “listen”
for any changes to the Order object. When it “hears” of a change in an order, it updates the
appropriate fields. For the listening to work, the Order class must contain mechanisms that
(1) allow other classes to “subscribe” as listeners, and (2) “publish” the changes to the listen-
ers when they occur.

The Order class must have the following components. First, it must have an array of object
references that holds the list of all objects that have subscribed as listeners. The type of the
array is an object array. Second, the Order class must have a method, usually something like
addOrderListener, which can be called by potential listeners to subscribe. When a class wants
to subscribe as a listener, it just calls the addOrderListener method and sends a reference to
itself as a parameter. The logic of addOrderListener is simply to add the passed reference para-
meter to the array. Third, the Order class has a method named notify(), which iterates
through the array and sends a message to each object referenced in the array. Normally, along
with the Order class, a designer develops an interface class, which we call OrderListener, to

470 ♦ PART 3 SYSTEMS DESIGN TASKS

Order Window Customer Window

Customer Name Order no.

Items on Order

Shipping

Tax

Total Amt

Name

Street

City

State

Zip

Past Purchases

Current Order Amount

Year-to-date Purchases

-orderID: integer
-orderDate: date
-priorityCode: string
-shipping&Handling: float
-tax: float
-grandTotal: float

Order

+createOrder (accountNo)
+addItem (catalogID, prodID, size, quantity) : orderItem
+completeOrder () : float
+makePayment (ccInformation)

Figure 12-31

Three classes in the

Create new order
use case

C6696_12_CTP.4c 2/6/08 1:27 PM Page 470

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 12 Object-Oriented Design: Use Case Realizations ♦ 471

provide the method signature that will be called by the Order object—often this interface
class is called the publisher. The listener class—that is, the CustomerWindow—can then
inherit from the OrderListener interface to define the method signatures.

Figure 12-32 illustrates the changes required to implement the observer pattern. The
changes have been added in bold. The Order class has a new array variable called
orderListeners to hold the subscriber objects. Order has three new methods—one each to add
and remove listeners, and one to notify OrderListener of any changes. The third method is
private or invoked internally. The interface class OrderListener is used to specify the name of
the method that will be called when the listener is called back. (This callback approach is why
the pattern is sometimes called the callback pattern.)

«interface»
OrderListener

+amtChanged (float)

CustomerWindow

-orderID: integer
-orderDate: date
-priorityCode: string
-shipping&Handling: float
-tax: float
-grandTotal: float
-orderListeners: Array of objects

Order

+createOrder (accountNo)
+addItem (catalogID, prodID, size, quantity) : orderItem
+completeOrder () : float
+makePayment (ccInformation)
+addOrderListener (object)
+removeOrderListener (object)
-notify ()
 {...
 orderListeners [ix].amtChanged (newAmt)
 ...}

+createCustomerWindow()
 {...
 anOrder.addOrderListener (this);
 ...}

+amtChanged (float)

The CustomerWindow class has navigation visibility to the Order object—it is needed to
be able to subscribe to the Order object. The CustomerWindow also inherits from the
OrderListener interface so that it knows which method to implement. The OrderListener
interface is dependent on the Order class. So, if the Order class changes, the OrderListener
might need to change, too. The figure also includes some snippets of code to illustrate how
the methods are invoked between the classes. You should carefully read the code to ensure
that you understand how this works.

Because the link from the Order to the CustomerWindow is dynamic and temporary, it
has no negative side effects on the code. In other words, if the CustomerWindow were no
longer there, it would not affect the Order class. Or, if multiple windows wanted to listen to
the order amount changing, no changes would be required in the Order class. This type of
dynamic linking is a powerful and effective technique to avoid permanent coupling in places
where it could cause problems.

Figure 12-33 is the pattern template for the observer pattern. The listener design pattern is
used extensively as the technique to handle event processing by window objects. The class
windows libraries for Java and .NET are all implemented using the listener pattern as the fun-
damental event-handling technique. The explanation in Figure 12-33 illustrates the names

Figure 12-32

Implementation of the

observer pattern

C6696_12_CTP.4c 2/6/08 1:27 PM Page 471

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

used in the window’s events. For example, the method on a window button to add a listener
is addListener(). The method invoked on the subscriber is actionPerformed(). By using these
standard names, the window’s GUI classes become standard classes that can be reused in any
application.

472 ♦ PART 3 SYSTEMS DESIGN TASKS

TaxCalculator

Observer

One class has attributes that change or events that other classes need to know
about. However, the original class does not know which other classes are
interested in its internal activity. How do you allow classes to observe this
behavior without coupling them?

The original class has methods to allow other classes to dynamically register
themselves for particular events. Then when the event occurs, it notifies all
those classes that have registered.

This pattern is also called the listener pattern, and the observer class is
sometimes referred to as the listener class.

The entire windows event-handling system is based on this pattern. Windows
components, such as text boxes and buttons, should not be directly coupled to
classes and methods that process events, such as text entry or button clicks.
Each component will have a method such as addListener () to allow
other objects to register themselves. In windows, the listener method that
notifies the listeners when an event occurs is often called actionPerformed ().

Benefits and
Consequences:

Example:

Solution:

Problem:

Name:

This pattern is a variation of the publish/subscribe pattern.

This pattern keeps coupling low because dynamic coupling does not cause
maintenance problems.

If a class has many observers, there can be a delay in notifying all of them.

ListenerClass

ListenerClass ()
actionPerformed ()

ListenableClass

addListener ()
removeListener ()

onActionPerformed ()

The ListenerClass
constructor will call
listenableClass.addListener ()
to register itself.

The onActionPerformed () method
will invoke the
listenerClass.actionPerformed ()
method.

«interface»
ListenerIF

actionPerformed ()

Figure 12-33

Observer pattern

template

C6696_12_CTP.4c 2/6/08 1:27 PM Page 472

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 12 Object-Oriented Design: Use Case Realizations ♦ 473

SUMMARY
Multilayer design of new systems is not limited to architectural design. Detailed object-oriented design also
identifies the various levels in a system. The identification of classes and their responsibilities follows the three-
layer pattern explained in Chapters 11 and 12. The three layers are the view layer, the business or logic layer,
and the data access layer.

Three-layer design is part of the overall movement in systems design based on design patterns. A design
pattern is a standard solution or template that has proven to be effective to a particular requirement in sys-
tems design. The other pattern, which was introduced in Chapter 11, is that of a use case controller. The use
case controller pattern addresses the need to isolate the view layer from the business layer in a simple way
that limits coupling between the two layers.

Detailed design is use case driven in that each use case is designed separately. This type of design is called
use case realization. The two primary models used for detailed design are the design class diagram and the
sequence diagram. Design class diagrams were introduced in Chapter 11.

Detailed design of use cases entails identifying problem domain classes that collaborate to carry out a use
case. Using a sequence diagram or a communication diagram, each input message from an external actor is
expanded to identify and define every internal message that is required to complete the event triggered by
the input message. In the first cut, only the problem domain classes and their internal messages are identified.
Next the solution is completed by adding the classes and messages for the view layer and the data access layer.

The final step is to convert each message, along with the passed parameters and return values, into
method signatures located in the correct classes. This information is used to update the design class diagram.
Changes are also made to the design class diagram to show required visibility between the classes in order to
send messages in the sequence diagrams.

As classes are identified during the design process, they are added to the DCD. The DCD can also be par-
titioned into several layers, or into subsystems. Package diagrams are used to partition the DCD into appropri-
ate packages. Dependency between the classes and the packages is also added to the package diagram.

Latter sections of this chapter expanded the idea of design patterns by introducing several popular ones:
the adapter pattern, factory pattern, singleton pattern, and observer pattern. The adapter pattern implements
the design principle of protection from variations by allowing a changing piece of the system simply to plug
into a more stable part of the system. When the pluggable piece of the system needs to change, it can just be unplugged and the updated
component can be plugged in.

The factory and singleton patterns have much in common. Both return a reference to a specific object. Both allow only one instance of
that object to exist in the system. The difference is that the factory pattern enforces a single occurrence for utility classes and the singleton
only enforces a single occurrence for itself.

The observer pattern is a standard technique upon which GUI event-driven windows are built. The basic idea is that when an event
happens to an object, it notifies all of its observers that the event occurred. The observers can then take any appropriate action.

KEY TERMS

activation lifeline, p. 436

dependency relationship, p. 460

design patterns, p. 431

link, p. 455

separation of responsibilities, p. 446

use case realization, p. 430

C6696_12_CTP.4c 2/6/08 1:27 PM Page 473

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

474 ♦ PART 3 SYSTEMS DESIGN TASKS

REVIEW QUESTIONS

1. What is meant by the term use case realization?

2. What are the benefits of knowing and using design

patterns?

3. What is the contribution to systems development from the

Gang of Four?

4. What are the five components of a standard design pat-

tern definition?

5. List five elements included in a sequence diagram.

6. How does a sequence diagram differ from a system

sequence diagram?

7. What is the difference between doing design with CRC

cards and designing with sequence diagrams?

8. Explain the syntax of a message on a sequence diagram.

9. What is the purpose of the first-cut sequence diagram?

What kinds of classes are included?

10. What is the purpose of the use case controller?

11. What is meant by an activation lifeline? How is it used on

a sequence diagram?

12. Describe the three major steps in developing the set of

messages for the first-cut sequence diagram.

13. What assumptions do developers usually make while doing

the initial use case realization?

14. When doing multilayer design, what is the order in which

layers should be designed? Why?

15. What is the principle of separation of responsibilities?

16. Explain the two methods of accessing the database to cre-

ate new objects in memory.

17. What symbols are used in a communication diagram, and

what do they mean?

18. Explain the components of message syntax in a communi-

cation diagram. How does this syntax differ from that of a

sequence diagram message?

19. Explain the method signature syntax on design classes.

20. What is meant by a dependency relationship? How is it

indicated on a drawing?

21. List the major implementation responsibilities of each layer

of a three-layer design.

22. What is the purpose of the adapter pattern?

23. What common element is found in the singleton pattern

and the factory pattern? What is the basic difference

between the two?

24. What common programming construct is based on the

observer pattern?

C6696_12_CTP.4c 2/6/08 1:27 PM Page 474

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 12 Object-Oriented Design: Use Case Realizations ♦ 475

THINKING CRITICALLY

Exercises 1, 2, 3, and 4 are based on the solutions you devel-
oped in Chapter 7 for “Thinking Critically” exercises 1 and 2, which
are based on a university library system. Alternatively, your teacher
may provide you with a use case diagram and a class diagram.

1. Figure 12-34 is a system sequence diagram for the use case

Check out books in the university library system. Do the

following:

a. Develop a first-cut sequence diagram, which only

includes the actor and problem domain classes.

b. Add the view layer classes and the data access classes

to your diagram from part a.

c. Develop a design class diagram based on the domain

class diagram and the results of parts a and b.

d. Develop a package diagram showing a three-layer solu-

tion with view layer, domain layer, and data access layer

packages.

LibraryEmployee

verifyPatron (ID, name)

title, author, copy#, dueDate

closeLoan ()

verificationInformation

checkOutBook (catalog#)

:System

Loop for all books

Figure 12-34

System sequence

diagram for Check
out books

C6696_12_CTP.4c 2/6/08 1:27 PM Page 475

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

476 ♦ PART 3 SYSTEMS DESIGN TASKS

SystemLibraryEmployee

Remove book from
loan

Change book status/
display status

Scan book into system

Collect returned books

Place book on
reshelve cart

Close return
form

Close form

for each book

end for each

Figure 12-35

Activity diagram for

Return books

2. Figure 12-35 is an activity diagram for the use case Return

books in the university library system. Do the following:

a. Develop a first-cut sequence diagram, which only

includes the actor and problem domain classes.

b. Add the view layer classes and the data access classes

to your diagram from part a.

c. Develop a design class diagram based on the domain

class diagram and the results of parts a and b.

d. Develop a package diagram showing a three-layer

solution with view layer, domain layer, and data access

layer packages.

C6696_12_CTP.4c 2/6/08 1:27 PM Page 476

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 12 Object-Oriented Design: Use Case Realizations ♦ 477

3. Figure 12-36 is a fully developed use case description for

the use case Receive new book in the university library sys-

tem. Do the following:

a. Develop a first-cut sequence diagram, which only

includes the actor and problem domain classes.

b. Add the view layer classes and the data access classes

to your diagram from part a.

c. Develop a design class diagram based on the domain

class diagram and the results of parts a and b.

d. Develop a package diagram showing a three-layer

solution with view layer, domain layer, and data access

layer packages.

4. Integrate the design class diagram solutions that you

developed for exercises 1, 2, and 3 into a single design

class diagram.

Use Case Name: Receive new book
Scenario: Receive new book
Triggering Event: Newly purchased book arrives

Brief Description: The librarian decides on purchases of new books and places order (prior to this use case).
Shipments of new books arrive. Each new book is assigned a library catalog number. Some
books are simply additional copies of existing titles. Some books are new editions of existing titles.
Some books are new titles and new physical books. The new book information is added to the
system.

Actors: Library Employee
Stakeholders: Library Employee, Librarian
Preconditions: None

Postconditions:
Flow of Activities:

Book Title exists, Physical Book exists

Exception
Conditions: Duplicate numbers require further research and reassignment of catalog numbers.

Actor System

1. Collect new books from receipt of shipment.
2. For each book, research book category and catalog
 numbers. Assign tentative number.
3a. If new copy of existing title, enter book information
 and catalog number into system.
3b. If new edition of existing title, enter book information,
 edition information, and catalog number.
3c. If new title, assign general catalog number. Assign
 book copy number.
4. Mark book with number.
5. Place book on shelving cart.
6. Repeat for each book (back to step 2).

3a.1 Update catalog with new
 number.Verify that not duplicate.
3b.1 Update catalog with new
 number. Verify that not duplicate.
3c.1 Verify that catalog number
 not duplicate.

Figure 12-36

Fully developed use case

description for Receive
new book

C6696_12_CTP.4c 2/6/08 1:27 PM Page 477

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

478 ♦ PART 3 SYSTEMS DESIGN TASKS

Exercises 5, 6, 7, and 8 are based on the solutions you devel-
oped for “Thinking Critically” exercises 3 and 4 in Chapter 7, which
describe a dental clinic system. Alternatively, your teacher may pro-
vide you with a use case diagram and class diagram.

5. Figure 12-37 is a system sequence diagram for the use case

Record dental procedure in the dental clinic system. Do the

following:

a. Develop a first-cut sequence diagram, which only

includes the actor and problem domain classes.

b. Add the view layer classes and the data access classes

to your diagram from part a.

c. Develop a design class diagram based on the domain

class diagram and the results of parts a and b.

d. Develop a package diagram showing a three-layer

solution with view layer, domain layer, and data access

layer packages.

Dental Aide

findPatient (name, telephone#)

updateVerificationMessage

closePatientFile

patientID, name, telephone, address

enterDescription (dentistID, hygienistID, description)

:System

Loop for all procedures

Figure 12-37

System sequence

diagram for Record dental
procedure

C6696_12_CTP.4c 2/6/08 1:27 PM Page 478

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 12 Object-Oriented Design: Use Case Realizations ♦ 479

6. Figure 12-38 is an activity diagram for the use case Enter

new patient information in the dental clinic system. Do the

following:

a. Develop a first-cut sequence diagram, which only

includes the actor and problem domain classes.

b. Add the view layer classes and the data access classes

to your diagram from part a.

c. Develop a design class diagram based on the domain

class diagram and the results of parts a and b.

d. Develop a package diagram showing a three-layer

solution with view layer, domain layer, and data access

layer packages.

System

Existing

Dental Aide

Review completed patient
information form

Patient in existing
household? or new

household?

Enter head of
household
identifier

new HH

Enter HH information

Verify HH information
correct

Enter new patient
information

Verify patient
information correct

End new patient
process

Build new
patient record

Close new
patient process

Build new HH
record

Display HH
information

Figure 12-38

Activity diagram for Enter
new patient information

C6696_12_CTP.4c 2/6/08 1:27 PM Page 479

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

480 ♦ PART 3 SYSTEMS DESIGN TASKS

1. Collect all written notes about procedures
 completed this month.
2. View several patients to verify that procedure
 information has all been entered.
3. Review log of payments received and verify that
 payments have been entered.
4. Enter month-end date and request invoices.
5. Verify invoices are correct.
6. Close invoice print process.

2.1 Display patient information, including
 procedure records.
3.1 Display patient information, including
 account balance and last payment
 transactions.
4.1 Review every patient record. Find unpaid
 procedures. List on report as aged or
 current. Calculate and break down by
 copay and insurance pay.

Use Case Name: Print patient invoices
Scenario: Print patient invoices
Triggering Event: At the end of the month, invoices are printed

Brief Description: The billing clerk manually checks to see that all procedures have been collected. The clerk spot-
checks, using the written records to make sure procedures have been entered by viewing them
with the system. The clerk also makes sure all payments have been entered. Finally, he/she prints
the invoice reports. An invoice is sent to each patient.

Actors: Billing Clerk
Stakeholders: Billing Clerk, Dentist
Preconditions: Patient Records must exist, Procedures must exist

Postconditions:
Flow of Activities:

Patient Records are updated with last billing date

Exception
Conditions: None

Actor System

7. Figure 12-39 is a fully developed use case description for

the use case Print patient invoices in the dental clinic sys-

tem. Do the following:

a. Develop a first-cut sequence diagram, which only

includes the actor and problem domain classes.

b. Add the view layer classes and the data access classes

to your diagram from part a.

c. Develop a design class diagram based on the domain

class diagram and the results of parts a and b.

d. Develop a package diagram showing a three-layer

solution with view layer, domain layer, and data access

layer packages.

Figure 12-39

Fully developed use case

description for Print
patient invoices

8. Integrate the design class diagram solutions that you

developed for exercises 5, 6, and 7 into a single design

class diagram.

9. In Chapter 7, “Thinking Critically” exercises 7, 8, and 10,

you developed a system sequence diagram for Add a new

vehicle to an existing policy. You were also provided a list

of classes. Based on the SSD you created, develop a

detailed communication diagram. Include only problem

domain classes.

C6696_12_CTP.4c 2/6/08 1:27 PM Page 480

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 12 Object-Oriented Design: Use Case Realizations ♦ 481

10. In Figure 12-40, the package on the left contains the

classes in a payroll system. The package on the right is a

payroll tax subsystem. What technique would you use to

integrate the tax subsystem into the payroll system? Show

how you would solve the problem by modifying the exist-

ing classes (in either figure). What new classes would you

add? Use UML notation.

Payroll System Payroll Tax Subsystem

calcHourlyPayrollTax (payperiod, payAmt, depend)
calcSalaryPayrollTax (month, salary, depend)

Employee PRollTaxCalculator

PRTHourly (pp, amt, dep)
PRTSal (pp, amt, dep)

Figure 12-40

Payroll system packages

and classes

C6696_12_CTP.4c 2/6/08 1:27 PM Page 481

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

482 ♦ PART 3 SYSTEMS DESIGN TASKS

11. The right side of Figure 12-41 shows a system that simu-

lates the manufacture of computer chips. The equations in

the simulation system are based on statistical probabilities

of failures in the manufacturing. The package on the left

illustrates a window (and its associated class definition)

that will display these results dynamically. The values in the

top five fields are obtained when the window is opened.

However, the bottom three fields should be updated after

every iteration, which takes about one second. From a

design standpoint, the simulation system on the right

should not be coupled to the user-interface system on the

left. Show how you would solve this problem, including

any class methods for existing classes, new classes, and

new definitions that you would use. Use UML notation.

Simulation Window

View Layer Domain Layer

RunNumber: int
BatchNumber: int
DataFileNumber: int
NumbOfCycles: int
TargetErrRate: float
CurrentIteration: int
CurrentErrRate: float
EstEndingRate: float

SimulationWindow

RunNumber: int
BatchNumber: int
DataFileNumber: int
NumbOfCycles: int
TargetErrRate: float
CurrentIteration: int
CurrentErrRate: float
EstEndingRate: float

SimulationRun

Run Number

Batch Number

Data File Number

Number of Cycles

Target Error Rate

Current Iteration

Current Error Rate

Estimated Ending Rate

Figure 12-41

Manufacture simulation

system classes

C6696_12_CTP.4c 2/6/08 1:27 PM Page 482

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

EXPERIENTIAL EXERCISES

1. Design patterns are a young but rich field of research and

study. Locate the original GoF book on design patterns and

briefly summarize two or three patterns discussed in that

text. This exercise will begin your lifelong learning process

of reading and understanding technical design material.

2. Find another book on design patterns and report on two

or three of the patterns listed in that book. (See the

“Further Resources” list later in this chapter for sugges-

tions.) Some patterns are for network designs. Books on

enterprise-level designs frequently discuss Internet design.

3. Do more research into the basics of Web services. Chapter 14

will also add to your understanding. Find some articles on the

Internet that explain how Web services are implemented.

Then find an example of a company that provides Web ser-

vices and document what it provides and how it does so.

4. Find a system that was developed using Visual Studio .NET

(or Visual Basic). Find one that has both an Internet user

interface and a network-based user interface. Is it multi-

layer? Where is the business logic? Can you identify the

view layer (user interface) classes, the domain layer classes,

and the data access layer classes?

12. Review the observer pattern description in Figure 12-42.

Find the errors in the diagram. After you have identified

the errors, state how you would fix them.

-monitorID: integer
-todayDate: date
-statusCode: string
-monitorListeners: Array of objects

HeartMonitor «interface»
MonitorListener

+begin ()
+pause ()
+reset ()
+removeMonitorListener (object)
-notify ()
 {...
 monitorListeners[ix].postHeartRate (value)
 ...}

MonitorWindow

+createMonitorWindow ()
 {...

 ...}

+displayHeartRate (int)

Figure 12-42

Sample observer pattern

with errors

CHAPTER 12 Object-Oriented Design: Use Case Realizations ♦ 483

C6696_12_CTP.4c 2/6/08 1:27 PM Page 483

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

484 ♦ PART 3 SYSTEMS DESIGN TASKS

CASE STUDIES
THE REAL ESTATE MULTIPLE LISTING SERVICE SYSTEM

In Chapter 7, you developed a use case diagram, a fully developed

use case description or activity diagram, and a system sequence dia-

gram for the real estate company’s use cases. In Chapter 11, you

developed a three-layer design and a set of CRC cards for a particu-

lar use case. Based on those solutions or others provided by your

teacher, develop a first-cut sequence diagram for the problem

domain classes. Next, add view layer and data access layer objects

to the sequence diagram. Convert the domain class diagram to a

design class diagram by typing the attributes and adding method

signatures.

THE STATE PATROL TICKET PROCESSING SYSTEM

In Chapter 7, you developed a use case diagram, a fully developed use

case description, a system sequence diagram, and a statechart for the

use cases Recording a traffic ticket and Scheduling a court date. In

Chapter 11 you developed a first-cut DCD and a set of CRC cards

for each use case. Based on those solutions or others provided by

your teacher, develop a first-cut sequence diagram for the problem

domain classes. Next, add view layer and data access layer objects

to the sequence diagram. Convert the domain class diagram you

developed in Chapter 5 to a design class diagram by typing the

attributes and adding method signatures.

THE DOWNTOWN VIDEOS RENTAL SYSTEM

In Chapter 7, you developed a use case diagram, an activity dia-

gram, and a system sequence diagram for the use cases Rent

movies and Return movies. In Chapter 11 you developed a first-cut

DCD and sets of CRC cards. Based on those solutions or others pro-

vided by your teacher, and the problem domain class diagram in

Figure 12-43, develop a first-cut communication diagram for the

problem domain classes. Next, add view layer and data access layer

objects to the communication diagram. Convert the domain class

diagram to a design class diagram by typing the attributes and

adding method signatures.

THEEYESHAVEIT.COM BOOK EXCHANGE

In Chapter 7, you developed a use case diagram, a fully developed

use case description, and a system sequence diagram for the use

cases Add a seller and Record a book order. In Chapter 11 you

developed a first-cut DCD and a set of CRC cards. Based on those

solutions or others provided by your teacher, and the problem

domain class diagram in Figure 12-44, develop a first-cut communi-

cation diagram for the problem domain classes. Next, add view

layer and data access layer objects to the communication diagram.

Convert the domain class diagram to a design class diagram by typ-

ing the attributes and adding method signatures.

ConceptualMovie/Game

movie/GameID {key}
title
producer
releaseDate
copyCost
rentalPrice
movieCategory
rentalType
rating
copyCount

 Movie/GameCopy

movie/GameID {key}
copyNumber {key}
datePurchased
rentalStatus
condition

VideoRentalItem
(line item)

rentalPrice
dueDate
dateReturned
timeReturned

Customer

customerID {key}
familyName
address
telephone
eMailAddress
status

FamilyMember

customerID {key}
name {key}
age
limitations

Rental

rentalID {key}
rentalDate
totalAmt
status

0..*

1

1..*

1..*

0..*

1

1

1..*

Figure 12-43

Domain class diagram

for the DownTown Videos

Rental System

C6696_12_CTP.4c 2/6/08 1:27 PM Page 484

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 12 Object-Oriented Design: Use Case Realizations ♦ 485

RETHINKING ROCKY MOUNTAIN OUTFITTERS

This chapter presented the solutions for the Cancel

an order use cases. It also presented a partial solu-

tion for Create new phone order. Complete the

solution for the Create new phone order use case by

adding view and data layer classes to the sequence diagrams. In

Chapter 11 you developed architectural designs and CRC cards for

two more use cases, Create order return and Record order fulfill-

ment. Develop three-layer sequence diagrams for these two use

cases. Update the design class diagram for the problem domain

classes with method signatures from these use case designs.

Compare this solution to what you developed in Chapter 11.

FOCUSING ON RELIABLE PHARMACEUTICAL SERVICE

In Chapter 7, you developed a use case dia-

gram, a domain model class diagram, and

detailed documentation for three use cases. In

Chapter 11 you developed a three-layer architectural solution and

CRC cards. Develop three-layer sequence diagrams for those same

use cases. Update the design class diagram with attribute informa-

tion and method signatures derived from the sequence diagrams.

Compare this to your DCD solution from Chapter 11.

Person

personID
name
address
telephone
eMailAddress

Order

orderID
orderDate
totalAmount
status

BuyerAccount

creditCardInfo
lastPurchaseDate
lastPurchaseAmt

0..11

0..1
1

1

SellerAccount

serviceRating
openBalance
lastPaymentDate
lastPaymentAmt

PhysicalBook

isbn
title
author
publisher
publishDate
condition
price
keywords
saleStatus

BookOnOrder

dateEmailToSeller
dateShipped
amtDueSeller
sellerPaidStatus
sellerPaidDate
buyerSatisfactCode
buyerSatisfactComments

1

1

1..*

1

1

1..*
1..*

0..1

Figure 12-44

Domain class diagram

for TheEyesHaveIt.com

Book Exchange

FURTHER RESOURCES

Grady Booch, James Rumbaugh, and Ivar Jacobson, The Unified

Modeling Language User Guide. Addison-Wesley, 1999.

Grady Booch, et al., Object-Oriented Analysis and Design with

Applications, Third Edition. Addison-Wesley, 2007.

Frank Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and

M. Stal, Pattern-Oriented Software Architecture: A System of

Patterns. John Wiley and Sons, 1996.

Hans-Erik Eriksson, Magnus Penker, Brian Lyons, and David

Fado, UML 2 Toolkit. John Wiley and Sons, 2004.

Alur Deepak, J. Crupi, and D. Malks, Core J2EE Patterns: Best

Practices and Design Strategies. Sun Microsystems Press, 2001.

Erich Gamma, R. Helm, R. Johnson, and J. Vlissides, Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1995.

Mark Grand, Patterns in Java, Volumes I and II. John Wiley and

Sons, 1999.

Craig Larman, Applying UML and Patterns: An Introduction to

Object-Oriented Analysis and Design and the Unified Process (3rd

ed.). Prentice-Hall, 2004.

David S. Linthicum, Next Generation Application Integration:

From Simple Information to Web Services. Addison-Wesley, 2004.

James Rumbaugh, Ivar Jacobson, and Grady Booch, The Unified

Modeling Language Reference Manual. Addison-Wesley, 1999.

C6696_12_CTP.4c 2/6/08 1:27 PM Page 485

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

486

DESIGNING DATABASES13
L E A R N I N G O B J E C T I V E S

After reading this chapter, you should be able to:

■ Describe the differences and similarities between relational and object-

oriented database management systems

■ Design a relational database schema based on an entity-relationship diagram

■ Design an object database schema based on a class diagram

■ Design a relational schema to implement a hybrid object-relational database

■ Describe the different architectural models for distributed databases

CHAPTER

C H A P T E R O U T L I N E

Databases and Database Management Systems

Relational Databases

Object-Oriented Databases

Hybrid Object-Relational Database Design

Data Types

Distributed Databases

C6696_13_CTP.4c 2/6/08 1:27 PM Page 486

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 13 Designing Databases ♦ 487

NATIONWIDE BOOKS: DESIGNING A NEW DATABASE

The project leaders for Nationwide Books’ (NB) new Web-based ordering system were
meeting with NB’s database administrator to discuss how they were going to tackle the
database design. Present at the meeting were Sharon Thomas (who had led the project
since its inception), Vince Pirelli (a contractor who had completed most of the analysis
activities), and Bill Anderson (NB’s database administrator, who hadn’t directly partici-
pated in earlier phases of the project). Sharon started the meeting by saying, “When the
project began, we planned to use the existing DB2 database. Maria Peña (the chief informa-
tion officer) also wanted us to use this project to try out newer development methods and
tools that we knew we’d need in the coming years. So we hired Vince to do the systems
analysis using object-oriented (OO) methods. We also purchased a Java development tool
and sent two of our programmers to a three-week training course.”

Vince added, “I developed a traditional entity-relationship diagram as a basis for design-
ing the interface between the new programs and the existing database. I checked the docu-
mentation for the current database schema. Most of the information needed by the new
system is already there, although we need to add some new fields and we might have to
change some table definitions. But now that we’re looking at design and implementation,
I’m concerned that we may be handicapping our new system with an outdated database
management system.”

Sharon added, “We decided to use this project as a pilot for OO development and imple-
mentation to speed up development. But I’m not sure that we’ll actually achieve that if we use
the existing DB2 database.”

Bill said, “I understand your concerns about interfacing OO programs with a relational
database. It sounds like trying to mix oil and water, but it’s really not that difficult. We just
hired Anna Jorgensen, a database developer who has experience writing Java programs that
interface with relational databases. I had her look over the class diagrams and use cases for
the new system, and she assures me that the interfaces to DB2 will be straightforward and
simple. I can assign her to your project for a few months if you need the help.”

Vince responded, “There’s no question that an interface can be written, but it may not be
as easy as Anna thinks. There are also problems with basic elements of an OO program such
as inheritance and class methods. Those things simply can’t be represented in a relational
database. That’ll force us to make some ugly compromises when designing and implement-
ing our OO code. I’m afraid that it’ll lengthen our design and implementation phases
and make future system upgrades much more difficult.”

“I’ve done some research, and there are quite a few commercial OO data packages avail-
able,” said Sharon. “None of them have the track record of DB2, but then the technology is
fairly new. An OO database management system would be the best fit with Java, and it would
open the door to other new technologies.”

Vince added, “It would also shorten the time we need to complete design, because an OO
database is directly based on the class diagram.”

Sharon continued, “I think that this project presents a good opportunity for us to make
the leap to the next generation of database software.”

Bill was taken aback by the suggestion but quickly replied, “Are you asking me to support
two redundant databases based on two completely different database technologies?
Management is already breathing down my neck about my budget. I’ve managed to save
some money by switching to cheaper server hardware, but it’s only a marginal improvement.
Supporting another database management system will be a major effort. And we’d need new
hardware to isolate the new DBMS from our existing database. I can’t risk having a buggy new
piece of software crash our operational databases. I’d also need to train my people to bring
them up to speed on the new software. And how will we get data back and forth between the
two databases?”

C6696_13_CTP.4c 2/6/08 1:27 PM Page 487

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Sharon let the air clear for a bit before replying. “There’s no question that it’ll be a major
undertaking. I’m not trying to downplay that fact or stretch your people and equipment to the
breaking point. But there comes a time when we need to move on to newer technologies, and I
think that time has arrived. I’ve already discussed the idea with Maria, and she thinks it deserves
serious consideration.”

Vince added, “I can do the database design either way. But we won’t be building a base for
the future if we use a relational database. I could design it to interface with indexed files on an
old IBM mainframe if I had to. But why would we want to go backward instead of forward?”

OVERVIEW

Databases and database management systems are important components of a modern infor-
mation system. Databases provide a common repository for data so that it can be shared by
the entire organization. Database management systems provide designers, programmers, and
end users with sophisticated capabilities to store, retrieve, and manage data. Sharing and
managing the vast amounts of data needed by a modern organization simply would not be
possible without a database management system.

In Chapter 5, you learned to construct conceptual data models. You also learned to
develop entity-relationship diagrams (ERDs) for traditional analysis and domain model class
diagrams for object-oriented (OO) analysis. To implement an information system, developers
must transform a conceptual data model into a more detailed database model and implement
that model within a database management system.

The process of developing a database model depends on the type of conceptual model
and the type of data management software that will be used to implement the system. This
chapter describes the design of relational and OO data models and their implementation
using database management systems. We will use examples from Rocky Mountain Outfitters
to show how information collected during analysis is used in database design.

DATABASES AND DATABASE MANAGEMENT SYSTEMS

A database (DB) is an integrated collection of stored data that is centrally managed and con-
trolled. A database typically stores information about dozens or hundreds of entity types or
classes. The information stored includes entity or class attributes (for example, names, prices,
and account balances) as well as relationships among the entities or classes (for example, which
orders belong to which customers). A database also stores descriptive information about data,
such as field names, restrictions on allowed values, and access controls to sensitive data items.

A database is managed and controlled by a database management system (DBMS). A DBMS
is a system software component that is generally purchased and installed separately from other
system software components (for example, operating systems). Examples of modern database
management systems include Microsoft Access, Oracle, DB2, ObjectStore, and Gemstone.

DBMS COMPONENTS

Figure 13-1 illustrates the components of a typical database and its interaction with a DBMS,
application programs, users, and administrators. The database consists of two related informa-
tion stores: the physical data store and the schema. The physical data store contains the raw bits
and bytes of data that are created and used by the information system. The schema contains
descriptive information about the data stored in the physical data store, including the following:

• Access and content controls, including allowable values for specific data elements, value
dependencies among multiple data elements, and lists of users allowed to read or update
data element contents

488 ♦ PART 3 SYSTEMS DESIGN TASKS

database (DB)
an integrated collection
of stored data that is
centrally managed and
controlled

database

management

system (DBMS)

system software that
manages and controls
access to a database

physical data

store
the storage area used by
a database management
system to store the raw
bits and bytes of a
database

schema
a description of the
structure, content, and
access controls of a
physical data store or
database

C6696_13_CTP.4c 2/6/08 1:27 PM Page 488

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 13 Designing Databases ♦ 489

• Relationships among data elements and groups of data elements (for example, a pointer
from data describing a customer to orders made by that customer)

• Details of physical data store organization, including type and length of data elements,
the locations of data elements, indexing of key data elements, and sorting of related
groups of data elements

A DBMS has four key components: an application program interface (API), a query inter-
face, an administrative interface, and an underlying set of data access programs and subrou-
tines. Application programs, users, and administrators never access the physical data store
directly. Instead, they tell an appropriate DBMS interface what data they need to read or write,
using names defined in the schema. The DBMS accesses the schema to verify that the
requested data exists and that the requesting user has appropriate access privileges. If the
request is valid, the DBMS extracts information about the physical organization of the
requested data from the schema and uses that information to access the physical data store
on behalf of the requesting program or user.

Databases and database management systems provide several important data access and
management capabilities, including the following:

• Simultaneous access by many users and application programs
• Access to data without writing application programs (that is, via a query language)
• Application of uniform and consistent access and content controls

For these and other reasons, databases and DBMSs are widely used in modern informa-
tion systems.

Schema

Physical
store
data

Application
program

Database

Application
program
interface

Database
administrator

Database access and control logic

End-user
query

processor

Administrative
interface

User

Database management system

Figure 13-1

The components of a

database and database

management system and

their interaction with

application programs,

users, and database

administrators

C6696_13_CTP.4c 2/6/08 1:27 PM Page 489

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Each table in a relational database must have a unique key. A key is a field or set of fields, the
values of which occur only once in all the rows of the table. If only one field (or set of fields) is

DATABASE MODELS

DBMSs have evolved through a number of technology stages since their introduction in the
1960s. The most significant change has been the type of model used to represent and access
the content of the physical data store. Four such model types have been widely used:

• Hierarchical
• Network
• Relational
• Object-oriented

The hierarchical model was developed in the 1960s. It represented data using sets of
records organized into a hierarchy. The network model also grouped data elements into sets
of records but allowed those records to be organized into more flexible network structures.
Relational DBMSs replaced hierarchical and network DBMSs by the end of the twentieth cen-
tury, though a few of the older concepts live on in object-oriented DBMSs.

The remainder of this chapter describes design issues for the relational and object-oriented
database models—the most widely used models for both existing and newly developed systems.
Design issues for the hierarchical and network models are not described, because few students of
information systems are likely to encounter DBMSs based on these models.

RELATIONAL DATABASES

The relational database model was first developed in the early 1970s. Relational databases
were slow to be adopted because of the difficulties inherent in converting systems imple-
mented with hierarchical and network DBMSs and because of the amount of computing
resources required to implement them successfully. As with other theoretical advances in
computer science, it took many years for the cost-performance characteristics of data storage
and processing hardware to catch up to the new theory. Relational DBMSs now account for
the vast majority of DBMSs currently in use.

A relational database management system (RDBMS) is a DBMS that organizes stored
data into structures called tables, or relations. Relational database tables are similar to con-
ventional tables—that is, they are two-dimensional data structures of columns and rows.
However, relational database terminology is somewhat different from conventional table and
file terminology. A single row of a table is called a row, tuple, or record, and a column of a
table is called a field, or attribute. A single cell in a table is called a field value, attribute value,
or data element.

Figure 13-2 shows the content of a table as displayed by the Microsoft Access relational
DBMS. Note that the first row of the table contains a list of field names (column headings)
and that the remaining rows contain a collection of field values that each describe a specific
product. Each row contains the same fields in the same order.

490 ♦ PART 3 SYSTEMS DESIGN TASKS

Relational databases and SQL are two of the most important knowledge
areas you will need to master as a system developer. This is equally true
whether you are emphasizing the traditional or the object-oriented
approach.

BEST PRACTICE

relational database

management

system (RDBMS)

a database management
system that stores data
in tables

table
a two-dimensional data
structure containing
rows and columns; also
called a relation

row
the portion of a table
containing data that
describes one entity,
relationship, or object;
also called tuple or record

field
a column of a relational
database table; also
called an attribute

field value
the data value stored in a
single cell of a relational
database table; also
called an attribute value
or data element

key
a field that contains a
value that is unique
within each row of a
relational database table

C6696_13_CTP.4c 2/6/08 1:27 PM Page 490

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 13 Designing Databases ♦ 491

unique, then that key is also called the table’s primary key. If there are multiple unique fields (or
sets of fields), the database designer must choose one of the possible keys as the primary key.

Key fields can be natural or invented. An example of a natural key field in chemistry is the
atomic weight of an element in a table containing descriptive data about elements.
Unfortunately, in business, few natural key fields are useful for information processing, so most
key fields in a relational database are invented. Your wallet or purse probably contains many
examples of invented keys, including your Social Security number, driver’s license number,
credit card numbers, and ATM card number. Some invented keys are externally assigned (for
example, a Federal Express tracking number) and some are internally assigned (for example,
ProductID in Figure 13-2). Invented keys are guaranteed to be unique because unique values
are assigned by a user, application program, or the DBMS as new rows are added to the table.

Keys are a critical element of relational database design because they are the basis for rep-
resenting relationships among tables. Keys are the “glue” that binds rows of one table to
rows of another table—in other words, keys relate tables to each other. For example, con-
sider the ERD fragment from the Rocky Mountain Outfitters example shown in Figure 13-3
and the tables shown in Figure 13-4. The ERD fragment shows an optional one-to-many
relationship between the entities Product Item and Inventory Item. The upper table in Figure
13-4 contains data representing the entity type ProductItem. The lower table contains data
representing the entity type InventoryItem.

One
field or

attribute

One field,
or attribute,

value

One row,

tuple, or

record

Field, or

attribute,

names

Figure 13-2

A partial display of a

relational database table

The relationship between the entity types Product Item and Inventory Item is represented
by a common field value within their respective tables. The field ProductID (the primary key
of the ProductItem table) is also stored within the InventoryItem table, where it is called a
foreign key. A foreign key is a field that duplicates the primary key of a different (or foreign)
table. In Figure 13-4, the existence of the value 1244 as a foreign key within the InventoryItem
table indicates that the values of Vendor, Gender, and Description in the first row of the
ProductItem table also describe inventory items 86779 through 86790.

Product
Item

Inventory
Item

Figure 13-3

A portion of the RMO

entity-relationship

diagram

foreign key
a field value stored in
one relational database
table that also exists as a
primary key value in
another relational
database table

primary key
a key used to uniquely
identify a row of a
relational database table

C6696_13_CTP.4c 2/6/08 1:27 PM Page 491

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

DESIGNING RELATIONAL DATABASES

Relational database design begins with either an ERD or a class diagram. This section explains
how to create a schema based on an ERD. Schema creation based on a class diagram is dis-
cussed later in this chapter.

To create a relational database schema from an ERD, follow these steps:

1. Create a table for each entity type.

2. Choose a primary key for each table (invent one, if necessary).

3. Add foreign keys to represent one-to-many relationships.

4. Create new tables to represent many-to-many relationships.

5. Define referential integrity constraints.

6. Evaluate schema quality and make necessary improvements.

7. Choose appropriate data types and value restrictions (if necessary) for each field.

The following subsections discuss each of these steps in detail.

492 ♦ PART 3 SYSTEMS DESIGN TASKS

Figure 13-4

A relationship between

data in two tables; the

foreign key ProductID in

the InventoryItem table

refers to the primary key

ProductID in the

ProductItem table

C6696_13_CTP.4c 2/6/08 1:27 PM Page 492

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 13 Designing Databases ♦ 493

Order

Shipper

Order
Transaction

Return Item

Customer

Catalog
Product

Product
Item

Order Item Shipment

Catalog

Inventory
Item

Figure 13-5

The RMO entity-

relationship diagram

REPRESENTING ENTITIES

The first step to creating a relational DB schema is to create a table for each entity on the ERD.
Figure 13-5 shows the ERD for the RMO customer support system. Eleven entities are represented,
and a table is created for each entity. The data fields of each table will be the same as those defined
for the corresponding entity on the ERD. To avoid confusion, table and field names should match
the names used on the ERD and in the project data dictionary. Initial table definitions for the RMO
case are shown in Figure 13-6.

C6696_13_CTP.4c 2/6/08 1:27 PM Page 493

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

After creating tables for each entity, the designer selects a primary key for each table. If a
table already has a field or set of fields that are guaranteed to be unique, the designer can
choose that field or set of fields as the primary key (for example, TrackingNo in the Shipment
table). If the table contains no primary keys, the designer must invent a new key field. Any
name can be chosen for an invented key field, but the name should indicate that the field is a
unique key field. Typical names include Code, Number, and ID, possibly combined with the
table name (for example, ProductCode and OrderID). Figure 13-7 shows the entity tables and
identifies the primary key of each.

494 ♦ PART 3 SYSTEMS DESIGN TASKS

Table Attributes

Catalog Season, Year, Description, EffectiveDate, EndDate

CatalogProduct Price, SpecialPrice

Customer AccountNo, Name, BillingAddress, ShippingAddress,
DayTelephoneNumber, NightTelephoneNumber

InventoryItem InventoryID, Size, Color, Options, QuantityOnHand,
AverageCost, ReorderQuantity

Order OrderID, OrderDate, PriorityCode,
ShippingAndHandling, Tax, GrandTotal,
EmailAddress, ReplyMethod, PhoneClerk,
CallStartTime, LengthOfCall, DateReceived,
ProcessorClerk

OrderItem Quantity, Price, BackorderStatus

OrderTransaction Date, TransactionType, Amount, PaymentMethod

ProductItem ProductID, Vendor, Gender, Description

ReturnItem Quantity, Price, Reason, Condition, Disposal

Shipment TrackingNo, DateSent, TimeSent, ShippingCost,
DateArrived, TimeArrived

Shipper ShipperID, Name, Address, ContactName, Telephone

Figure 13-6

An initial set of tables

representing the entities

on the ERD

Table Attributes

Catalog CatalogID, Season, Year, Description, EffectiveDate, EndDate

CatalogProduct CatalogProductID, Price, SpecialPrice

Customer AccountNo, Name, BillingAddress, ShippingAddress, DayTelephoneNumber,
NightTelephoneNumber

InventoryItem InventoryID, Size, Color, Options, QuantityOnHand, AverageCost,
ReorderQuantity

Order OrderID, OrderDate, PriorityCode, ShippingAndHandling, Tax, GrandTotal,
EmailAddress, ReplyMethod, PhoneClerk, CallStartTime, LengthOfCall,
DateReceived, ProcessorClerk

OrderItem OrderItemID, Quantity, Price, BackorderStatus

OrderTransaction OrderTransactionID, Date, TransactionType, Amount, PaymentMethod

ProductItem ProductID, Vendor, Gender, Description

ReturnItem ReturnItemID, Quantity, Price, Reason, Condition, Disposal

Shipment TrackingNo, DateSent, TimeSent, ShippingCost, DateArrived, TimeArrived

Shipper ShipperID, Name, Address, ContactName, Telephone

Figure 13-7

Entity tables with the

primary keys identified

in bold

C6696_13_CTP.4c 2/6/08 1:27 PM Page 494

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 13 Designing Databases ♦ 495

REPRESENTING RELATIONSHIPS

Relationships are represented within a relational database by foreign keys. Which foreign keys
should be placed in which tables depends on the type of relationship being represented. The
RMO ERD in Figure 13-5 contains nine one-to-many relationships. There is one many-to-many
relationship between Catalog and Product Item, which is represented by two one-to-many rela-
tionships and the associative entity Catalog Product. The rules for representing each relationship
type are as follows:

• One-to-many relationship. Add the primary key field(s) of the “one” entity type to the
table that represents the “many” entity type.

• Many-to-many relationship. If no associative entity exists for the relationship, create a
new table to represent the relationship. If an associative entity does exist, use its table to
represent the relationship. Use the primary key field(s) of the related entity types as the
primary key of the table that represents the relationship.

Figure 13-8 shows the results of representing the nine one-to-many relationships within
the tables from Figure 13-7. Each foreign key represents a single relationship between the
table containing the foreign key and the table that uses that same key as its primary key. For
example, the field AccountNo was added to the Order table as a foreign key representing the
one-to-many relationship between the entities Customer and Order. The foreign key
ShipperID was added to the Shipment table to represent the one-to-many relationship
between Shipper and Shipment. When representing one-to-many relationships, foreign keys
do not become part of the primary key of the table to which they are added.

Figure 13-9 expands the table definitions in Figure 13-8 by updating the CatalogProduct
table to represent the many-to-many relationship between Catalog and ProductItem. The primary
key of the CatalogProduct becomes the combination of CatalogID and ProductID. The old

Table Attributes

Catalog CatalogID, Season, Year, Description, EffectiveDate, EndDate

CatalogProduct CatalogProductID, Price, SpecialPrice

Customer AccountNo, Name, BillingAddress, ShippingAddress, DayTelephoneNumber,
NightTelephoneNumber

InventoryItem InventoryID, ProductID, Size, Color, Options, QuantityOnHand, AverageCost,
ReorderQuantity

Order OrderID, AccountNo, OrderDate, PriorityCode, ShippingAndHandling, Tax,
GrandTotal, EmailAddress, ReplyMethod, PhoneClerk, CallStartTime,
LengthOfCall, DateReceived, ProcessorClerk

OrderItem OrderItemID, OrderID, InventoryID, TrackingNo, Quantity, Price, BackorderStatus

OrderTransaction OrderTransactionID, OrderID, Date, TransactionType, Amount,
PaymentMethod

ProductItem ProductID, Vendor, Gender, Description

ReturnItem ReturnItemID, OrderID, InventoryID, Quantity, Price, Reason, Condition,
Disposal

Shipment TrackingNo, ShipperID, DateSent, TimeSent, ShippingCost, DateArrived,
TimeArrived

Shipper ShipperID, Name, Address, ContactName, Telephone

Figure 13-8

Represent one-to-many

relationships by adding

foreign key attributes

(shown in italic)

C6696_13_CTP.4c 2/6/08 1:27 PM Page 495

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

primary key CatalogProductID is discarded. The two fields that make up the primary key are
also foreign keys. CatalogID is a foreign key from the Catalog table, and ProductID is a for-
eign key from the ProductItem table.

ENFORCING REFERENTIAL INTEGRITY

Now that we’ve described how foreign keys are used to represent relationships, we need to
describe how to enforce restrictions on the values of those foreign key fields. The term referential
integrity describes a consistent state among foreign key and primary key values. Each foreign key
is a reference to the primary key of another table. In most cases, a database designer wants to
ensure that these references are consistent. That is, foreign key values that appear in one table
must also appear as the primary key value of the related table. A referential integrity constraint is
a constraint on database content—for example, “an order must be from a customer” and “an
order item must be something that we normally stock in inventory.”

The DBMS usually enforces referential integrity automatically after the schema designer
identifies primary and foreign keys. Automatic enforcement is implemented as follows:

• When a row containing a foreign key value is created, the DBMS ensures that the value
also exists as a primary key value in the related table.

• When a row is deleted, the DBMS ensures that no foreign keys in related tables have the
same value as the primary key of the deleted row.

• When a primary key value is changed, the DBMS ensures that no foreign key values in
related tables contain the same value.

In the first case, the DBMS will simply reject any new row containing an unknown foreign
key value. In the latter two cases, a database designer usually has some control over how ref-
erential integrity is enforced. When a row containing a primary key is deleted, the DBMS can
be instructed to delete all rows in other tables with corresponding keys. Or, the designer can
instruct the DBMS to set all corresponding foreign keys to NULL. A similar choice is available
when a primary key value is changed. The DBMS can be instructed to change all corresponding
foreign key values to the same value or to set foreign key values to NULL.

496 ♦ PART 3 SYSTEMS DESIGN TASKS

Table Attributes

Catalog CatalogID, Season, Year, Description, EffectiveDate, EndDate

CatalogProduct CatalogID, ProductID, Price, SpecialPrice

Customer AccountNo, Name, BillingAddress, ShippingAddress, DayTelephoneNumber,
NightTelephoneNumber

InventoryItem InventoryID, ProductID, Size, Color, Options, QuantityOnHand, AverageCost,
ReorderQuantity

Order OrderID, AccountNo, OrderDate, PriorityCode, ShippingAndHandling, Tax,
GrandTotal, EmailAddress, ReplyMethod, PhoneClerk, CallStartTime,
LengthOfCall, DateReceived, ProcessorClerk

OrderItem OrderItemID, OrderID, InventoryID, TrackingNo, Quantity, Price, BackorderStatus

OrderTransaction OrderTransactionID, OrderID, Date, TransactionType, Amount,
PaymentMethod

ProductItem ProductID, Vendor, Gender, Description

ReturnItem ReturnItemID, OrderID, InventoryID, Quantity, Price, Reason, Condition, Disposal

Shipment TrackingNo, ShipperID, DateSent, TimeSent, ShippingCost, DateArrived,
TimeArrived

Shipper ShipperID, Name, Address, ContactName, Telephone

Figure 13-9

The table CatalogProduct

is modified to represent

the many-to-many

relationship between

Catalog and ProductItem

referential

integrity
a consistent relational
database state in which
every foreign key value
also exists as a primary
key value

C6696_13_CTP.4c 2/6/08 1:27 PM Page 496

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 13 Designing Databases ♦ 497

EVALUATING SCHEMA QUALITY

After creating a complete set of tables, the designer should check the entire schema for qual-
ity. Ironing out any schema problems at this point ensures that none of the later design effort
will be wasted. A high-quality data model has the following features:

• Uniqueness of table rows and primary keys
• Lack of redundant data
• Ease of implementing future data model changes

Unfortunately, there are few objective or quantitative measures of database schema qual-
ity. Database design is the final step in a modeling process, and as such, it depends on the
analyst’s experience and judgment. Various formal and informal techniques for schema eval-
uation are described in the following sections. No one technique is sufficient by itself, but a
combination of techniques can ensure a high-quality database design.

Row and Key Uniqueness

A fundamental requirement of all relational data models is that primary keys and table rows
be unique. Because each table must have a primary key, uniqueness of rows within a table is
guaranteed if the primary key is unique. Data access logic within programs usually assumes
that keys are unique. For example, a programmer writing a program to view customer records
will generally assume that a database query for a specific customer number will return one
and only one row (or none if the customer doesn’t exist in the database). The program will
be designed around this assumption and will probably fail if the DBMS returns two records.

A designer evaluates primary key uniqueness by examining assumptions about key con-
tent, the set of possible key values, and the methods by which key values are assigned.
Internally invented keys are relatively simple to evaluate in this regard because the system itself
creates them. That is, an information system that uses invented keys can guarantee uniqueness
by implementing appropriate procedures to assign key values to newly created rows.

It is common for several different programs in an information system to be capable of cre-
ating new database rows. Each program needs to be able to assign keys to newly created data-
base rows. However, the importance of key uniqueness requires that key-creation procedures
be consistently applied throughout the information system.

Because key creation and management are such pervasive problems in information sys-
tems, many relational DBMSs automate key creation. Such systems typically automate a spe-
cial data type for invented keys (for example, the AutoNumber type in Microsoft Access). The
DBMS automatically assigns a key value to newly created rows and communicates that value
to the application program for use in subsequent database operations. Embedding this capa-
bility in the DBMS frees the IS developer from designing and implementing customized key-
creation software modules.

Invented keys that aren’t assigned by the information system must be given careful scrutiny to
ascertain their uniqueness and usefulness over time. For example, employee databases in the
United States commonly use Social Security numbers as keys. Because the U.S. Government has a
strong interest in guaranteeing the uniqueness of Social Security numbers, the assumption that
they will always be unique seems safe. But other assumptions concerning their use deserve closer
examination. For example, will all employees who are stored in the database have a Social Security
number? What if the company opens a manufacturing facility in Europe or South America?

Invented keys assigned by nongovernmental agencies deserve even more careful scrutiny. For
example, Federal Express, UPS, and most shipping companies assign a tracking number to each
shipment they process. Tracking numbers are guaranteed to be unique at any given point in
time, but are they guaranteed to be unique forever (that is, are they ever reused)? Could reuse of
a tracking number cause a primary key duplication in the RMO database? And what would hap-
pen if two different shippers assigned the same tracking number to two different shipments?

C6696_13_CTP.4c 2/6/08 1:27 PM Page 497

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Uncertainties such as these make internally invented keys the safest long-term strategy in
most cases. Although internally invented keys may initially entail additional design and
development, they prevent one possible source of upheaval after the database is installed. Few
changes have the pervasive and disruptive impact of a database key change in a large infor-
mation system with terabytes of stored data and thousands of application programs and
stored queries.

Data Model Flexibility

Database flexibility and maintainability were primary goals in the original specification of
the relational database model. A database model is considered flexible and maintainable if
changes to the database schema can be made with minimal disruption to existing data con-
tent and structure. For example, adding a new entity to the schema should not require
redefining existing tables. Adding a new one-to-many relationship should only require
adding a new foreign key to an existing table. Adding a new many-to-many relationship
should only require adding a single new table to the schema.

Data redundancy plays a key role in determining the flexibility and maintainability of any
database or data model. A truism of database processing is that “redundant storage requires
redundant maintenance.” That is, if data is stored in multiple places, each of those places
must be found and manipulated when data is added, changed, or deleted. Of course, per-
forming any of those actions on multiple data storage locations is more complex (and less
efficient) than performing them on a single location. Failure to update, modify, or delete mul-
tiple copies of the same information creates a condition called inconsistency. By definition,
inconsistency cannot occur if information is stored only once.

The relational data model deliberately stores key values multiple times (that is, redundantly)
and non-key fields only once. Key values are stored once as a primary key and again each time
they are used as a foreign key. The model requires such redundancy because correspondence
between the primary and foreign key is the only way to represent relationships among tables,
but using redundant key values adds complexity to processes that manipulate key fields.

Relational DBMSs ensure consistency among primary and foreign keys by enforcing referen-
tial integrity constraints, but there are no automatic mechanisms for ensuring consistency among
other redundant data items. Thus, the best way to avoid inconsistency in a relational database is
to avoid redundancy in non-key fields. Database designers can avoid such redundancy by never
introducing it into a schema—but it is all too easy to let redundancy slip in. If data redundancy is
somehow introduced into the schema, it must be identified and removed. The most commonly
used process to detect and eliminate redundancy is database normalization.

Database Normalization

Normalization is a formal technique used to evaluate the quality of a relational database
schema. It determines whether a database schema contains any of the “wrong” kinds of
redundancy and defines specific methods to eliminate them. Normalization is based on a
concept called functional dependency and on a series of normal forms:

• First normal form (1NF). A table is in first normal form if it contains no repeating fields
or groups of fields.

• Functional dependency. A functional dependency is a one-to-one relationship between
the values of two fields. The relationship is formally stated as follows: Field A is functionally
dependent on field B if for each value of B there is only one corresponding value of A.

• Second normal form (2NF). A table is in second normal form if it is in first normal form
and if each non-key element is functionally dependent on the entire primary key.

• Third normal form (3NF). A table is in third normal form if it is in second normal form
and if no non-key element is functionally dependent on any other non-key element.

498 ♦ PART 3 SYSTEMS DESIGN TASKS

normalization
a technique that ensures
relational database
schema quality by
minimizing data
redundancy

first normal

form (1NF)
a relational database
table structure that has
no repeating fields or
groups of fields

functional

dependency
a one-to-one
correspondence between
two field values

second normal

form (2NF)
a relational database
table structure in which
every non-key field is
functionally dependent
on the primary key

third normal

form (3NF)
a relational database
table structure in which
no non-key field is
functionally dependent
on any other non-key
field(s)

C6696_13_CTP.4c 2/6/08 1:27 PM Page 498

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 13 Designing Databases ♦ 499

Let’s explain these concepts further.

First Normal Form First normal form defines a structural constraint on table rows. Repeating
fields such as Dependent in Figure 13-10 are not allowed within any table in a relational database.
Repeating groups of fields are also prohibited. In practice, this constraint is not difficult to enforce
because relational DBMSs do not allow a designer to define a table containing repeating fields.

Functional Dependency Functional dependency is a difficult concept to describe and
apply. The most precise way to determine whether functional dependency exists is to pick two
fields in a table and insert their names in the italicized portion of the definition shown previ-
ously. For example, consider the fields ProductID and Description in the ProductItem table
(see Figure 13-4). ProductID is an internally invented primary key that is guaranteed to be
unique within the table. To determine whether Description is functionally dependent on
ProductID, substitute Description for field A and ProductID for field B in the italicized por-
tion of the functional dependency definition:

Description is functionally dependent on ProductID if for each value of
ProductID there is only one corresponding value of Description.

Now ask whether the statement is true for all rows that could possibly exist in the ProductItem
table. If the statement is true, Description is functionally dependent on ProductID. As long as the
invented key ProductID is guaranteed to be unique within the ProductItem table, the preceding
statement is true. Therefore, Description is functionally dependent on ProductID.

A less formal way to analyze functional dependency of Description on ProductID is to
remember that the ProductItem table represents a specific product sold by RMO. If that product
can have only a single description in the database, Description is functionally dependent on the
key of the table that represents products (ProductID). If it is possible for any product to have mul-
tiple descriptions, the field Description is not functionally dependent on ProductID.

Second Normal Form To evaluate whether the ProductItem table is in second normal
form, we must first determine whether it is in first normal form. Because it contains no
repeating fields, it is in first normal form. Then we must determine whether every non-key
field is functionally dependent on ProductID (that is, consider each field in turn by substitut-
ing it for A in the functional dependency definition). If all the non-key fields are functionally
dependent on ProductID, the ProductItem table is in 2NF. If one or more non-key fields are
not functionally dependent on ProductID, the table is not in 2NF.

Verifying that a table is in 2NF is more complicated when the primary key consists of two or
more fields. For example, consider the RMO table CatalogProduct shown in Figure 13-11. Recall
that this table represents a many-to-many relationship between Catalog and ProductItem. Thus,
the table representing this relationship has a primary key consisting of the primary keys of
Catalog (CatalogID) and ProductItem (ProductID). The table also contains two non-key fields
called Price and SpecialPrice.

If this table is in 2NF, then each non-key field must be functionally dependent on the com-
bination of CatalogID and ProductID. We can verify the first functional dependency by substi-
tuting terms in the functional dependency definition and determining the truth or falsity of
the resulting statement:

Price is functionally dependent on the combination of CatalogID and
ProductID if for each combination of values for CatalogID and ProductID
there is only one corresponding value of Price.

SSN Name Department Salary Dependent1 Dependent2 Dependent3 ... DependentN

111-22-3333 Mary Smith Accounting 40,000 John Alice Dave
222-33-4444 Jose Pena Marketing 50,000
333-44-5555 Frank Collins Production 35,000 Jane Julia

Figure 13-10

An employee table with a

repeating field (not in

normal form)

C6696_13_CTP.4c 2/6/08 1:27 PM Page 499

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Analyzing the truth of the preceding statement is tricky, because you must consider all the
possible combinations of key values that might occur in the CatalogProduct file. A simpler way
to approach the question is to think about the underlying entities represented in the table. A
product can appear in many different catalogs. If Price can be different in different current cat-
alogs, the preceding statement is true. If a product’s Price is always the same, regardless of the
catalog in which it appears, the preceding statement is false and the table is not in 2NF. The
correct answer doesn’t depend on any universal sense of truth. Instead, it depends on RMO’s
normal conventions for setting product prices in different catalogs.

If a non-key field is functionally dependent on only part of the primary key, you must
remove the non-key field from its present table and place it in another table. For example, con-
sider a modified version of the CatalogProduct table, as shown in the upper half of Figure 13-12.
The non-key field CatalogIssueDate is functionally dependent only on CatalogID, not on the
combination of CatalogID and ProductID. Thus, the table is not in 2NF.

To correct the problem, you must remove CatalogIssueDate from the CatalogProduct
table and place it in a table that uses CatalogID alone as the primary key. Because the Catalog

500 ♦ PART 3 SYSTEMS DESIGN TASKS

Convert

to second

normal

form

Figure 13-12

Decomposition of a first

normal form table into

two second normal

form tables

Figure 13-11

A simplified RMO

CatalogProduct table

C6696_13_CTP.4c 2/6/08 1:27 PM Page 500

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 13 Designing Databases ♦ 501

table in Figure 13-9 uses CatalogID alone as its primary key, you should add CatalogIssueDate
to that table. If a Catalog table did not already exist, you would need to create a new table to
hold CatalogIssueDate, as shown in Figure 13-12.

Third Normal Form To verify that a table is in 3NF, we must check the functional depen-
dency of each non-key element on every other non-key element. This can be cumbersome for
a large table because the number of pairs that must be checked grows quickly as the number
of non-key fields grows. The number of functional dependencies to be checked is N × (N − 1),
where N is the number of non-key fields. Note that functional dependency must be checked
in both directions (that is, A dependent on B, and B dependent on A).

In practice, you can simplify finding 3NF violations by concentrating on two common
types of problems:

• Tables that store attributes describing two or more entities
• Computable fields

Consider the simple table shown in the upper half of Figure 13-13. Assume that
AccountNo is the primary key and that all customers live in the United States. Because there
are three non-key fields, you must check six functional dependencies:

• Is State functionally dependent on StreetAddress?
• Is StreetAddress functionally dependent on State?
• Is ZipCode functionally dependent on StreetAddress?
• Is StreetAddress functionally dependent on ZipCode?
• Is ZipCode functionally dependent on State?
• Is State functionally dependent on ZipCode?

The answer to the first five statements is no, but the answer to the last is yes. In the United
States, all zip codes are wholly contained within a single state. Thus, for each value of Zip Code
there is only one corresponding value of State (for example, 87123 is always in New Mexico).
Including both fields in this table is a form of redundancy. For example, if the addresses of
100 customers who live in the 87123 zip code are stored in the table, the fact that 87123 is
located in New Mexico is (redundantly) stored 100 times.

In essence, the table combines information about two entities—Customer and Postal
Delivery Area. Each entity has its own primary key (AccountNo for Customer and ZipCode
for Postal Delivery Area) and its own non-key attributes (StreetAddress and Zip Code for
Customer, and State for Postal Delivery Area).

Convert

to third

normal

form

Figure 13-13

Converting a second

normal form table

into two third normal

form tables

C6696_13_CTP.4c 2/6/08 1:27 PM Page 501

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Because State is functionally dependent on Zip Code, the table is not in 3NF. To correct
this problem, you must remove State from the table. The relationship between states and zip
codes must be stored somewhere in the database, or the information system can’t generate
complete mailing labels. The solution is to create a new table containing only ZipCode and
State (see Figure 13-13) and remove State from the Customer table. ZipCode is the primary
key of the new table, and State is its only non-key field. Programs or methods that
print or display a complete mailing address must now use the value of Zip Code in the
CustomerAddress table to look up the corresponding value of State in the newly created table.

A computable field stores a value that can be computed by a formula or algorithm that uses
other database fields as inputs. Common examples of computable fields include subtotals,
totals, and taxes. For example, consider the field GrandTotal in the Order table in Figure 13-9
and the formula:

GrandTotal = (∑ Quantity × Price) + Shipping + Tax

Note that all of the inputs to the formula are not stored in the same table (see Figure 13-14).
Unlike 3NF violations involving multiple entities stored in the same table, problems with com-
putable fields can involve multiple tables. Shipping and Tax are stored in the Order table, and
Quantity and Price are stored in related rows of the OrderItem table. An algorithm that computes
GrandTotal for a particular invoice needs to extract all matching rows in the OrderItem table
using the OrderID foreign key.

GrandTotal is functionally dependent on the combination of the other four fields.
Computational dependencies are a form of redundancy because a change to the value of any
input variable in the computation (for example, Shipping) also changes the result of the com-
putation (in other words, GrandTotal).

The way to correct this type of 3NF violation is simple: Remove the computed field from
the database. Eliminating the computed field from the database doesn’t mean that its value is
lost. For example, any program or method that needs GrandTotal can query the OrderItem
table for matching values of Quantity and Price, sum the result of multiplying each Quantity
and Price, and add Shipping and Tax.

Entity-Relationship Modeling and Normalization

Entity-relationship modeling and normalization are complementary techniques for relational
database design. Note that the tables generated from the RMO ERD (see Figure 13-9) do not
contain any violations of first, second, or third normal form. This is not a chance occurrence.
Attributes of an entity are functionally dependent on any unique identifier (primary key) of that
entity. Attributes of a many-to-many relationship are functionally dependent on unique identi-
fiers of both participating entities. Thus, while creating an ERD, an analyst must directly or indi-
rectly consider issues of functional dependency when deciding which attributes belong with
which entities or relationships.

502 ♦ PART 3 SYSTEMS DESIGN TASKS

Figure 13-14

GrandTotal is computed

from fields in two tables

C6696_13_CTP.4c 2/6/08 1:27 PM Page 502

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 13 Designing Databases ♦ 503

We now turn our attention to the second type of database commonly in use today—the
object-oriented database.

OBJECT-ORIENTED DATABASES

Object database management systems (ODBMSs) are a direct extension of the OO design
and programming paradigm. ODBMSs are designed specifically to store objects and to inter-
face with object-oriented programming languages. It is possible to store objects in files or
relational databases. But there are many advantages to using an ODBMS, including direct sup-
port for method storage, inheritance, nested objects, object linking, and programmer-defined
data types.

ODBMSs first appeared as research prototypes in the 1980s and later as fledgling com-
mercial products in the early 1990s. Current commercial ODBMSs include GemStone,
ObjectStore, and Objectivity. ODBMSs are the database technology of choice for newly
designed systems implemented with OO tools, especially for scientific and engineering appli-
cations. ODBMSs are expected to supplant RDBMSs in more traditional business applications
gradually over the next decade.

Because ODBMSs are relatively new, there are few widely accepted standards for specifying
an object database schema. In the late 1990s and early 2000s, the Object Database Management
Group developed and refined a standard called the Object Definition Language (ODL), a lan-
guage for describing the structure and content of an object database. ODMG standards were the
foundation of the Java Data Objects standard, which was adopted in 2003. ODMG standards
are also the basis of some interfaces between ODBMSs and the C++ and SmallTalk program-
ming languages. The schema examples in the sections that follow use ODL.

DESIGNING OBJECT DATABASES

To create an object database schema from a class diagram, follow these steps:

1. Determine which classes require persistent storage.
2. Define persistent classes.
3. Represent relationships among persistent classes.
4. Choose appropriate data types and value restrictions (if necessary) for each field.

Each of these steps is discussed in detail in the following sections.

Representing Classes

There are two broad types of classes for purposes of data management. Objects of a transient
class exist only during the lifetime of a program or process. In a design that follows three-
layer architecture, view layer objects such as windows and forms are usually transient.
Transient objects are created each time a program or process is executed and then destroyed
when a program or process terminates.

object database

management

system (ODBMS)
a database management
system that stores data
as objects or class
instances

Object Definition

Language (ODL)
a standard object
database description
language promulgated by
the Object Database
Management Group

transient class
a class that doesn’t need
to store any attribute
values between
instantiations or method
invocations

You can use an automated visual modeling tool to reverse engineer an
existing relational database to an entity-relationship diagram (ERD) when
you need to maintain or enhance an existing system.

BEST PRACTICE

C6696_13_CTP.4c 2/6/08 1:27 PM Page 503

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

An object of a persistent class is not destroyed when the program or process that creates

it ceases execution. Instead, the object continues to exist independently of any program or

process. In a design that follows three-layer architecture, problem domain (or business)

classes are usually persistent. Storing the object state to persistent memory (such as a mag-

netic or optical disk) ensures that the object exists between process executions. Objects can be

persistently stored within a file or database management system.

An object database schema includes a definition for each class that requires persistent stor-

age. ODL class definitions derive from the corresponding UML class diagram. Thus, classes

already defined in UML are simply reused for the database schema definition.
For example, an ODL description of the RMO Customer class is:

class Customer {
attribute string accountNo
attribute string name
attribute string billingAddress
attribute string shippingAddress
attribute string dayTelephoneNumber
attribute string nightTelephoneNumber

}

This ODL class definition corresponds to the Customer table in Figure 13-9. A similar

ODL class definition would be created for each RMO class shown in Figure 13-15. After defin-

ing each class, the analyst must define relationships among classes.

Representing Relationships

Each object stored within an ODBMS is automatically assigned a unique object identifier. An

object identifier may be a physical storage address or a reference that can be converted to a

physical storage address at run time. In either case, each object has a unique identifier that

can be stored within another object to represent a relationship.

An ODBMS represents relationships by storing the identifier of one object within related

objects. Object identifiers provide navigation visibility among objects, as first described in

Chapter 11. For example, consider a one-to-one relationship between the classes Employee

and Workstation, as shown in Figure 13-16. Each Employee object has an attribute called com-

puter that contains the object identifier of the Workstation object assigned to that employee.

Each Workstation object has a matching attribute called user that contains the object identi-

fier of the Employee who uses that workstation.

The ODBMS uses attributes containing object identifiers to find objects that are related to

other objects. The process of extracting an object identifier from one object and using it to

access another object is sometimes called navigation. For example, consider the following

query posed by a user:

List the manufacturer of the workstation assigned to employee Joe Smith.

An ODBMS query processor can find the requested employee object by searching all

employee objects for the name attribute Joe Smith. The query processor can find Joe Smith’s

workstation object by using the object identifier stored in computer. The query processor

can also answer the opposite query (list the employee name assigned to a specific worksta-

tion) by using the object identifier stored in user. A matched pair of attributes enables naviga-

tion in both directions.

504 ♦ PART 3 SYSTEMS DESIGN TASKS

persistent class
a class that must store
one or more attribute
values between
instantiations or method
invocations

object identifier
a physical storage
address or a reference
that can be converted to
a physical storage
address at run time

navigation
the process of accessing
an object by extracting its
object identifier from
another (related) object

C6696_13_CTP.4c 2/6/08 1:27 PM Page 504

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 13 Designing Databases ♦ 505

shipperID {key}
name
address
contactName
telephone

Shipper

1

1

size
color

inventoryID {key}

options
quantityOnHand
averageCost
reorderQuantity

InventoryItem

quantity
price
backorderStatus

OrderItem

orderID
orderDate
priorityCode
shipping&Handling
tax
grandTotal

Order

quantity
price
reason
condition
disposal

ReturnItem

date
transactionType
amount
paymentMethod

OrderTransaction

1

emailAddress
replyMethod

WebOrder

dateReceived
processorClerk

MailOrder

0..*

1

1..*

1

0..*

1..*

0..*

1

0..1

0..*

1

1

1..*

trackingNo {key}
dateSent
timeSent
shippingCost
dateArrived
timeArrived

Shipment

accountNo {key}
name
billingAddress
shippingAddress
dayPhone
nightPhone

Customer

phoneClerk
callStartTime
lengthOfCall

TelephoneOrder

price
specialPrice

CatalogProduct

1..*

0..*

ecatalogID {k y}
season
year
description
effectiveDate
endDate

Catalog

productID {key}
vendor
gender
description

ProductItem

0..*

0..*

Figure 13-15

The RMO class diagram

C6696_13_CTP.4c 2/6/08 1:27 PM Page 505

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Attributes that represent relationships are not usually specified directly by an object database
schema designer. Instead, designers specify them indirectly by declaring relationships between
objects. For example, consider the following class declarations for the ODL schema language:

class Employee {
attribute string name
attribute integer salary
relationship Workstation Uses
inverse Workstation::AssignedTo

}
class Workstation {
attribute string manufacturer
attribute string serialNumber
relationship Employee AssignedTo
inverse Employee::Uses

}

The keyword relationship is used to declare a relationship between one class and another.
The class Employee has a relationship called Uses with the class Workstation.

The class Workstation has a matching relationship called AssignedTo with the class
Employee. Each relationship includes a declaration of the matching relationship in the other
class using the keyword inverse, which tells the ODBMS that the two relationships are actually
mirror images of one another.

Declaring a relationship as shown here instead of creating an attribute containing an
object identifier has two advantages:

• The ODBMS assumes responsibility for determining how to implement the connection
among objects. In essence, the schema designer has declared an attribute of type relation-
ship and left it up to the ODBMS to determine how to represent that attribute.

• The ODBMS assumes responsibility for maintaining referential integrity. For example,
deleting a workstation will cause the Uses link of the related Employee object to be set to
NULL or undefined.

The ODBMS automatically creates attributes containing object identifiers to implement
declared relationships. But the user and programmer are shielded from all details of how
those identifiers are actually implemented and manipulated.

One-to-Many Relationships Figure 13-17 shows the one-to-many relationship between
the RMO classes Customer and Order. A Customer can make many different Orders, but a
single Order can be made by only one Customer. A single object identifier represents the rela-
tionship of an Order to a Customer. Multiple object identifiers represent the relationship
between one Customer and many different Orders, as shown in Figure 13-18.

Partial ODL class declarations for the classes Customer and Order are as follows:

class Customer {
attribute string accountNo
attribute string name
attribute string billingAddress
attribute string shippingAddress
attribute string dayPhone

506 ♦ PART 3 SYSTEMS DESIGN TASKS

name
salary
computer

Employee

manufacturer
serialNumber
user

Workstation

Figure 13-16

A one-to-one relationship

represented with

attributes (shown in

color) containing object

identifiers

C6696_13_CTP.4c 2/6/08 1:27 PM Page 506

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 13 Designing Databases ♦ 507

attribute string nightPhone
relationship set<Order> Makes
inverse Order::MadeBy

}
class Order {

attribute string orderID
attribute string orderDate
attribute string priorityCode
attribute real shipping&Handling
attribute real tax
attribute real grandTotal
relationship Order MadeBy
inverse Customer::Makes

}

orderID
orderDate
priorityCode
shipping&Handling
tax
grandTotal

Order

0..*1

accountNo
name
billingAddress
shippingAddress
dayPhone
nightPhone

Customer

Figure 13-17

The one-to-many

relationship between the

Customer and Order

classes

orderID
orderDate
priorityCode
shipping&Handling
tax
grandTotal

Order

MadeBy Customer

orderID
orderDate
priorityCode
shipping&Handling
tax
grandTotal

Order

MadeBy Customer

orderID
orderDate
priorityCode
shipping&Handling
tax
grandTotal

Order

MadeBy Customer

accountNo
name
billingAddress
shippingAddress
dayPhone
nightPhone

Makes (set)

Customer

Order1
Order2
Order3
•
•
•

Figure 13-18

A one-to-many

relationship represented

with attributes containing

object identifiers

C6696_13_CTP.4c 2/6/08 1:27 PM Page 507

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The relationship Makes is declared between a single Customer object and a set of
Order objects. By declaring the relationship as a set, you instruct the ODBMS to allocate as
many Order object identifier attributes to each Customer object as are needed to represent
relationship instances. The ODBMS dynamically adds or deletes object identifier attributes to
the set as instances of the relationship are created or deleted.

The set of object identifier attributes can also be called a multivalued attribute.
A multivalued attribute, also called a repeating group, is an attribute that contains zero or
more instances of the same data type. Multivalued attributes are commonly supported in
ODBMSs but are not supported in RDBMSs because they violate first normal form.

Many-to-Many Relationships A many-to-many relationship is represented differently
depending on whether the relationship has any attributes. Many-to-many relationships without
attributes are represented as a set of object attributes in both related classes. Both classes have a
multivalued attribute containing object pointers to related objects of the other class. For exam-
ple, the many-to-many relationship between Employee and Project shown in Figure 13-19 is
represented as follows:

class Employee {
attribute string name
attribute string salary
relationship set<Project> WorksOn
inverse Project::Assigned

}
class Project {
attribute string projectID
attribute string description
attribute string startDate
attribute string endDate
relationship set<Employee> Assigned
inverse Employee::WorksOn

}

508 ♦ PART 3 SYSTEMS DESIGN TASKS

projectID
description
startDate
endDate

Project

name
salary

Employee

0..*0..*

Figure 13-19

A many-to-many

relationship between the

Employee and Project

classes

Representing a many-to-many relationship with attributes requires a more complex approach.
The RMO class diagram has a many-to-many relationship between Catalog and ProductItem
with an association class named CatalogProduct (see Figure 13-15). Recall from Chapter 5 that an
association class is a class that stores the attributes of a many-to-many relationship.

To represent a many-to-many relationship with an association class, we must reorganize
the relationship as shown in Figure 13-20. The many-to-many relationship between Catalog
and ProductItem has been decomposed into a pair of one-to-many relationships between the
original classes and the association class. The ODL schema descriptions are as follows:

class Catalog {
attribute string season
attribute integer year
attribute string description
attribute string effectiveDate

multivalued

attribute
an attribute that contains
zero or more instances
of the same data type

C6696_13_CTP.4c 2/6/08 1:27 PM Page 508

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 13 Designing Databases ♦ 509

attribute string endDate
relationship set<CatalogProduct> Contains1
inverse CatalogProduct::AppearsIn1

}
class ProductItem {

attribute string productID
attribute string vendor
attribute string gender
attribute string description
relationship set<CatalogProduct> AppearsIn2
inverse CatalogProduct::Contains2

}
class CatalogProduct {

attribute real price
attribute real specialPrice
relationship Catalog AppearsIn1
inverse Catalog::Contains1
relationship ProductItem AppearsIn2
inverse ProductItem::Contains2

}

Generalization Relationships Figure 13-21 shows the order generalization hierarchy from
the RMO class diagram. WebOrder, TelephoneOrder, and MailOrder are each more specific
versions of the class Order. The ODL class definitions that represent these classes and their
interrelationships are as follows:

class Order {
attribute string orderID
attribute string orderDate
attribute string priorityCode
attribute real shipping&Handling
attribute real tax
attribute real grandTotal

}
class WebOrder extends Order {

attribute string emailAddress
attribute string replyMethod

}
class TelephoneOrder extends Order {

attribute string phoneClerk
attribute string callStartTime
attribute integer lengthOfCall

}
class MailOrder extends Order {

attribute string dateReceived
attribute string processorClerk

}

season
year
description
effectiveDate
endDate

Catalog

productID
vendor
gender
description

ProductItem

10..*

price
specialPrice

CatalogProduct

0..*1

Figure 13-20

A many-to-many

relationship represented

with two one-to-many

relationships

C6696_13_CTP.4c 2/6/08 1:27 PM Page 509

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The keyword extends indicates that WebOrder, TelephoneOrder, and MailOrder derive from
Order. When stored in an object database, objects of the three derived classes will inherit all
of the attributes, methods, and relationships defined for the Order class.

Key Attributes

Key attributes are not required in an object database because referential integrity is imple-
mented with object identifiers. However, key attributes are useful in object databases for a
number of purposes, including guaranteeing unique object content and providing a means of
querying database contents. The ODBMS automatically enforces uniqueness of key attributes
in an object database. Thus, declaring an attribute to be a key guarantees that no more than
one object in a class can have the same key value.

In addition to relational and object-oriented databases, a third type exists that mixes ele-
ments of both the relational and OO approaches. We discuss this hybrid next.

HYBRID OBJECT-RELATIONAL DATABASE DESIGN

OO development tools were first widely employed in the mid- to late-1980s. During this same
time period, RDBMSs were widely used and had reached a mature stage of development. Many
OO tool developers exploited the existing base of RDBMS tools and knowledge by using an
RDBMS to store persistent object states. This made sense both as an economy measure (there
was one less OO tool to develop) and because many newer OO systems needed to manipulate
data stored in existing relational databases. There is no widely accepted name to describe
object storage using an RDBMS, so we will invent one to use for the remainder of the text:
hybrid object-relational DBMS (or simply hybrid DBMS).

The hybrid DBMS approach is currently the most widely employed approach for persistent
object storage. Designing a hybrid database is essentially two design problems in one. That is,
the designer must develop a complete relational database schema and an equivalent set of
classes to represent the relational database contents within the OO programs. This second task
is complex because the designer must bridge the differences between the object-oriented and
relational views of stored data.

510 ♦ PART 3 SYSTEMS DESIGN TASKS

order ID
orderDate
priorityCode
shipping&Handling
tax
grandTotal

emailAddress
replyMethod

phoneClerk
callStartTime
lengthOfCall

dateReceived
processorClerk

Order

MailOrderTe lephoneOrderWebOrder

Figure 13-21

A generalization

hierarchy within the

RMO class diagram

hybrid object-

relational DBMS
a relational database
management system
used to store object
attributes and
relationships; also called
hybrid DBMS

C6696_13_CTP.4c 2/6/08 1:27 PM Page 510

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 13 Designing Databases ♦ 511

Following are the most important mismatches between the relational and OO views of
stored data:

• Class methods cannot be directly stored or automatically executed within an RDBMS.
• ODBMSs can represent a wider range of relationship types than RDBMSs, including

classification hierarchies and whole-part aggregations. Relationships in an RDBMS can
only be represented using referential integrity.

• ODBMSs can represent a wider range of data types than RDBMSs. New classes can be
defined to store application-specific data.

Because RDBMSs were developed prior to the OO paradigm, they have no features that
can represent methods or inheritance. Programs that access the database must implement
methods internally. Inheritance cannot be directly represented in an RDBMS because a classi-
fication hierarchy cannot be directly represented.

Although the relational and OO views of stored data have significant differences, they also
have significant overlaps. Recall from Chapter 5 that “things” within a system can be concep-
tually modeled using an ERD (the basis for a relational database schema), a class diagram
(the basis for an OO database schema), or both. There is considerable overlap among the two
representations, including the following:

• Grouping of data items into entities or classes
• Defining one-to-one, one-to-many, and many-to-many relationships among entities

or classes

This overlap provides a basis for representing classes and objects within a relational
database.

CLASSES AND ATTRIBUTES

Designers can store classes and object attributes in an RDBMS by defining appropriate
tables in which to store them. For a completely new system, a relational schema can be
designed based on a class diagram—essentially the same process as for an ERD. Figure 13-22
describes the correspondence among OO, ER, and relational database concepts. A table is cre-
ated to represent each class, and the fields of each table are the same as the attributes of the
corresponding class. Each row holds the attribute values of a single object.

Object-oriented Entity-relationship Relational database

Class Entity type Table

Object Entity instance Row

Attribute Attribute Column

Figure 13-22

Correspondence among

concepts in the object-

oriented, entity-

relationship, and

relational database views

of stored data

A key field (or group of fields) must be chosen for each table. As described earlier, a
designer can choose a natural or invented key field from the existing attributes or add an
invented key field. Primary key fields are needed to guarantee uniqueness within tables and
to represent relationships using foreign keys.

Figure 13-23 shows a set of relational database tables that represent classes from the RMO
class diagram in Figure 13-15. Note that the table definitions are identical to those in Figure 13-7,
except for the addition of tables to represent the specialized classes MailOrder, TelephoneOrder,
and WebOrder and corresponding changes to the Order table.

C6696_13_CTP.4c 2/6/08 1:27 PM Page 511

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

RELATIONSHIPS

ODBMSs use object identifiers to represent relationships among objects. But RDBMSs do not
create object identifiers, so relationships among objects stored in a relational database must
be represented using foreign keys. Foreign key values serve the same purpose as object identi-
fiers in an ODBMS. That is, they provide a means for one “object” to refer to another.
To represent one-to-many relationships, designers add the primary key field of the class on
the “one” side of the relationship to the table representing the class on the “many” side of the
relationship. To represent many-to-many relationships, designers create a new table that con-
tains the primary key fields of the related class tables and any attributes of the relationship
itself. Note that these methods of representing relationships among objects are the same as
previously described for representing relationships among entities.

Figure 13-24 extends the table definitions in Figure 13-23 by adding foreign keys repre-
senting the relationships shown in Figure 13-15. For example, the one-to-many
relationship between the Customer and Order classes is represented by the foreign key
AccountNo stored in the Order table. The many-to-many relationship between the Catalog
and ProductItem classes is represented by the table CatalogProduct that contains the foreign
keys CatalogID and ProductID.

Note that the tables in Figure 13-24 are identical to those in Figure 13-9 except for the con-
tent of the tables Order, MailOrder, TelephoneOrder, and WebOrder (these tables will be dis-
cussed shortly). The similarity is no accident; it follows from the similarity between the RMO
entity-relationship and class diagrams. The diagrams are similar because they represent the same
underlying reality. Thus, it should be no surprise that the relational database schemas derived
from a class diagram and an ERD representing that underlying reality are similar. In fact, it
would be surprising (and probably indicate an error) if they weren’t similar.

Classification relationships such as the relationship among Order, MailOrder,
TelephoneOrder, and WebOrder are a special case in relational database design. Just as a child
class inherits the data and methods of a parent class, a table representing a child class inherits

512 ♦ PART 3 SYSTEMS DESIGN TASKS

Table Attributes

Catalog CatalogID, Season, Year, Description, EffectiveDate, EndDate

CatalogProduct CatalogProductID, Price, SpecialPrice

Customer AccountNo, Name, BillingAddress, ShippingAddress,
DayTelephoneNumber, NightTelephoneNumber

InventoryItem InventoryID, Size, Color, Options, QuantityOnHand, AverageCost,
ReorderQuantity

MailOrder MailOrderID, DateReceived, ProcessorClerk

Order OrderID, OrderDate, PriorityCode, ShippingAndHandling, Tax, GrandTotal

OrderItem OrderItemID, Quantity, Price, BackorderStatus

OrderTransaction OrderTransactionID, Date, TransactionType, Amount, PaymentMethod

ProductItem ProductID, Vendor, Gender, Description

ReturnItem ReturnItemID, Quantity, Price, Reason, Condition, Disposal

Shipment TrackingNo, DateSent, TimeSent, ShippingCost, DateArrived, TimeArrived

Shipper ShipperID, Name, Address, ContactName, Telephone

TelephoneOrder TelephoneOrderID, PhoneClerk, CallStartTime, LengthOfCall

WebOrder WebOrderID, EmailAddress, ReplyMethod

Figure 13-23

Class tables, with

primary keys

identified in bold

C6696_13_CTP.4c 2/6/08 1:27 PM Page 512

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 13 Designing Databases ♦ 513

some or all of its data from the table representing its parent class. This inheritance can be rep-
resented in two ways:

• Combine all the tables into a single table containing the superset of all class attributes but
excluding any invented key fields of the child classes.

• Use separate tables to represent the child classes and substitute the primary key of the par-
ent class table for the invented keys of the child class tables.

Either method is an acceptable approach to representing a classification relationship.
Figure 13-9 shows the definition of the Order table under the first method. All of the

non-key fields from MailOrder, TelephoneOrder, and WebOrder have been added to the
Order table. For any particular order, some of the field values in each row will be NULL. For
example, a row representing a telephone order would have no values for the fields
EmailAddress, ReplyMethod, DateReceived, and ProcessorClerk.

Figure 13-24 shows the table definitions for the RMO case using the second method for rep-
resenting inheritance. The relationship among the three child order types and the parent Order
table is represented by the foreign key OrderID in all three child class tables. The invented key
of each table has been removed. Thus, in each case, the foreign key representing the inheritance
relationship also serves as the primary key of the table representing the child class.

DATA ACCESS CLASSES

In Chapter 12, you learned how to develop an OO design based on three-layer architecture.
Under that architecture, data access classes implement the bridge between data stored in pro-
gram objects and in a relational database.

Table Attributes

Catalog CatalogID, Season, Year, Description, EffectiveDate, EndDate

CatalogProduct CatalogID, ProductID, Price, SpecialPrice

Customer AccountNo, Name, BillingAddress, ShippingAddress, DayTelephoneNumber,
NightTelephoneNumber

InventoryItem InventoryID, ProductID, Size, Color, Options, QuantityOnHand, AverageCost,
ReorderQuantity

MailOrder OrderID, DateReceived, ProcessorClerk

Order OrderID, AccountNo, OrderDate, PriorityCode, ShippingAndHandling, Tax,
GrandTotal

OrderItem OrderItemID, OrderID, InventoryID, TrackingNo, Quantity, Price,
BackorderStatus

OrderTransaction OrderTransactionID, OrderID, Date, TransactionType, Amount,
PaymentMethod

ProductItem ProductID, Vendor, Gender, Description

ReturnItem ReturnItemID, OrderID, InventoryID, Quantity, Price, Reason, Condition,
Disposal

Shipment TrackingNo, ShipperID, DateSent, TimeSent, ShippingCost, DateArrived,
TimeArrived

Shipper ShipperID, Name, Address, ContactName, Telephone

TelephoneOrder OrderID, PhoneClerk, CallStartTime, LengthOfCall

WebOrder OrderID, EmailAddress, ReplyMethod

Figure 13-24

Relationship information

added to the class tables

by adding foreign key

attributes (shown in

italic) to represent

relationships

C6696_13_CTP.4c 2/6/08 1:27 PM Page 513

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 13-25 illustrates the interaction among the RMO problem domain class
ProductItem, the data access class ProductItemDA, and the relational database. The data
access class has methods that add, update, find, and delete fields and rows in the table or
tables that represent the class. Data access class methods encapsulate the logic needed to copy
values from the problem domain class to the database and vice versa. Typically, that logic is a
combination of program code in a language such as C++ or Java and embedded relational
database commands in Structured Query Language (SQL).

514 ♦ PART 3 SYSTEMS DESIGN TASKS

ProductID
Vendor

ProductItem

Gender
Description

getProductID()
setProductID()
getVendor()
setVendor()

getGender()
setGender()
getDescription()
setDescription()

dbConnection

ProductItemDA

addNew()
delete()
find()

updateProductID()
updateVendor()
updateGender()
updateDescription()

Data updates
and queries

Extracted data and
processing results

Database

// find() - find a ProductItem in
// the database based on ProductID

public ProductItem find(int productID)
 throws NotFoundException
{
 openConnection(dbConnection);
 // build an SQL query
 String query;
 query = "SELECT * FROM ProductItem";
 query += " WHERE ProductID = ";
 query += productID;
 try
 {
 result = executeQuery(query);
 }
// remaining statements not shown

DBMS

DataSQL

Figure 13-25

Interaction among a

problem domain class, a

data access class, and

the DBMS

The lower-left part of Figure 13-25 shows a fragment of Java code with an embedded SQL
statement that implements the find() method of ProductItemDA. Similar code is needed for
all other methods in the data access class.

Now that we’ve covered the different approaches to database schema design, we consider
the data types that are stored within that schema.

DATA TYPES

A data type defines the storage format and allowable content of a program variable, object
state variable, or database field or attribute. Primitive data types are data types that are sup-
ported directly by computer hardware and programming languages. Examples include memory
address (a pointer), Boolean, integer, unsigned integer, short integer (one byte), long integer
(multiple bytes), single characters, real numbers (floating-point numbers), double-precision

data type
the storage format and
allowable content of a
program variable or
database field

C6696_13_CTP.4c 2/6/08 1:27 PM Page 514

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 13 Designing Databases ♦ 515

(double-length) integers, and real numbers. In some procedural programming languages
(such as C) and most OO languages, programmers can define additional data types using the
primitive data types as building blocks.

As information systems have become more complex, the number of data types used to
implement them has increased. Examples of modern data types include dates, times, currency
(money), audio streams, still images, motion video streams, and uniform resource locators
(URL or Web links). Such data types are sometimes called complex data types because they
are usually defined as complex combinations of primitive data types. They may also be called
user-defined data types because they may be defined by users during analysis and design or by
programmers during design and implementation.

RELATIONAL DBMS DATA TYPES

The designer must choose an appropriate data type for each field in a relational database schema.
For many fields, the choice of a data type is relatively straightforward. For example, designers can
represent customer names and addresses using a set of fixed- or variable-length character arrays.
Inventory quantities and item prices can be represented as integers and real numbers, respectively.
A color can be represented by a character array containing the name of the color or by a set of
three integers representing the intensity of the video-display colors red, blue, and green.

Modern RDBMSs have added an increasing number of new data types to represent the
data required by modern information systems. Figure 13-26 contains a partial listing of some
of the data types available in the Oracle RDBMS. Complex data types available in Oracle
include DATE, LONG, and LONGRAW. LONG is typically used to store large quantities of for-
matted or unformatted text (such as a word-processing document). LONGRAW can be used
to store large binary data values, including encoded pictures, sound, and motion video.

Type Description

CHAR Fixed-length character array

VARCHAR Variable-length character array

NUMBER Real number

DATE Date and time with appropriate checks of validity

LONG Variable-length character data up to 2 gigabytes

LONGRAW Binary large object (BLOB) with no assumption about format or content

ROWID Unique six-byte physical storage address

Figure 13-26

A subset of the data types

available in the Oracle

relational DBMS

Modern RDBMSs can also perform many validity and format checks on data as it is stored
in the database. For example, a schema designer can specify that a quantity on hand cannot
be negative, that a U.S. zip code must be five or nine digits long, and that a string containing
a URL must begin with http://. All application programs that use the database then automati-
cally share the validity and format constraints. Each program is simpler, and the possibility
for errors from mismatches among data validation logic is eliminated. Application programs
still have to provide program logic to recover from attempts to add “bad” data, but they are
freed from actually performing validity checks.

OBJECT DBMS DATA TYPES

ODBMSs typically provide a set of primitive and complex data types comparable to those of
an RDBMS. ODBMSs also allow a schema designer to define format and value constraints.
But ODBMSs provide an even more powerful way to define useful data types and constraints.
A schema designer can define a new data type and its associated constraints as a new class.

A class is a complex user-defined data type that combines the traditional concept of data
with processes (methods) that manipulate that data. In most OO programming languages,

primitive

data type
a storage format directly
implemented by
computer hardware or a
programming language

complex

data type
a data type not directly
supported by computer
hardware or a
programming language;
also called user-defined
data type

C6696_13_CTP.4c 2/6/08 1:27 PM Page 515

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

programmers are free to design new data types (classes) that extend those already defined by
the programming language. Incompatibility between system requirements and available data
types is not an issue, because the designer can design classes specifically to meet the requirements.
To the ODBMS, instances of the new data type are simply objects to be stored in the database.

Class methods can perform many of the type- and error-checking functions previously
performed by application program code and/or by the DBMS itself. In essence, the program-
mer constructs a “custom-designed” data type and all of the programming logic required to
use it correctly. The DBMS is freed from direct responsibility for managing complex data types
and the values stored therein. It indirectly performs validity checking and format conversion
by extracting and executing programmer-defined methods stored in the database.

The flexibility to define new data types is one reason that OO tools are so widely employed in
non–business information systems. In fields such as engineering, biology, and physics, stored data
is considerably more complex than simple strings, numbers, and dates. OO tools enable database
designers and programmers to design custom data types that are specific to a problem domain.

Another issue that must be considered during database design is the locations where data
is stored and accessed. In today’s networked information systems, organizations often use dis-
tributed databases.

DISTRIBUTED DATABASES

Rarely does an organization store all of its data in a single database. Instead, organizations
typically store data in many different databases, often under the control of many different
DBMSs. Reasons for employing a variety of databases and DBMSs include the following:

• Information systems may have been developed at different times using different DBMSs.
• Parts of an organization’s data may be owned and managed by different organizational units.
• System performance improves when data is physically close to the applications that use it.

DISTRIBUTED DATABASE ARCHITECTURES

Chapter 9 described various approaches to organizing and computing information processing
resources in a networked environment. Several architectures for distributing database services
are possible, including the following:

• Single database server
• Replicated database servers
• Partitioned database servers
• Federated database servers

Combinations of these architectures are also possible.

Single Database Server

Figure 13-27 shows a typical single database server architecture. Clients on one or more LANs
share a single database located on a single computer system. The database server may be con-
nected to one of the LANs or directly to the WAN backbone (as shown in the figure).
Connection directly to the WAN ensures that no one LAN is overloaded by all of the network
traffic to and from the database server.

The primary advantage of single database server architecture is its simplicity. There is only
one server to manage, and all clients are programmed to direct requests to that server.
Disadvantages of the single database server architecture include susceptibility to server failure
and possible overload of the network or server. A single server provides no backup capabili-
ties in the event of server failure. All application programs that depend on the server are dis-
abled whenever the server is unavailable (such as during a crash or during hardware
maintenance). Thus, single database server architecture is poorly suited to applications that
must be available on a seven-day, 24-hour basis.

516 ♦ PART 3 SYSTEMS DESIGN TASKS

C6696_13_CTP.4c 2/6/08 1:27 PM Page 516

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 13 Designing Databases ♦ 517

Performance bottlenecks can occur within a single database server or in the network seg-
ment to which the server is attached. As transaction volumes grow, the capabilities of a single
database server may become insufficient to respond quickly to all of the service requests it
receives. In an attempt to improve performance, a designer may employ a more powerful
computer system as the database server. But in an era of multiterabyte databases, it is not
unusual for the size and transaction volume of larger databases to exceed the capabilities of
any single computer system. Employing the largest mainframes may also be impractical
because of cost, system management, or network performance considerations.

Requests to and responses from a database server may traverse great distances across local
and wide area networks. Database transactions must also compete with other types of net-
work traffic (such as voice, video, and Web site access) for available transmission capacity.
Thus, delays in accessing a remote database server may result from network congestion or
propagation delay from client to server.

One way to reduce network congestion is to increase capacity of the entire network. But
this approach is expensive and often impractical. Another approach, specifically geared to
improving database access speed, is to locate database servers physically close to their clients
(for example, on the same LAN segment). This approach minimizes the distance-related delay
for requests and responses and removes a large amount of traffic from the WAN.

Moving a database server closer to its clients is a relatively simple matter when all of the
clients are located close to one another. But what happens when clients are widely dispersed,
as in a multinational corporation? In this case, no single location for the database server can
possibly improve database access performance for all clients at the same time. Thus, the
“distant” clients must pay a greater performance penalty for database access.

Wide
area

network

Local
area

network

Local
area

network

Database
server

Figure 13-27

A single database server

architecture

C6696_13_CTP.4c 2/6/08 1:27 PM Page 517

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Replicated Database Servers

Designers can eliminate delay in accessing distant database servers by using a replicated data-
base server architecture (see Figure 13-28). Each server stores a separate copy of the needed
data. Clients interact with the database server on their own LAN. Such an architecture eliminates
database accesses from the WAN and minimizes propagation delay. Local network and database
server capacity can be independently optimized to local needs.

Replicated database servers also make an information system more fault tolerant.
Applications can direct access requests to any available server, with preference to the nearest
server. When a server is unavailable, clients can redirect their requests across the WAN to another
available server. Designers can also achieve load balancing by interposing a transaction server
between clients and replicated database servers. The transaction server monitors loads on all
database servers and automatically directs client requests to the server with the lowest load.

In spite of their advantages, replicated database servers do have some drawbacks. Data incon-
sistency is a problem whenever multiple database copies are in use. When data is updated on one
database copy, clients accessing that same data from another database copy receive an outdated
response. To counteract this problem, each database copy must periodically be updated with
changes from other database servers. This process is called database synchronization.

Designers can implement synchronization by developing customized synchronization pro-
grams or by using synchronization utilities built into the DBMS. Custom application programs are
seldom employed because they are difficult to develop and because they would need to be modi-
fied each time the database schema or number and location of database copies change. DBMS syn-
chronization utilities are generally powerful and flexible but also expensive. Incompatibilities
among synchronization methods make using DBMSs from different vendors impractical.

518 ♦ PART 3 SYSTEMS DESIGN TASKS

database

synchronization
the process of ensuring
consistency among two
or more database copies

Database
server

(copy 2)

Database
server

(copy 1)

Wide
area

network

Local
area

network

Local
area

network

Figure 13-28

A replicated database

server architecture

C6696_13_CTP.4c 2/6/08 1:27 PM Page 518

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 13 Designing Databases ♦ 519

Schema subset
used by client

group A

Schema subset
used by client

group B

Figure 13-29

Partitioning a database

schema into client

access subsets

The time delay between an update to a database copy and the propagation of that update
to other database copies is an important database design decision. During the time between
the original update and the update of database copies, application programs that access out-
dated copies aren’t receiving responses that reflect current reality. Designers can address this
problem by reducing the synchronization delay. But shorter delays imply more frequent (or
possibly continuous) database synchronization. Synchronization then consumes a substan-
tial amount of database server capacity, and a large amount of network capacity among the
related database servers must be provided. The proper synchronization strategy is a complex
trade-off among cost, hardware and network capacity, and the need of application programs
and users for current data.

Partitioned Database Servers

Designers can minimize the need for database synchronization by partitioning database con-
tents among multiple database servers. Figure 13-29 shows the division of a hypothetical
database schema into two partitions. A different group of clients accesses each partition.
Figure 13-30 shows a partitioned database server architecture that maintains each partition
on a separate database server. Traffic among clients and the database server in each group is
restricted to a local area network.

Partitioned database server architecture is feasible only when a schema can be cleanly par-
titioned among client access groups. Client groups must require access to well-defined sub-
sets of a database (for example, marketing data rather than production data). In addition,
members of a client access group must be located in small geographic regions. When a single
access group is spread among multiple geographic sites (for example, order processing at
three regional centers), a combination of replicated and partitioned database server architec-
ture is usually required.

C6696_13_CTP.4c 2/6/08 1:27 PM Page 519

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

520 ♦ PART 3 SYSTEMS DESIGN TASKS

It is seldom possible to partition a database schema into mutually exclusive subsets. Some
portions of a database are typically needed by most or all users, and those portions must exist
in each partition. For example, data in the region of overlap in Figure 13-29 should be stored
on each server with periodic synchronization. Thus, partitioning can reduce the problems
associated with database synchronization, but it seldom eliminates them entirely.

Federated Database Servers

Some information systems are best served by a federated database architecture, as shown in
Figure 13-31. This architecture is commonly used to access data stored in databases with
incompatible storage models or DBMSs. A single unified database schema is created on a
combined database server. That server acts as an intermediary between application programs
and the databases residing on other servers. Database requests are first sent to the combined
database server, which in turn makes appropriate requests of the underlying database servers.
Results from multiple servers are combined and reformatted to fit the unified schema before
the system returns a response to the client.

Federated database server architecture can be extremely complex. A number of DBMS
products are available to implement such systems, but they are typically expensive and diffi-
cult to implement and maintain. Federated database architectures also tend to demand con-
siderable computer hardware and network capacity, but their expense and management
complexity are generally less than would be required to implement and maintain application
programs that interact directly with all of the underlying databases.

A common use of a federated database server architecture is to implement a data warehouse.
A data warehouse is a collection of data used to support structured and unstructured manager-
ial decisions. Data warehouses typically draw their content from operational databases within
an organization and multiple external databases (for example, economic and trade data from

data warehouse
a collection of data used
to support structured
and unstructured
managerial decisions

Wide
area

network

Database
server

(partition B)

Database
server

(partition A)

Client group B
local area
network

Client group A
local area
network

Figure 13-30

A partitioned database

server architecture

C6696_13_CTP.4c 2/6/08 1:27 PM Page 520

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 13 Designing Databases ♦ 521

databases maintained by governments, trade industry associations, and private research
organizations). Because data originates from a large number of incompatible databases, a feder-
ated architecture is typically the only feasible approach for implementing a data warehouse.

Now that we’ve discussed the basic issues underlying distributed database design, we will
show how they come into play when making decisions for Rocky Mountain Outfitters’ new
customer support system.

RMO DISTRIBUTED DATABASE ARCHITECTURE

The starting point for designing a distributed database architecture is information about the
data needs of geographically dispersed users. Some of this information for RMO was gath-
ered as an analysis activity (see Figures 6-32, 6-33, and 6-34) and is summarized here:

• Warehouse staff (Portland, Salt Lake City, and Albuquerque) need to check inventory levels,
query orders, record back orders and order fulfillment, and record order returns.

• The phone-order staff (Salt Lake City) need to check inventory levels; create, query,
update, and delete orders; query customer account information; and query catalogs.

• The mail-order staff (Provo) need to check inventory levels, query orders, query catalog
information, and update customer accounts.

• Customers (location not yet determined) need the same access capabilities as phone-
order staff.

• Headquarters staff (Park City) need to query and adjust orders, query and adjust customer
accounts, and create and query catalogs and promotions.

RMO has already decided to manage its database using the existing server cluster in the
Park City data center. Thus, a WAN will be required to connect the server to LANs in the ware-
houses, phone-order center, mail-order center, headquarters, and data center. A connection
will eventually be required for the Web servers used for direct customer ordering, although
they probably will be located at an existing site (such as the data center).

A single-server architecture for RMO is shown in Figure 13-32. This architecture requires
sufficient WAN capacity to carry database (and other) traffic from all locations. The primary
advantage of this architecture is its simplicity. There are no partitions or database copies to
manage, and only a single server must be maintained. The primary disadvantages are rela-
tively high WAN capacity requirements and the susceptibility of the entire system to failure of
the single server.

Combined
database

server

Accounting
database

server

Production
database

server

Marketing
database

server

Figure 13-31

A federated database

server architecture

C6696_13_CTP.4c 2/6/08 1:27 PM Page 521

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

A more complex alternative is shown in Figure 13-33. Each remote location employs a
combination of database partitioning and replication. A server at each warehouse stores a
local copy of the order and inventory portions of the database. Servers in the phone- and
mail-order centers store local copies of a larger subset of the database. Corporate headquar-
ters relies on the central database server in the data center.

The primary advantages of this architecture are fault tolerance and reduced WAN capacity
requirements. Each location could continue to operate if the central database server failed.
However, as the remote locations continued to operate, their database contents would gradu-
ally drift out of synchronization. A synchronization strategy must be implemented to address
both regular database updates and recovery from server failure. The strategy could vary by
location.

522 ♦ PART 3 SYSTEMS DESIGN TASKS

Wide
area

network

Mail-
order center

LAN

Corporate
headquarters

LAN

Central
database

server

Phone-
order center

LAN

Data
center

LAN

Warehouse
LAN

(three locations)

Replicated
database
partition

Replicated
database
partition

Replicated
database
partition

Figure 13-33

A replicated and

partitioned database

server architecture

for RMO

Wide
area

network

Mail-
order center

LAN

Corporate
headquarters

LAN

Central
database

server

Phone-
order center

LAN

Data
center

LAN

Warehouse
LAN

(three locations)

Figure 13-32

A single-server database

architecture for RMO

C6696_13_CTP.4c 2/6/08 1:27 PM Page 522

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 13 Designing Databases ♦ 523

The primary disadvantages to the distributed architecture are cost and complexity. The archi-
tecture saves WAN costs through reduced capacity requirements but adds costs for additional
database servers. The cost of acquiring, operating, and maintaining the additional servers would
probably be much higher than the cost of adding greater WAN capacity.

So which alternative makes the most sense for RMO? The answer depends on some data that
hasn’t yet been gathered and on answers to some questions about desired system performance.
RMO management must also determine its goals for system performance and reliability. The dis-
tributed architecture would provide higher performance and reliability but at substantially
increased cost. Management must determine whether the extra cost is worth the expected benefits.

Additional data about network traffic is needed to precisely determine LAN and WAN com-
munication requirements between clients and database servers. Estimates of transaction and
query volume, including normal and peak demand, are required for each location. Such esti-
mates may be gathered during analysis or design. The estimates are required to determine an
optimal configuration of LAN, WAN, and database server capacity. The analysis of the estimates
and the actual design of the networks and database architecture are complex endeavors that
require highly specialized knowledge and experience. If possible, estimates should be tested
and validated under realistic operating conditions. Barbara Halifax describes such a test in the
accompanying RMO memo.

C6696_13_CTP.4c 2/6/08 1:27 PM Page 523

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

524 ♦ PART 3 SYSTEMS DESIGN TASKS

SUMMARY
Most modern information systems store data in a database and access and manage the data using a DBMS.
Relational databases and DBMSs are most commonly used today, but object databases and DBMSs are increas-
ing in popularity. One of the key activities of systems design is developing a relational or object database
schema.

A relational database is a collection of data stored in tables. A relational database schema is normally developed
from an entity-relationship diagram. Each entity is represented as a separate table. One-to-many relationships are
represented by embedding foreign keys in entity tables. Many-to-many relationships are represented by creating
additional tables containing foreign keys of the related entities.

An object database stores data as a collection of related objects. The design class diagram is the starting point
for developing an object database schema. The database schema defines each class, and the ODBMS stores each
object as an instance of a particular class. Each object is assigned a unique object identifier. Relationships among
objects are represented by storing the object identifier of an object within related objects.

Objects can also be stored within a relational database. Object attributes and relationships among objects—includ-
ing one-to-many, many-to-many, and generalization hierarchies—can be represented. However, an RDBMS cannot
store methods and cannot directly represent inheritance.

Medium- and large-scale information systems typically use multiple databases or database servers in various
geographic locations. Replicated database architecture employs multiple database copies on different servers, usu-
ally in different geographic locations. Partitioned database architecture employs partial database copies stored on
different servers in proximity to a distinct user subset. Federated database architecture employs multiple databases
(possibly of different types) and a special-purpose DBMS that provides a unified view of the databases and a single
point of access.

KEY TERMS

complex data type, p. 515

database (DB), p. 488

database management system (DBMS), p. 488

database synchronization, p. 518

data type, p. 514

data warehouse, p. 520

field, p. 490

field value, p. 490

first normal form (1NF), p. 498

foreign key, p. 491

functional dependency, p. 498

hybrid object-relational DBMS, p. 510

key, p. 490

multivalued attribute, p. 508

navigation, p. 504

normalization, p. 498

object database management system (ODBMS), p. 503

Object Definition Language (ODL), p. 503

object identifier, p. 504

persistent class, p. 504

physical data store, p. 488

primary key, p. 491

primitive data type, p. 515

referential integrity, p. 496

relational database management system (RDBMS), p. 490

row, p. 490

schema, p. 488

second normal form (2NF), p. 498

table, p. 490

third normal form (3NF), p. 498

transient class, p. 503

REVIEW QUESTIONS

1. List the components of a DBMS and describe the function

of each.

2. What is a database schema? What information does

it contain?

3. Why have databases become the preferred method of stor-

ing data used by an information system?

4. List four different types of database models and DBMSs.

Which are in common use today?

C6696_13_CTP.4c 2/6/08 1:27 PM Page 524

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 13 Designing Databases ♦ 525

5. With respect to relational databases, briefly define the

terms row and field.

6. What is a primary key? Are duplicate primary keys

allowed? Why or why not?

7. What is the difference between a natural key and an

invented key? Which type is most commonly used in busi-

ness information processing?

8. What is a foreign key? Why are foreign keys used or

required in a relational database? Are duplicate foreign key

values allowed? Why or why not?

9. Describe the steps used to transform an ERD into a rela-

tional database schema.

10. How is an entity on an ERD represented in a relational

database?

11. How is a one-to-many relationship on an ERD represented

in a relational database?

12. How is a many-to-many relationship on an ERD repre-

sented in a relational database?

13. What is referential integrity? Describe how it is enforced

when a new foreign key value is created, when a row con-

taining a primary key is deleted, and when a primary key

value is changed.

14. What types of data (or fields) should never be stored more

than once in a relational database? What types of data (or

fields) usually must be stored more than once in a rela-

tional database?

15. What is relational database normalization? Why is a data-

base schema in third normal form considered to be of

higher quality than an unnormalized database schema?

16. Describe the process of relational database normalization.

Which normal forms rely on the definition of functional

dependency?

17. Describe the steps used to transform a class diagram into

an object database schema.

18. What is the difference between a persistent class and a

transient class? Provide at least one example of each

class type.

19. What is an object identifier? Why are object identifiers

required in an object database?

20. How is a class on a class diagram represented in an object

database?

21. How is a one-to-many relationship on a class diagram rep-

resented in an object database?

22. How is a many-to-many relationship without attributes

represented in an object database?

23. What is an association class? How are association classes

used to represent many-to-many relationships in an object

database?

24. Describe the two ways in which a generalization relation-

ship can be represented in an object database.

25. Does an object database require key fields or attributes?

Why or why not?

26. Describe the similarities and differences between an ERD

and a class diagram that models the same underlying reality.

27. How are classes and relationships on a class diagram repre-

sented in a relational database?

28. What is the difference between a primitive data type and a

complex data type?

29. What are the advantages of having an RDBMS provide

complex data types?

30. Does an ODBMS need to provide predefined complex data

types? Why or why not?

31. Why might all or part of a database need to be replicated

in multiple locations?

32. Briefly describe the following distributed database archi-

tectures: replicated database servers, partitioned database

servers, and federated database servers. What are the

comparative advantages of each?

33. What additional database management complexities are

introduced when database contents are replicated in mul-

tiple locations?

THINKING CRITICALLY

1. The Universal Product Code (UPC) is a bar-coded number

that uniquely identifies many products sold in the United

States. For example, all copies of this textbook sold in

the United States have the same UPC bar code on the

back cover. Now consider how the design of the RMO

database might change if all items sold by RMO were

required by law to carry a permanently attached UPC (for

example, on a label sewn into garments). How might the

RMO relational database schema change under this

requirement?

2. Assume that RMO plans to change its pricing policy. If two

or more catalogs are in circulation at the same time, then

all item prices in the catalogs must be the same. Prices can

still rise or fall over time, and those changes will be

recorded in the database and printed in newly issued cata-

logs. Any customer who makes an order will always be

given the lower of the current price or the price in the

current catalog. What changes to the tables shown in

Figure 13-9 will be required to ensure that the RMO data-

base is in 3NF after the pricing policy change?

C6696_13_CTP.4c 2/6/08 1:27 PM Page 525

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

526 ♦ PART 3 SYSTEMS DESIGN TASKS

3. Assume that RMO will begin asking a random sample of

customers who order by telephone about purchases made

from competitors. RMO will give customers a 15 percent

discount on their current order in exchange for answering

a few questions. To store and use this information, RMO

will expand the ERD and class diagram with two new enti-

ties (classes) and three new relationships. The new entities

(classes) are Competitor and ProductCategory. Competitor

has a one-to-many relationship with ProductCategory, and

the existing Customer entity (class) also has a one-to-many

relationship with ProductCategory. Competitor has a single

field (attribute) called Name. ProductCategory has four

fields (attributes): Description, DollarAmountPurchased,

MonthPurchased, and YearPurchased. Revise the relational

database schema shown in Figure 13-9 to include the new

entities and relationships. All tables must be in 3NF.

4. Assume that RMO is developing its database using

object-oriented methods. Assume further that the database

designers want to make some changes to the class diagram

in Figure 13-15. Specifically, they want to make ProductItem

an abstract parent class from which more specific product

classes are specialized. Three specialized classes will be

added: ClothingItem, EquipmentItem, and OtherItem.

ClothingItem will add the attribute color, and that same

attribute will be removed from the InventoryItem class.

EquipmentItem will also add an attribute called color but will

not have an attribute called gender. OtherItem will have both

the color and gender attributes. Revise the relational data-

base schema in Figure 13-24 to store the new ProductItem

generalization hierarchy. Use a separate table for each of the

specialized classes.

5. Assume that RMO will use a relational database, as shown

in Figure 13-9. Assume further that a new catalog group

located in Milan, Italy, will now create and maintain the

catalog. To minimize networking costs, the catalog group

will have a dedicated database server attached to its LAN.

Develop a plan to partition the RMO database. Which

tables should be replicated on the catalog group’s local

database server? Update Figure 13-33 to show the new

distributed database architecture.

6. Revisit the issues raised in the Nationwide Books (NB) case

at the beginning of the chapter. Should NB adopt an

ODBMS for the new Web-based ordering system? Why or

why not?

EXPERIENTIAL EXERCISES

1. This chapter did not discuss network databases in detail,

but some database textbooks discuss them. Investigate the

network database model and its use of pointers to repre-

sent relationships among record types. In what ways is the

use of pointers in a network database similar to the use of

object identifiers in an object database? Does the similarity

imply that object databases are little more than a renamed

version of an older DBMS technology?

2. Access the Object Database Management Group Web site

(www.odmg.org) and gather information on the current

status of the ODMG standard.

3. Investigate the student records management system at your

school to determine what database management system is

used. What database model is used by the DBMS? If the

DBMS isn’t object oriented, find out what plans, if any, are in

place to migrate to an ODBMS. Why is the migration being

planned (or not being planned)?

4. Visit the Web site of an online catalog vendor similar

to RMO (such as www.llbean.com) or an online vendor

of computers and related merchandise (such as

www.cdw.com). Browse the online catalog and note the

various types of information contained therein. Construct

a list of complex data types that would be needed to

store all of the online catalog information.

CASE STUDIES
REAL ESTATE MULTIPLE LISTING SERVICE SYSTEM

Refer to the description of the Real Estate Multiple Listing Service

system in the Chapter 5 case studies. Using the ERD and domain

model class diagram for that system as a starting point:

1. Develop a relational database schema in 3NF.

2. Develop an ODL database schema.

STATE PATROL TICKET PROCESSING SYSTEM

Refer to the description of the State Patrol ticket processing system

in the Chapter 5 case studies. Using the ERD and domain model class

diagram for that system as a starting point:

1. Develop a relational database schema in 3NF.

2. Develop an ODL database schema.

C6696_13_CTP.4c 2/6/08 1:27 PM Page 526

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

http://www.odmg.org
http://www.llbean.com
http://www.cdw.com

CHAPTER 13 Designing Databases ♦ 527

COMPUTER PUBLISHING, INCORPORATED

In only a decade, Computer Publishing, Incorporated (CPI) had grown
from a small textbook publishing house into a large international
company with significant market share in traditional textbooks, elec-
tronic books, and distance education courseware. CPI’s processes for
developing books and courseware were similar to those used by most
other publishers, but those processes had proven cumbersome and
slow in an era of rapid product cycles and multiple product formats.

Text and art were developed in a wide variety of electronic formats,
and conversions among those formats were difficult and error-prone.
Many editing steps were performed with traditional paper-and-pencil
methods. Consistency errors within books and among books and
related products were common. Developing or revising a book and all
its related products typically took a year or more.

CPI’s president initiated a strategic project to reengineer the
way that CPI developed books and related products. CPI formed a
strategic partnership with Davis Systems (DS) to develop software
that would support the reengineered processes. DS had significant
experience developing software to support product development in
the chemical and pharmaceutical industries using the latest devel-
opment tools and techniques, including object-oriented software
and databases. CPI expected the new processes and software to
reduce development time and cost. Both companies expected to
license the software to other publishers within a few years.

A joint analysis team specified the workflows and high-level
requirements for the software. The team developed plans for a
large database that would hold all book and courseware content
through all stages of production. Authors, editors, and other pro-
duction staff would interact with the database in a variety of ways,
including traditional word-processing programs and Web-based
interfaces. When required, format conversions would be handled
seamlessly and without error. All content creation and modification
would be electronic—no text or art would ever be created or edited
on paper, except as a printed book ready for sale.

Software would track and manage content through every stage
of production. Content common to multiple products would be
stored in the database only once. Dependencies within and across
products would be tracked in the database. Software would ensure
that any content addition or change would be reflected in all depen-
dent content and products, regardless of the final product form. For
example, a sentence in Chapter 2 that refers to a figure in Chapter 1
would be updated automatically if the figure were renumbered. If a
new figure were added to a book, it would be added automatically
to the related courseware presentation slides. Related courseware

and study material on the Web site would automatically reflect
changes to the answer to an end-of-chapter question.

1. Consider the contents of this textbook as a template for
CPI’s database content. Draw an ERD and class diagram
that represents the book and its key content elements.
Which diagram is a more accurate representation of book
content? Expand your diagrams to include related product
content such as a set of PowerPoint slides, an electronic
book formatted as a Web site, and a Web-based test bank.

2. Develop a list of data types required to store the content of
the book, slides, and Web sites. Are the relational DBMS
data types listed in Figure 13-26 sufficient?

3. What features of an ODBMS, beyond or different from
RDBMS features, might be useful when implementing CPI’s
database? Give examples of how they might be used.

RETHINKING ROCKY MOUNTAIN OUTFITTERS

The “Rethinking RMO” case in Chapter 5 asked you
to consider additional things and relationships that
would need to be modeled if RMO were to imple-
ment its own customer charge accounts. If you have

not already done so, complete that exercise and update the ERD and
class diagram accordingly, then complete the following tasks:

1. Update the RMO relational database design in Figure 13-9
based on the changes that you made to the ERD. Be sure
that all your database tables are in 3NF.

2. Write ODL schema specifications for all new classes and
relationships that you added to the class diagram.

3. Verify that the new classes and relationships are accurately
represented in the updated relational database design that
you developed for question 1.

FOCUSING ON RELIABLE PHARMACEUTICAL SERVICE

Use the ERD that you developed in Chapter 5
and the domain model class diagram that you
developed in Chapter 7 to complete the fol-

lowing tasks:
1. Develop a relational database schema in 3NF.
2. Develop an ODL database schema.
3. Discuss the pros and cons of distributed database architecture.

Which architectural approach (or combination of
approaches) should Reliable employ in their new system
after it is fully implemented?

FURTHER RESOURCES

The Object Database Management Group Web site,
www.odmg.org.

Robert Orfali, Dan Harkey, and Jeri Edwards, The Essential
Client/Server Survival Guide (3rd ed.). John Wiley & Sons, 1999.

Peter Rob and Carlos Coronel, Database Systems: Design
Implementation and Management (7th ed.). Course Technology, 2007.

C6696_13_CTP.4c 2/6/08 1:27 PM Page 527

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

http://www.odmg.org

528

DESIGNING THE USER INTERFACE14
L E A R N I N G O B J E C T I V E S

After reading this chapter, you should be able to:

■ Describe the difference between user interfaces and system interfaces

■ Explain why the user interface is the system to the users

■ Discuss the importance of the three principles of user-centered design

■ Describe the historical development of the field of human-computer

interaction (HCI)

■ Describe the three metaphors of human-computer interaction

■ Discuss how visibility and affordance affect usability

■ Apply the eight golden rules of dialog design when designing the user interface

■ Define the overall system structure as a menu hierarchy

■ Write user-computer interaction scenarios as dialogs

■ Create storyboards to show the sequence of forms used in a dialog

■ Design windows forms and browser forms that are used to implement a dialog

■ List the key principles used in Web design

CHAPTER

C H A P T E R O U T L I N E

Identifying and Classifying Inputs and Outputs

Understanding the User Interface

Guidelines for Designing User Interfaces

Documenting Dialog Designs

Guidelines for Designing Windows and Browser Forms

Guidelines for Designing Web Sites

Designing Dialogs for Rocky Mountain Outfitters

C6696_14_CTP.4c 2/6/08 1:28 PM Page 528

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 14 Designing the User Interface ♦ 529

INTERFACE DESIGN AT AVIATION ELECTRONICS

Bob Crain was admiring the user interface for the manufacturing support system recently
installed at Aviation Electronics (AE). Bob is the plant manager for AE’s Midwest manufactur-
ing facility, which is responsible for producing aviation devices used in commercial aircraft.
These aviation devices provide guidance and control functions for flight crews, and they pro-
vide the latest safety and security features that pilots need when flying commercial aircraft.

The manufacturing support system is used for all facets of the manufacturing process,
including product planning, purchasing, parts inventory, quality control, finished goods
inventory, and distribution. Bob was involved extensively in the development of the system
over a period of several years, including initial planning and development. The system
reflected almost everything he knew about manufacturing. The information systems team that
developed the system relied extensively on Bob’s expertise. That was the easy part for Bob.

What particularly pleased Bob was the final user interface. Bob had insisted that the devel-
opment team think “outside the box.” He did not want just another cookie-cutter transaction
processing system. He wanted a system that acted as a partner in the manufacturing process—
with a look and feel that really fit the work the users were doing. After all, the facility pro-
duced devices whose major design goal was usability. Shouldn’t the manufacturing support
system be designed that way, too?

The first manager assigned to the project didn’t want to discuss usability at all. “We’ll add
the user interface later, after we work out the accounting controls” was a typical comment.
When Bob insisted that the project manager be replaced, the information systems department
sent Sara Robinson to lead the project.

Sara had a completely different attitude; she started out asking about events that affect the
manufacturing process and about cases in which users need support from the system.
Although she had a team of analysts working on the accounting transaction details right from
the beginning, she always focused on how the user would interact with the system. Bob and
Sara conducted meetings to involve users in discussions about how they might use the sys-
tem, even asking users to act out the roles of the user and the system in carrying on a conver-
sation. That approach was outside the box.

At other meetings, Sara presented sketches of screens and asked users to draw on them, to
indicate the information they wanted to see and options they wanted to be able to select.
These sessions produced many ideas. For example, many users did not sit at their desks all
day—they needed larger and more graphic displays they could see from across the room.
Many users needed to refer to several displays, and they needed to be able to read them simul-
taneously. Several functions were best performed using graphical simulations of the manufac-
turing process. Users made sketches showing how the manufacturing process actually worked,
and the team used these sketches later to define much of the interface. Sara and her team kept
coming back every month or so with more examples to show, asking for more suggestions.

When the system was finally completed and installed, most users already knew how to
use it because they had been so involved in its design. Bob knew everything the system could
do, but he had his own uses for it. He sat at his desk and clicked the review ongoing processes
button on the screen, and the manufacturing support system gave him his morning briefing.

OVERVIEW

Information systems capture inputs and produce outputs, and inputs and outputs occur
where there are interfaces between the system and its environments. System interfaces handle
inputs and outputs that require minimal human intervention. User interfaces handle inputs
and outputs that involve a system user directly. This chapter differentiates between both types

C6696_14_CTP.4c 2/6/08 1:28 PM Page 529

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

of interfaces and then focuses on the design of user interfaces. Then Chapter 15 focuses on
system interfaces, system outputs, and system controls.

One of the key systems design activities is to design the user interface for a system.
Designing the user interface means designing the inputs and outputs involved when the user
interacts with the computer to carry out a task. This chapter emphasizes the interaction
between the user and the computer—called human-computer interaction, or HCI. For every
input, a developer must consider the interaction between user and computer and design an
interface to process the input. Similarly, for every output produced at the request of a user (an
online report, for example), the developer must design the interaction. Because the interac-
tion is much like a dialog between the user and the computer, user-interface design is often
referred to as dialog design.

This chapter begins with discussion of the user interface by providing background on
user-centered design, the development of the field of human-computer interaction, and sev-
eral metaphors used to describe the user interface. Many guidelines are available to help
ensure usability of the system, and some of the most important guidelines are discussed,
including guidelines for Web-based development. Next, approaches to documenting dialog
designs are presented. Examples are given throughout the chapter, including some dialog
design examples for Rocky Mountain Outfitters that show Windows forms and Web pages.
Remember, user-interface design is often completed using an iterative approach—addressing
only a few use cases at a time. But it is important to establish an overall user-interface design
concept early in the project so that the design of each dialog can be coordinated.

IDENTIFYING AND CLASSIFYING INPUTS AND OUTPUTS

Inputs and outputs of the system are an early concern of any system development project. The
project plan lists key inputs and outputs that the analyst identified when defining the scope
of the system. During the analysis phase, analysts also discussed inputs and outputs early and
often with system stakeholders to identify external agents and actors that affect the system
and that depend on information it produces. Requirements models produced during analysis
also emphasize inputs and outputs. For example, the event table includes a trigger for each
external event, and the triggers represent inputs. Outputs are shown as responses to external,
state, and temporal events.

TRADITIONAL AND OO APPROACHES TO INPUTS AND OUTPUTS

In the traditional approach, inputs and outputs are shown as data flows on the context dia-
gram, the data flow diagram (DFD) fragments, and the detailed DFDs. A data flow definition
that lists all data elements describes each input and output in detail. During design, analysts
add more detail about the data flows based on the choices they made when deciding on a
design alternative. The question of whether an input is captured automatically or entered by a
system user, for example, determines details about the design of the system. As discussed in
Chapter 10, these details must be coordinated with the design of the application software.

In the object-oriented approach, inputs and outputs are defined by messages entering or
leaving the system. Inputs and outputs are included in the event table as triggers and
responses. Actors provide inputs for many use cases, and many use cases provide outputs to
actors. The messages exchanged during a scenario define these inputs and outputs in more
detail, and as the design of each scenario becomes more detailed, so does the specification of
messages. They are reflected in interaction diagrams, in design class diagrams as methods, and
in state machine diagrams. The system sequence diagram introduced in Chapter 7 first
showed these inputs and outputs.

530 ♦ PART 3 SYSTEMS DESIGN TASKS

C6696_14_CTP.4c 2/6/08 1:28 PM Page 530

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 14 Designing the User Interface ♦ 531

USER VERSUS SYSTEM INTERFACES

In both the traditional and object-oriented approaches, a key step in systems design is to clas-
sify the inputs and outputs for each event as either a system interface or a user interface.
System interfaces involve inputs and outputs that require minimal human intervention. They
might be inputs captured automatically by special input devices such as scanners, electronic
messages from another system, or batch processing transactions compiled by another system.
Many outputs are considered system interfaces if they primarily send messages or informa-
tion to other systems or if they produce reports, statements, or documents for external agents
or actors without much human intervention.

User interfaces involve inputs and outputs that more directly involve a system user. A user
interface enables a user to interact with the computer to record a transaction, such as when a
customer service representative records a phone order for an RMO customer. Sometimes out-
puts are produced after user interaction, such as the information displayed after a user query
about the status of an order. In Web-based systems, a customer can interact directly with a sys-
tem to request information, place an order, or look up the status of an order. At Rocky
Mountain Outfitters, Barbara Halifax’s regular status memo updates John MacMurty on some
of the activities of user-interface design for the customer support system.

system interfaces
the parts of an
information system
involving inputs and
outputs that require
minimal human
intervention

user interfaces
the parts of an
information system
requiring user
interaction to create
inputs and outputs

C6696_14_CTP.4c 2/6/08 1:28 PM Page 531

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

In most system development projects, analysts separate design of system interfaces from
design of user interfaces because they require different expertise and technology. But as with
the design of any system component, considerable coordination is required. This chapter dis-
cusses user interfaces. The next chapter deals with system interfaces and system controls.

UNDERSTANDING THE USER INTERFACE

Many people think the user interface is developed and added to the system near the end of the
development process. But the user interface of an interactive system is much more than that.
The user interface is everything the end user comes in contact with while using the system—
physically, perceptually, and conceptually (see Figure 14-1). To the end user of a system, the
user interface is the system itself.

532 ♦ PART 3 SYSTEMS DESIGN TASKS

Desk, chair, light,
keyboard, mouse,
touch screen, keypad,
manuals, printed
documents,
paper forms.

Windows, menus,
dialog boxes, buttons,
lines, shapes, textures,
colors, fonts, sounds,
speech.

Customers,
products, orders,
catalogs, adding,
deleting,
updating, printing,
select-click-drag-
drop, double-
click-escape-
click-click.

Figure 14-1

Physical, perceptual, and

conceptual aspects of the

user interface

Many system developers, particularly those who work on highly interactive systems, echo
this point of view in claiming that to design the user interface is to design the system.
Therefore, consideration of the user interface should come very early in the development
process. The term human-computer interaction (HCI) is generally used to refer to the study
of end users and their interaction with computers.

PHYSICAL ASPECTS OF THE USER INTERFACE

Physical aspects of the user interface include the devices the user actually touches, including
the keyboard, mouse, touch screen, or keypad. But other physical parts of the interface
include reference manuals, printed documents, and data-entry forms, which the end user
works with while completing tasks at the computer. For example, a mail-order data-entry clerk
at Rocky Mountain Outfitters works at a computer terminal but uses printed catalogs and
handwritten order forms when entering orders into the system. The desk space, the docu-
ments, the available light, and the computer terminal hardware all make up the physical
interface for this end user.

human-computer

interaction (HCI)
the study of end users
and their interactions
with computers

C6696_14_CTP.4c 2/6/08 1:28 PM Page 532

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 14 Designing the User Interface ♦ 533

PERCEPTUAL ASPECTS OF THE USER INTERFACE

Perceptual aspects of the user interface include everything the end user sees, hears, or touches
(beyond the physical devices). What the user sees includes all data and instructions displayed
on the screen, including shapes, lines, numbers, and words. The user might rely on the
sounds made by the system, even a simple beep or click that tells the user that the system rec-
ognizes a keystroke or selection. More recently, computer-generated speech makes it seem
that the system is actually talking to the user, and with speech recognition software, the user
can talk to the computer. The user “touches” objects such as menus, dialog boxes, and buttons
on the screen using a mouse, but the user also touches objects such as documents, drawings,
or records of transactions with a mouse when completing tasks.

CONCEPTUAL ASPECTS OF THE USER INTERFACE

Conceptual aspects of the user interface include everything the user knows about using the
system, including all of the problem domain “things” in the system the user is manipulating,
the operations that can be performed, and the procedures followed to carry out the opera-
tions. To use the system, the end user must know all about these details—not how the system
is implemented internally, but what the system does and how to use it to complete tasks. This
knowledge is referred to as the user’s model of the system. Much of the user’s model is a log-
ical model of the system, as you learned in Chapters 5, 6, and 7. A logical model of the sys-
tem requirements can be quite detailed, so the user must know quite a few details to operate
the system. Recall also that a systems analyst relies on the end users to help define the require-
ments that the analyst captures in various models. The user’s knowledge of the requirements
for the system becomes the fundamental determinant of what the system is, and if the user’s
knowledge of the system is part of the interface, then the user interface must be much more
than a component added near the end of the project.

Remember that to the user the user interface is the system itself.

BEST PRACTICE

USER-CENTERED DESIGN

Many researchers focus their attention on creating analysis and design techniques that place
the user interface at the center of the development process because they recognize the impor-
tance of the user interface to system developers and system users. These techniques are often
referred to collectively as user-centered design. User-centered design techniques emphasize
three important principles:

• Focus early on the users and their work.
• Evaluate designs to ensure usability.
• Use iterative development.

The early focus on users and their work is consistent with the approach to systems analy-
sis in this text: Analysts must understand and identify the system users and their requirements
for the system. The traditional approach to development focuses more on the requirements
from the business point of view—what needs to be accomplished and what are the sources
and destinations for data? The object-oriented approach, probably because most object-
oriented systems are interactive, focuses more on users and their work by identifying actors,
use cases, and scenarios followed when using the system. As discussed in Chapter 7, the
automation boundary between the user and computer is defined very early during require-
ments modeling.

User-centered design goes much further in attempting to understand the users, however.
What do they know? How do they learn? How do they prefer to work? What motivates them?

user’s model
what the user knows
about using the system,
including the problem
domain “things” the user
is manipulating, the
operations that can be
performed, and the
procedures followed
when carrying out tasks

user-centered

design
a collection of techniques
that place the user
at the center of the
development process

C6696_14_CTP.4c 2/6/08 1:28 PM Page 533

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The amount of focus on users and their work varies with the type of system being developed.
If the system is a shrink-wrapped desktop application marketed directly to end users, the
focus on users and their preferences is intense.

The second principle of user-centered design is to evaluate designs to ensure usability.
Usability refers to the degree to which a system is easy to learn and use. Ensuring usability is
not easy; there are many different types of users with differing preferences and skills to accom-
modate. Features that are easy to use for one person might be difficult for another. If the sys-
tem has a variety of end users, how can the designer be sure that the interface will work well
for all of them? If it is too flexible, for example, some end users might feel lost. On the other
hand, if the interface is too rigid, some users will be frustrated.

But there is more to consider for ease of learning and ease of use. These concepts often
conflict because an interface that is easy to learn is not always easy to use. For example, menu-
based applications with multiple forms, many dialog boxes, and extensive prompts and
instructions are easy to learn—indeed, they are self-explanatory. Easy-to-learn interfaces are
appropriate for systems that end users use infrequently. But if office workers use the system
all day, it is important to make the interface fast and flexible, with shortcuts, hot keys, and
information-intensive screens. This second interface might be harder to learn, but it will be
easier to use after it is learned. Office workers (with the support of their management) are
willing to invest more time learning the system to become efficient users.

Developers employ many techniques to evaluate interface designs to ensure usability.
User-centered design requires testing all aspects of the user interface. Some usability testing
techniques collect objective data that can be statistically analyzed to compare designs. Some
techniques collect subjective data about user perceptions and attitudes. To assess user atti-
tudes, developers conduct formal surveys, focus group meetings, design walkthroughs,
paper-and-pencil evaluations, expert evaluations, formal laboratory experiments, and
informal observation.

The third principle of user-centered design is to use iterative development—doing some
analysis, then some design, then some implementation, and then repeating the processes.
After each iteration, the project team evaluates the work on the system to date. Iterative devel-
opment keeps the focus on the user by continually returning to the user requirements during
each iteration and by evaluating the system after each iteration. Iterative development is dis-
cussed throughout this text as applicable to both traditional and object-oriented approaches
to development.

HUMAN-COMPUTER INTERACTION AS A FIELD OF STUDY

User-interface design techniques and HCI as a field of study evolved from studies of human
interaction with machines in general, referred to as human factors engineering or ergonomics.
The formal study of human factors began during World War II, when aerospace engineers stud-
ied the effects on airplane pilots of rearranging controls in the cockpit. Pilots are responsible for
controlling many devices as they fly, and the effectiveness of the interaction between the pilot
and the devices is critical. If the pilot makes a mistake (that is, if he or she can’t correctly use a
device), the plane might crash. What the pilot does is the “human factor” that engineers real-
ized was often beyond their control.

One story about the importance of the human factor involved a minor change to the
design of the plane cockpit. The designers switched the locations of the throttle and the
release handle for the ejection seat. The result was a dramatic increase in the number of unex-
plained pilot ejections. When under pressure, the pilots grabbed what they thought was the
throttle and ejected themselves from the plane. Initially, designers dismissed the problem as
the need for better training. But even with training, pilots under pressure continued to grab
the wrong handle. It became apparent that the key to the “human factor” was to change the
machine to accommodate the human rather than trying to change the human to accommo-
date the machine.

534 ♦ PART 3 SYSTEMS DESIGN TASKS

usability
the degree to which a
system is easy to learn
and use

human factors

engineering

(ergonomics)
the study of human
interaction with
machines in general

C6696_14_CTP.4c 2/6/08 1:28 PM Page 534

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 14 Designing the User Interface ♦ 535

The field of human factors was first associated with engineering because engineers
designed machines. But engineers, who are generally used to precise specifications and pre-
dictable behavior, often find the human factor frustrating. Gradually, specialists emerged who
began to draw on many disciplines to understand people and their behavior. These disci-
plines include cognitive psychology, social psychology, linguistics, sociology, anthropology,
and others, as shown in Figure 14-2. Information systems specialists with an interest in
human-computer interaction study computers plus all of these disciplines.

Human-computer
interaction (HCI)

Linguistics

Anthropology

Physiology

Engineering Computer
science

Graphic art

Media

Social
psychology

Engineering
Computer

science

Physiology

Anthropology

Linguistics

Cognitive

psychology
Sociology

Social

psychology

Media

Graphic art

Human-computer
interaction (HCI)

Figure 14-2

The fields contributing to

the study of HCI

An important contribution to the development of the field of human-computer interac-
tion began with the Xerox Corporation in the 1970s. Xerox produced high-speed photocopy-
ing machines that provided an increasing number of special options and capabilities that the
human operator could specify. The designers of the photocopying machines recognized the
importance of making the complex machines easy for the operators to learn and use. Xerox
customers wanted minimal training time for their operators, and operator errors could be
costly. For example, if a clerk began a large photocopying job but made a mistake in specify-
ing details, it would be wasteful and delay the distribution of important documents.
Therefore, Xerox emphasized the usability of its machines.

Xerox established a research and development laboratory, called the Xerox Palo Alto
Research Center (Xerox PARC), to study issues that affect how humans operate machines. As
a result of this investment, Xerox eventually offered photocopying machines with touch
screen, menu-driven interfaces that displayed icons representing objects such as documents,
stacks of paper, staples, and sorting bins.

Research and development at Xerox PARC also involved work on computers and object-
oriented programming. The first pure object-oriented programming language, called
Smalltalk, was created at Xerox PARC by Alan Kay and associates to facilitate the development
of interactive user interfaces. In the early 1970s, Kay envisioned an advanced, portable personal
computing platform (similar to today’s ultralight notebook computers) called the Dynabook.
Many researchers thought such a machine could not be built for three or four decades because
the hardware required for the Dynabook was not available. Kay decided to work on the software
that would run the machine in anticipation of the hardware, which led to Smalltalk.

C6696_14_CTP.4c 2/6/08 1:28 PM Page 535

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Smalltalk includes classes that make up the key parts of windowing interfaces
today—windows, menus, buttons, labels, text fields, and so forth. The design and programming
philosophy used to describe and build these interfaces was developed along with the language—
all 100 percent object oriented.

Because of the work at PARC, Xerox eventually developed and marketed one of the first
general-purpose personal computers with a graphical user interface—the Xerox Star—in the late
1970s. Although it was ahead of its time and far too expensive, it is considered a landmark devel-
opment in computing. Its key features were exploited in the early 1980s by a small company near
Xerox PARC named Apple Computers. Apple first exploited the Xerox Star’s features as the Apple
Lisa and then as the Apple Macintosh. The work at Xerox PARC had a substantial impact on
object-oriented programming, personal computers, and user-interface design.

Now that the object-oriented approach to system development is becoming more influential,
user-interface design concepts and development techniques pioneered at labs such as Xerox
PARC are becoming better integrated into system development methodologies used for business
systems. The field of HCI has grown and now sponsors many academic journals, conferences,
and book series devoted to research and practice. Undergraduate and graduate degree programs
are also available to train HCI specialists.

METAPHORS FOR HUMAN-COMPUTER INTERACTION

There are many ways to think about human-computer interaction, including metaphors or
analogies. Three alternatives are the direct manipulation metaphor, the document metaphor,
and the dialog metaphor. Because each metaphor provides an analogy to a different concept,
each has implications for the design of the user interface.

The Direct Manipulation Metaphor

Direct manipulation assumes that the user interacts with objects on the screen instead of typ-
ing commands on a command line. Objects that the user can interact with are made visible
on the screen so the user can point at them and manipulate them with the mouse or arrow
keys. The earliest direct manipulation interfaces were word processors that allowed users to
type in words directly where desired in a document. By the early 1980s, electronic spread-
sheet applications (first VisiCalc, then Lotus 1-2-3) became available for IBM DOS PCs. These
applications used a direct manipulation approach—the user typed numbers, formulas, or text
directly into cells on a spreadsheet. The spreadsheet on the screen was conceptually similar to
a paper spreadsheet that was familiar to people working in accounting and finance. The famil-
iarity and direct manipulation features made these applications easy to understand and nat-
ural to use, and end users could speed their work by including formulas to automatically do
the calculations on the spreadsheets. These early direct manipulation DOS applications were
an important reason for the success of the personal computer. Even though they did not have
graphical user interfaces, they were very popular because they made interacting with a com-
puter straightforward, natural, and useful.

The Smalltalk language developed at Xerox PARC extended direct manipulation to all
objects on the screen. Some of these objects are interface objects such as buttons, check boxes,
scroll bars, and slider controls, but other problem domain objects such as documents, sched-
ules, file folders, and business records were also displayed as objects that the user could
directly manipulate. For example, an interface might include a trash can object; to delete a
document file, the user clicks on the document with the mouse and drags the document to
the trash can. By directly manipulating the objects in this way, the user tells the computer to
delete the document file.

Direct manipulation coupled with object-oriented programming eventually evolved into
the desktop metaphor, in which the display screen includes an arrangement of common desk-
top objects—a notepad, a calendar, a calculator, and folders containing documents. Many
desktops now also include a telephone, an answering machine, a CD player, and even a video

536 ♦ PART 3 SYSTEMS DESIGN TASKS

direct

manipulation
a metaphor of HCI in
which the user interacts
directly with objects on
the display screen

desktop

metaphor
a direct manipulation
approach in which the
display screen includes
an arrangement of
common objects found
on a desk

C6696_14_CTP.4c 2/6/08 1:28 PM Page 536

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 14 Designing the User Interface ♦ 537

monitor. Interacting with any of these objects is similar to interacting with the real-world
objects they represent. End users now expect all applications, including business information
systems, to be as natural to work with as objects on the desktop. New larger displays and mul-
tiple display arrangements allow for many desktop applications to be arranged in front of the
user, as shown in Figure 14-3.

The Document Metaphor

Another view of the interface is the document metaphor, in which interaction with the com-
puter involves browsing and entering data in electronic documents. These documents are much
like printed documents, but because the documents are electronic, they are more interactive.
Electronic versions of documents can be organized differently from paper versions because the
reader can jump around from place to place. Hypertext documents allow the user to click on a
link and jump to a different part of the document or to another document entirely.

Most common desktop applications create and edit electronic documents, which are not
limited to text and usually include word processing, spreadsheets, presentations, and graph-
ics. All of these applications produce documents, but any one document can contain words,
numbers, and graphics produced by any of these applications, making documents collections
of all sorts of interrelated media. Hypermedia extends the hypertext concept to include mul-
timedia content such as graphics, video, and audio that can be linked for navigation by the
user in a document.

The World Wide Web is based on the document metaphor, because everything at a Web site
is organized as pages that are linked as hypermedia (note that HTML means Hypertext Markup
Language). A Web site processes transactions by selecting information in a Web page document.
The document metaphor and the browser interface function as useful ways of describing and
designing interactive systems, and they will continue to affect user interface designs. Figure 14-4
shows a wide display with two browsers, each containing a hypermedia document.

The Dialog Metaphor

The direct manipulation and document metaphors emphasize objects in the computer with
which the user interacts. Another view of the interface is the dialog metaphor, in which inter-
acting with the computer is much like carrying on a conversation or dialog. In fact, user-
interface design is often referred to as dialog design. Carrying on a dialog, or conversation, with
someone requires each person to listen to and respond to questions and comments from the
other person, exchanging information in a sequence. The dialog metaphor is another way of
thinking about human-computer interaction because the computer “listens to” and responds
to user questions or comments, and the user “listens to” and responds to the computer’s

document

metaphor
a metaphor of HCI in
which interaction with
the computer involves
browsing and entering
data in electronic
documents

hypertext
documents that allow the
user to click on a link
and jump to a different
part of the document or
to another document

hypermedia
technology that extends
the hypertext concepts to
include multimedia
content such as graphics,
video, and audio

dialog metaphor
a metaphor of HCI in
which interacting with
the computer is much
like carrying on a
conversation or dialog

The desktop metaphor

based on direct

manipulation, shown

on a double-wide

display screen

Figure 14-3

C6696_14_CTP.4c 2/6/08 1:28 PM Page 537

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Consider the following dialog between a manager and an assistant:

Manager: Did I get any messages while I was out?
Assistant: Yes, you have three messages—from Bob, Mary, and Lim.
Manager: What did Lim have to say?
Assistant: Lim left a message at 8:15 last night regarding the meeting next Monday

about the inventory management system. The message is, “Can we
change the time for the meeting to 10:30? I’ll be delayed by the testing
session.”

Manager: I better respond. Say that the change is not a problem.
Assistant: Okay, I’ll leave him that message. Do you want the next message?
Manager: What did Mary have to say?
Assistant: She left a message at 8:15 this morning regarding lunch. She said,

“Lunch is still on, but Joe will not be able to join us.”
Manager: Okay, no response. And that’s all for now. Thanks.
Assistant: Okay, you still have one message from Bob. I’ll remind you later.

538 ♦ PART 3 SYSTEMS DESIGN TASKS

The document metaphor

shown as hypermedia in

Web browsers

I am ready to work now.

Okay, which task do you
want to complete?

I want to check for
messages.

It looks like you have these
three messages...

Figure 14-5

The dialog metaphor

expresses the concept

that the user and

computer interact by

sending messages

questions and comments. Like the direct manipulation metaphor, the dialog metaphor is
based on an object-oriented view of the system because communication involves messages
from one “object” to another. Figure 14-5 shows how the user and the computer communi-
cate by sending messages to each other.

Figure 14-4

C6696_14_CTP.4c 2/6/08 1:28 PM Page 538

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 14 Designing the User Interface ♦ 539

This dialog involves the manager and the assistant carrying on a conversation about mes-
sages. The questions asked by the manager and the responses and follow-up questions asked
by the assistant seem clear and natural. Would the basic dialog be any different if this were an
automated phone-answering service that responded to voice commands and replied in a
computer-generated voice? Probably not. Would it be any different if this were a computer
application simulating an intelligent “assistant”? Probably not. The basic dialog followed
would be the same: a question, a response, another question, a response that might include a
request for clarification, a response to the request for clarification, and a final response.

The basic dialog is also the same for a typical e-mail application, even though the user
and computer send messages in different ways. The user selects a menu item for read new mail.
The computer lists the new mail messages for the user to choose, the user chooses one mes-
sage, then the computer displays the message. It might seem odd to think of interaction with
an e-mail application as being similar to the dialog just presented, but the basic information
exchanged and the sequence of actions are the same.

The user and the computer both send messages, but each is forced to use a different lan-
guage because of limitations of both the user and the computer. The user cannot understand
cryptic binary codes or plug in directly to the computer to interpret the electrical impulses the
computer uses to represent the binary codes. The natural language of the computer just won’t
work for people. The computer has to adapt to the user and provide its messages in a form
that is natural for the user—text and graphics that the user can see and read.

Similarly, the computer cannot understand complex voice messages, facial expressions,
and body language that are the natural communication cues of the user, so the user has to
adapt to the computer and provide messages by clicking the mouse, dragging objects, and typ-
ing words on the keyboard. Advances in computer technology are making it possible for the
user to communicate in more natural ways, but the typical user interfaces today still rely on
the mouse and keyboard. One reason is the need for silence and privacy in the office, so it is
not clear whether voice commands will become common in computer applications.

The challenge of user-interface design is to construct a natural dialog sequence that allows
the user and computer to exchange the messages required to carry out a task. Then the
designer needs to develop the details of the language required for the user to send the mes-
sages to the computer (the user’s language), plus the language needed for the computer to
send messages to the user (the computer’s language).

Figure 14-6 shows the earlier dialog between manager and assistant translated into the lan-
guages used by the user and the computer. Interface designers use a variety of informal diagrams
and written narratives to model human-computer interaction. This is just one way the dialog
design details can be modeled; you’ll learn about additional techniques later in this chapter.

Message User’s language Computer’s language

Manager Did I get any messages while Click the read messages menu
I was out? item on the main menu.

Assistant Yes, you have three messages— Look up new messages for the user and
from Bob, Mary, and Lim. display a new message form with message

headers listed in a list box.

Manager What did Lim have to say? Double-click the message from
Lim in the list box.

Assistant Lim left a message at 8:15 Look up the message body for the selected
last night regarding the meeting message and display it in message
next Monday about the inventory detail form.
management system. The message
is, “Can we change the time for
the meeting to 10:30? I’ll be delayed
by the testing session.”

(continued)

Figure 14-6

The user’s language and

the computer’s language

used to implement an e-

mail application based on

the natural dialog

between manager and

assistant

C6696_14_CTP.4c 2/6/08 1:28 PM Page 539

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

GUIDELINES FOR DESIGNING USER INTERFACES

There are many published interface design guidelines to guide system developers. User-
interface design guidelines range from general principles to very specific rules. This section
describes some well-known guidelines for designing the user interface. Later, this chapter pre-
sents some of the guidelines and rules for designing windows forms and browser forms used
with Web-based development. Some system development organizations adopt interface
design standards—general principles and rules that an organization must follow when devel-
oping any system. Design standards help ensure that all user interfaces function well and that
all systems developed by the organization have a similar look and feel.

VISIBILITY AND AFFORDANCE

Donald Norman is a leading researcher in HCI who proposes two key principles to ensure
good interaction between a person and a machine: visibility and affordance. These two prin-
ciples apply to human-computer interaction just as they do for any other device.

Visibility means that a control should be visible so users know it is available, and that the
control should provide immediate feedback to indicate it is responding. For example, a steer-
ing wheel is visible to a driver, and when the driver turns it to the left, it is obvious that the
wheel is responding to the driver’s action. Similarly, a button that can be clicked by a user is
visible, and when it is clicked, it changes to look as though it has been pressed to indicate it is
responding. Some buttons make a clicking sound to provide feedback.

Affordance means that the appearance of any control should suggest its functionality—that is,
the purpose for which the control is used. For example, a control that looks like a steering wheel
suggests that the control is used for turning. On the computer, a button affords clicking, a scroll
bar affords scrolling, and an item in a list affords selecting. Norman’s principles apply to any
objects on the desktop, such as those shown previously in the examples in Figures 14-3 and 14-4.

540 ♦ PART 3 SYSTEMS DESIGN TASKS

Message User’s language Computer’s language

Manager I better respond. Say that the Click the Reply button on the
change is not a problem. message detail form.

Display the new message form addressed
to the sender.

Type in the message, “Okay, that
is not a problem.”

Click the Send Button.

Assistant Okay, I’ll leave him that message. Display the Message Sent dialog box and
Do you want the next message? redisplay the new messages form with

message headers listed in the list box.

Manager What did Mary have to say? Double-click the message from
Mary in the list box.

Assistant She left a message at 8:15 this Look up the message body for the selected
morning regarding lunch. She message and display it in message
said, “Lunch is still on, but Joe detail form.
will not be able to join us.”

Manager Okay, no response. And that’s all Click the close message button.
for now. Thanks.

Redisplay a new message form with
message headers listed in the list box.

Click the close new message
form button.

Assistant Okay, you still have one message Display the Closing Read New Mail dialog
from Bob. I’ll remind you later. box, showing one unread message

remaining.

Figure 14-6 cont.

interface design

standards
general principles and
rules that must be
followed for the interface
of any system developed
by the organization

visibility
a key principle of HCI
that states all controls
should be visible and
provide feedback to
indicate that the control
is responding to the
user’s action

affordance
a key principle of HCI
that states the
appearance of any
control should suggest
its functionality

C6696_14_CTP.4c 2/6/08 1:28 PM Page 540

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 14 Designing the User Interface ♦ 541

If user-interface designers make sure that all controls are visible and clear in what they do,
the interface will be usable. Most users are familiar with the Windows interface and the com-
mon Windows controls. However, designers should be careful to apply these principles of vis-
ibility and affordance when designing Web pages. Many new types of controls are now
possible at Web sites, but these controls are not always as visible and their effects are not
always as obvious as they are in a standard Windows interface. More objects are clickable, but
it is not always clear what is clickable, when a control has recognized the click, and what the
click will accomplish. For example, sometimes you click on an image and a new page opens
in the browser. Other times you click on an image and nothing happens.

EIGHT GOLDEN RULES

Ben Shneiderman, another leading researcher in HCI, proposes eight underlying principles
that are applicable in most interactive systems (see “Further Resources” at the end of the chap-
ter for Shneiderman’s text). Although they are general guidelines rather than specific rules, he
names them “golden rules” to indicate that they are the key to usability (see Figure 14-7).

1 Strive for Consistency

2 Enable Frequent Users to Use Shortcuts

3 Offer Informative Feedback

4 Design Dialogs to Yield Closure

5 Offer Simple Error Handling

6 Permit Easy Reversal of Actions

7 Support Internal Locus of Control

8 Reduce Short-Term Memory Load

Figure 14-7

The eight golden rules

for designing interactive

interfaces

Strive for Consistency

Designing a consistent-appearing and -functioning interface is one of the most important
design goals. The way that information is arranged on forms, the names and arrangement of
menu items, the size and shape of icons, and the sequence followed to carry out tasks should
be consistent throughout the system. Why? People are creatures of habit. After we learn one
way of doing things, it is difficult to change. When we operate a computer application, many
of our actions become automatic—we do not think about what we are doing. People who can
touch-type do not have to think about each key press—their fingers just respond automati-
cally. Consider what would happen to touch-typists if rows two and three on the keyboard
were reversed. They would not be able to use the keyboard (and certainly wouldn’t like it). If
a new application comes along that has a different way of functioning, productivity suffers
and users will not be happy.

The Apple Macintosh first emphasized the benefits of consistency in the 1980s. Apple
provided applications for the Macintosh that set the standard for developers to follow when
creating new applications. If new applications were consistent with these applications, Apple
claimed that learning them would be easy. Apple also published a standards document to
explain how to be consistent with the Macintosh interface. Similar examples and standards
documents followed for the Microsoft Windows interface.

Business information systems are different from desktop applications originally produced
for the Macintosh. Sometimes an application needs to be inconsistent with the original guide-
lines. For example, the original standards specified that every application include menus on
the menu bar for File, Edit, and Format. All document-oriented applications—such as word

C6696_14_CTP.4c 2/6/08 1:28 PM Page 541

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

processors, spreadsheets, and graphics—need those menus. But many business systems do not
have File, Edit, and Format functions. Most other guidelines and standards do apply, however.

Research has also shown that inconsistent interfaces sometimes are beneficial. If the user
is interacting with multiple applications in separate windows, a different visual appearance
may help the user differentiate them. In addition, when the user is learning several applica-
tions in one session, some differences in the interfaces may help the user remember which
application is which. Inconsistencies introduced for these reasons should be subtle and
superficial. The basic operation of the applications should be the same.

Enable Frequent Users to Use Shortcuts

Users who work with one application all day long are willing to invest the time to learn short-
cuts. They rapidly lose patience with long menu sequences and multiple dialog boxes when
they know exactly what they want to do. Therefore, shortcut keys reduce the number of inter-
actions for a given task. Also, designers should provide macro facilities for users to create their
own shortcuts.

Sometimes the entire interface should be designed for frequent users who do not need
much flexibility. Consider the mail-order data-entry clerks for Rocky Mountain Outfitters.
They enter orders into the system all day long from paper forms mailed by customers. These
users need an interface that is simple, fast, and accurate. Long dialogs, multiple menus, and
multiple forms would slow these users down.

Offer Informative Feedback

Every action a user takes should result in some type of feedback from the computer so the
user knows that the action was recognized. Even keyboard clicks help the user, so an elec-
tronic “click” is included deliberately by the operating system. If the user clicks a button, the
button should visually change and perhaps make a sound.

Feedback of information to the user is also important. If the Rocky Mountain Outfitters
mail-order clerk enters a customer ID number in an order screen, the system should look up
the customer to validate the ID number, but it should also display the name and address to
the clerk so the clerk is confident the number is correct. Similarly, when the clerk enters a
product ID for the order, the system should display a description of the product. As the clerk’s
attention shifts back and forth from the mail-order form to the computer screen, he or she
compares the name and product description from the system with the information on the
form to confirm that everything is correct. This sense of confirmation and the resulting confi-
dence in the system are very important to users, particularly when they work with a system all
day. But the system should not slow the user down by displaying too many dialog boxes to
which the user must respond.

Sometimes feedback is provided to help the user in other ways. The phone-order repre-
sentative at Rocky Mountain Outfitters needs information from the system just as the mail-
order clerk does, but he or she also needs additional information. Phone customers may ask
questions, so the information provided as feedback for the phone-order representative is
more detailed and flexible. We discuss some designs for the phone-order representative at
RMO later in this chapter.

Design Dialogs to Yield Closure

Each dialog with the system should be organized with a clear sequence—a beginning, mid-
dle, and end. Any well-defined task has a beginning, middle, and end, so users’ tasks on the
computer should also feel this way. If the user is thinking, “I want to check my messages,” as
in the earlier manager and assistant dialog example, the dialog begins with a request,
exchanges information, and then ends. The user can get lost if it is not clear when a task starts
and ends. In addition, the user often focuses intently on a task, so when it is confirmed that
the task is complete, the user can clear his or her mind and get ready to focus on the next task.

If the system requirements are defined initially as events to which the system responds,
each event leads to processing of one specific, well-defined activity. In the traditional, struc-
tured approach, each activity is defined by data flow diagrams and structured English. With the

542 ♦ PART 3 SYSTEMS DESIGN TASKS

C6696_14_CTP.4c 2/6/08 1:28 PM Page 542

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 14 Designing the User Interface ♦ 543

object-oriented approach, each use case might be further defined as multiple scenarios, each
with a flow of steps. Each scenario is a well-defined interaction; therefore, event decomposi-
tion sets the stage for dialogs with closure in both the traditional approach and the object-
oriented approach.

Offer Simple Error Handling

User errors are costly, both in the time needed to correct them and in the resulting mistakes.
If the wrong items are sent to a customer at Rocky Mountain Outfitters, it is a costly error. So,
the systems designer must prevent the user from making errors whenever possible. A chief
way to do this is to limit available options and allow the user to choose from valid options at
any point in the dialog. Adequate feedback, as discussed previously, also helps reduce errors.

If an error does occur, the system needs mechanisms for handling it. The validation tech-
niques discussed in Chapter 15 are useful for catching errors, but the system must also help
the user correct the error. When the system does find an error, the error message should state
specifically what is wrong and explain how to correct it. Error messages should not be judg-
mental. It is not appropriate to blame the user or make the user feel inadequate.

The system also should make it easy to correct the error. For example, if the user typed in
an invalid customer ID, the system should tell the user that and then place the insertion point
in the customer ID text box with the previously typed number displayed and ready to edit.
This way, the user can see the mistake and edit it rather than having to retype the entire ID.
Consider the following error message that occurs after a user has typed in a full screen of
information about a new customer:

The customer information entered is not valid. Try again.

This message does not explain what is wrong or what to do next. Further, after this mes-
sage appears, what if the system cleared the data-entry form and redisplayed it? The user
would have to reenter everything previously typed, yet still have no idea what is wrong. The
error message did not explain it, and now that the typed data has been cleared, the user can-
not tell what might have been wrong. A better error message would say:

The date of birth entered is not valid. Check to be sure only numeric

characters in appropriate ranges are entered in the date of birth

field…

The input form should be redisplayed with all fields still filled in, and the insertion point
should be placed at the field with invalid data, ready for the user to edit the field.

Permit Easy Reversal of Actions

Users need to feel that they can explore options and take actions that can be canceled or
reversed without difficulty. This is one way that users learn about the system—by experiment-
ing. It is also a way to prevent errors; as users recognize they have made a mistake, they cancel
the action. In the game of checkers, a move is not final until the player takes his or her fingers
off the game piece; it should be the same when a user drags an object on the screen. In addition,
designers should be sure to include cancel buttons on all dialog boxes and allow users to go
back one step at any time. Finally, when the user deletes something substantial—a file, a
record, or a transaction—the system should ask the user to confirm the action.

Support Internal Locus of Control

Experienced users want to feel that they are in charge of the system and that the system
responds to their commands. They should not be forced to do anything or made to feel as if
the system is controlling them. Systems should make users feel that they are deciding what to
do. Designers can provide much of this comfort and control through the wording of prompts
and messages. Writing out a dialog like the manager and assistant message dialog given previ-
ously will lead to a design that conveys the feeling of control.

C6696_14_CTP.4c 2/6/08 1:28 PM Page 543

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Reduce Short-Term Memory Load

People have many limitations, and short-term memory is one of the biggest. As discussed ear-
lier in this book, people can remember only about seven chunks of information at a time.
The interface designer cannot assume that the user will remember anything from form to
form, or dialog box to dialog box, during an interaction with the system. If the user has to
stop and ask, “Now what was the filename? The customer ID? The product description?”,
then the design places too much of a burden on the user’s memory.

With these eight golden rules in mind, an interface designer can help ensure that user
interactions are efficient and effective. We now turn to some basic techniques for document-
ing the design of the dialog.

DOCUMENTING DIALOG DESIGNS

Many techniques are available to help the designer think through and document dialog
designs. The dialogs that must be designed are based on the inputs and outputs requiring user
interaction, as discussed earlier. They are used to define a menu hierarchy that allows the user
to navigate to each dialog. Storyboards, prototypes, and UML diagrams can be used to com-
plete the designs.

USE CASES, SUBSYSTEMS, AND THE MENU HIERARCHY

Inputs and outputs are obtained from data flow diagrams (in the traditional approach) or use
cases and scenarios (in the object-oriented approach). Generally, each input obtained interactively
from a user requires a dialog design. In addition, each output produced at the request of a user
requires a dialog design. So, each dialog is based on a use case documented early during the
analysis process that is classified as requiring a user interface rather than a system interface.

Dialog design must be done simultaneously with other design activities. As shown in
Chapter 10, the structure charts for subsystems (transaction analysis) include details about
menu structure of the interactive parts of the system. In addition, the structure chart for each
activity or use case (transform analysis of each DFD fragment) also includes details about the
dialog with the user. The object-oriented approach also integrates dialog design very early,
even during analysis tasks. Use case descriptions, activity diagrams, and system sequence dia-
grams (SSDs) include details about the dialog. Remember that menu design and dialog
design are not done in isolation.

The available menus reflect the overall system structure from the standpoint of the user. Each
menu contains a hierarchy of options, and they are often arranged by subsystem or by actions
on objects. Rocky Mountain Outfitters’ customer support system includes the order-entry sub-
system, order fulfillment subsystem, customer maintenance subsystem, and catalog mainte-
nance subsystem, as well as a reporting subsystem added during design. Menus might also be
arranged based on objects—customers, orders, inventory, and shipments. Each menu might
include duplicate functions, such as Look up past orders, under customers and under inventory.

Sometimes several versions of the menus are needed based on the type of user. For exam-
ple, mail-order clerks at RMO do not need many of the options available—they process new
orders only. The phone-order sales representatives need many more options, but they still do
not need all system functions. And some options should be available only to managers, such
as management reports and price adjustments.

Menus should also include options that are not activities or use cases from the event list—
most important are options related to the system controls, which are discussed in Chapter 15.
These include backup and recovery of databases in some cases, plus user account mainte-
nance. In addition, user preferences are usually provided to allow the user to tailor the inter-
face. Finally, menus should always include help facilities.

544 ♦ PART 3 SYSTEMS DESIGN TASKS

C6696_14_CTP.4c 2/6/08 1:28 PM Page 544

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 14 Designing the User Interface ♦ 545

All use cases that lead to dialogs in the RMO customer support system are listed and
grouped by subsystem in Figure 14-8. These groupings form one set of menu hierarchies. In
addition, there are menu hierarchies for utilities, preferences, and help. The list in the figure
is only one of many possible menu hierarchy designs—a starting place.

Five menu hierarchies

grouped by subsystem and

based on use cases

Order Entry
Check Availability
Create New Order
Update Order

Order Fulfillment
Check Order Status
Record Fulfillment
Record Back Order
Create Return

Customer Account Maintenance
Provide Catalog
Update Customer Account
Adjust Customer Charges
Distribute Promotional Package

Catalog Maintenance
Update Catalog
Create Special Promotion
Create New Catalog

Reporting and Queries
Order Summary Report
Transaction Summary Reports
Fulfillment Summary Reports
Prospective Customer Lists
Customer Adjustment Reports
Catalog Activity Reports
Ad Hoc Query Facility

System Utilities
Printers and Devices
Backup and Recovery
User Accounts

Maintain Accounts
Change Current User Password

User Preferences
Dialog Style
Color and Font
Shortcuts
Macro Facility

Help
Contents and Index
Search for Help
Task List
About the RMO System

Three menu hierarchies added

during design for controls,

preferences, and help

Figure 14-8

One overall menu

hierarchy design for the

RMO customer support

system (not all users will

have all of these options

available)

A dialog design is created for each of these menu options. After completing the dialog
designs for all options, the designer can then redefine the structure of the menus for different
types of users. Menu hierarchies can be rearranged easily as the design evolves.

C6696_14_CTP.4c 2/6/08 1:28 PM Page 545

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

DIALOGS AND STORYBOARDS

After identifying all required dialogs, the designers must document the dialogs. Many
options exist; there are no de facto standards. One approach is to list the key steps followed
for the dialog with a written description of what the user and computer do at each step. The
format for writing these steps can follow the activity diagram described in Chapter 4 or the
use case description format in Chapter 7, or they can be more free-form.

Designers can also document dialog designs by writing out a dialog like the one presented
earlier in this chapter (for the manager and assistant), then documenting how the user and
computer express themselves, as shown previously in Figure 14-6. Sometimes the designer
can go right from the dialog to sketching a series of screens that make the design more visi-
ble. Consider the DownTown Videos rental system described in a case study at the end of
Chapter 7. One use case is Rent videos to customer, and the dialog that goes on between the
clerk and the system would follow this pattern:

System: What DownTown Videos option do you want?
User: I need to rent some videos.
System: Okay, what is the customer’s ID number for this rental?
User: It is 201564.
System: Fine, your customer is Nancy Wells at 1122 Silicon Avenue. Note that

she has two kids, Bob and Sally, who can only rent PG-13 videos.
Correct?

User: Yes.
System: What’s the ID number of the first video she wants to rent?
User: It is 5312.
System: Fine, that is Titanic (the 1953 version with Barbara Stanwyck) with a

rental charge of $1.00 for three days, rated PG. What’s the ID number
of the next video, or is that all?

User: It is 8645.
System: Fine, that is Titanic (the 2007 reissue version) with a rental charge of

$3.00 for three days, rated PG-13. What’s the ID number of the next
video, or is that all?

User: That’s all.
System: Okay, collect $4.00 plus $.24 tax, for a total of $4.24, and let me know

when you are done.
User: Yes, I’m done.
System: Remind Nancy Wells that these videos are due back Wednesday, the

seventh, before 11 p.m. closing.
User: Okay. Thanks.

The designer thinks through the sequence of screens the user would need to carry on this
dialog with the computer. The user needs to enter a customer ID and several video IDs. The
computer would have to look up and display information on the customer and each video
rented. Then the computer would calculate the total due and remind the user of the due date
so the user can pass that information on to the customer.

One technique used to show the screens is called storyboarding—showing a sequence of
sketches of the display screen during a dialog. The sketches do not have to be very detailed to
show the basic design concept. Designers can implement a storyboard with a visual program-
ming tool such as Visual Basic, but using simple sketches drawn with a graphics package can
help keep the focus on the fundamental design ideas.

546 ♦ PART 3 SYSTEMS DESIGN TASKS

storyboarding
a technique used to
document dialog designs
by showing a sequence
of sketches of the
display screen

C6696_14_CTP.4c 2/6/08 1:28 PM Page 546

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 14 Designing the User Interface ♦ 547

Figure 14-9 shows the storyboard for the rent videos dialog. The system has a menu hierar-
chy based on the event list plus needed controls, preferences, and help. The dialog uses one
form and a few dialog boxes and adds more information to the form as the dialog progresses.
Note that the prompt area at the bottom of the form displays the questions the computer
asks, matching almost identically the phrases used in the written dialog. The user has a choice
of either scanning or typing the few IDs that must be entered. Information provided to the
user is shown in labels on the form. The information provided allows the user to confirm the
identity of the customer, to see any restrictions that might apply, and to pass on to the cus-
tomer any information about cost and return dates. In other words, the system helps the user
do a better job of interacting with the customer by confirming information, providing feed-
back, and providing closure.

These approaches to dialog design provide only a framework to work from, and the result-
ing design remains fairly general. As working prototypes are produced, many details still have
to be worked out. As the design progresses, reviewing the golden rules and other guidelines
will help you keep the focus on usability.

DIALOG DOCUMENTATION WITH UML DIAGRAMS

The object-oriented approach provides UML diagrams that are useful for modeling user-
computer dialogs. Use case descriptions, shown in Chapter 5, include a list of steps followed
as the user and system interact. Activity diagrams, shown in Chapters 4 and 7, also document
the dialog between user and computer for a use case. Both can be used to provide models of
the user-computer interaction required in each dialog. In the object-oriented approach,
objects send messages back and forth, listening to and responding to each other in sequence.
People also send messages to objects and receive messages back from them. The system
sequence diagram (SSD) described in Chapter 7 includes an actor (a user) sending messages
to the system and the system returning information in the form of messages, shown in
sequence. It basically shows a dialog between the user and the system. The SSD is based on
the sequence of steps included in the use case description, so the dialog design for the use
case begins very early and is refined continually.

The object-oriented approach involves adding more types of objects to class diagrams and
interaction diagrams as the project moves from analysis to design, as discussed in Chapter 12.
The additional classes of objects are packaged into three layers that contain user-interface
classes, problem domain classes, and data access classes. Designers add user-interface classes
and objects to these diagrams to show more detail about the design of the dialog between the
user and computer. This design process was demonstrated in Chapter 12. The first step is to
determine what window or Web forms are required for the dialog based on informal dialog
design techniques described previously. Next, the sequence diagram for the scenario is
expanded to show the user (an actor) interacting with the forms. The designer can then use a
class diagram to model the user-interface classes that make up the forms. Finally, the
sequence diagram can be further expanded to show the user interacting with specific objects
that make up the form.

Use storyboarding to define user-interface requirements for each use case
early in the project. Showing users storyboards gets feedback on important
aspects of their work.

BEST PRACTICE

C6696_14_CTP.4c 2/6/08 1:28 PM Page 547

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

548 ♦ PART 3 SYSTEMS DESIGN TASKS

1 2

3 4

87

65

DownTown Videos
Rental Membership Inventory Management Utilities Help

What DownTown Videos option do you want?

Rent
Return
Query
Lost
Adjustment
Exit

 Videos
Rental Membership Inventory Management Utilities Help

Type in or scan the customer number for this rental

Customer Number

OK Cancel

DownTown Videos
Rental Membership Inventory Management Utilities Help

Type in or scan the ID number for the video

Nancy Wells, 1122 Silicon Avenue
Member Since 2010
Last Rented 2/23/10

OK Cancel

DownTown Videos
Rental Membership Inventory Management Utilities Help

Type in or scan the ID number for the video

_

Bob and Sally PG 13 Only
Call 555-1212 to Verify

Nancy Wells, 1122 Silicon Avenue
Member Since 2010
Last Rented 2/23/10

OK Cancel

5312

Bob and Sally PG 13 Only
Call 555-1212 to Verify

Titanic (1953) PG 1.00 3 days

DownTown Videos
Rental Membership Inventory Management Utilities Help

Type in or scan the ID number for the next video or click OK if done

DownTown Videos
Rental Membership Inventory Management Utilities Help

Type in or scan the ID number for the next video or click OK if done

DownTown Videos
Rental Membership Inventory Management Utilities Help

Click OK to print receipt

DownTown Videos
Rental Membership Inventory Management Utilities Help

Click OK to print receipt

Nancy Wells, 1122 Silicon Avenue
Member Since 2010
Last Rented 2/23/10

OK Cancel

5312

Bob and Sally PG 13 Only
Call 555-1212 to Verify

Titanic (1953) PG 1.00 3 days

_

Nancy Wells, 1122 Silicon Avenue
Member Since 2010
Last Rented 2/23/10

OK Cancel

5312

Bob and Sally PG 13 Only
Call 555-1212 to Verify

Titanic (1953) PG 1.00 3 days

_

8645 Titanic (2007) PG-13 3.00 3 days

Nancy Wells, 1122 Silicon Avenue
Member Since 2010
Last Rented 2/23/10

OK Cancel

5312

Bob and Sally PG 13 Only
Call 555-1212 to Verify

Titanic (1953) PG 3 days 1.00

8645 Titanic (2007) PG-13 3 days 3.00
2 videos rented 6/4/10
Due Back Wednesday 6/7/10

Total Rental 4.00
Tax .24

4.24

Nancy Wells, 1122 Silicon Avenue
Member Since 2010
Last Rented 2/23/10

OK Cancel

5312

Bob and Sally PG 13 Only
Call 555-1212 to Verify

Titanic (1953) PG 3 days 1.00

8645 Titanic (1998) PG-13 3 days 3.00
2 videos rented 6/4/00
Due Back Wednesday 6/7/00

OK Cancel

Printing Receipt
One Minute Please...

Figure 14-9

Storyboard for the

DownTown Videos rent
videos dialog

C6696_14_CTP.4c 2/6/08 1:28 PM Page 548

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 14 Designing the User Interface ♦ 549

GUIDELINES FOR DESIGNING WINDOWS AND BROWSER FORMS

As with the previous activities of user-interface design, analysts must take care in designing the
forms that users see on the screen. Each dialog might require several windows forms, and each
form must be designed for usability. Almost all of the new business systems today are developed
for an interactive Microsoft Windows, X-Windows (UNIX), or Macintosh environment. The
underlying principles are the same for forms in any of these environments. In this section, when
we refer to forms or windows, we mean any of these three environments. Within each windows
environment, however, we need to consider two types of forms: windows and browsers.

Windows forms are programmed in a full-featured programming language, such as Visual
Basic, C++, or Java. Because of this, windows forms have the advantage of being extremely
flexible and capable of accessing data directly on a workstation. Browser forms, on the other
hand, are programmed using HTML and script languages such as VBScript or JavaScript.
Browser forms can be displayed using any Internet browser, which makes them accessible on
a variety of platforms. Browser forms produced by Visual Studio .NET are now called Web
forms, and they now provide the same design flexibility as windows forms. In addition, server-
side processing using Active Server Pages (ASP) or Java servlets can add functionality. The
advantage of browser forms is that the same forms can be used for both internal staff on com-
pany intranets and customers and suppliers on the Internet. As a result, many firms are
designing user interfaces for their new systems as browser forms.

After identifying the objective of a form and its associated data fields, the system devel-
oper can construct the form using one of the many prototyping tools available. Earlier, devel-
opers spent tremendous amounts of time laying out a form on paper diagrams before
beginning programming. Today, however, the process is streamlined with prototyping tools.
Not only can developers design the content of the form, but they can design the look and feel
of the form at the same time. Prototyping tools also permit users to be heavily involved in the
development, and such involvement ensures that the user interface is in fact the user’s inter-
face, providing a strong sense of ownership and acceptance.

Categories of forms include input forms, input/output forms, and output forms. Input
forms are used to record a transaction or enter data, although some portions of the form may
display information from the system. The form used in the DownTown Videos storyboard in
Figure 14-9 is an example of an input form. Input/output forms are generally used to update
existing data. These forms display information about a single entity, such as a customer, and
enable users to type over existing information to update it. Output forms are primarily for
displaying information. The design of output forms is based on the same principles as report
design, discussed later in Chapter 15. Input and input/output forms are closely related and
are designed using similar principles. Before developing a form, the designer should carefully
analyze the integrity controls required for data input, which are discussed in Chapter 15.

There are four major issues to consider in the design of these forms:

• Form layout and formatting
• Data keying and entry
• Navigation and support controls
• Help support

browser forms
forms programmed
using HTML and script
languages that follow
Internet conventions

C6696_14_CTP.4c 2/6/08 1:28 PM Page 549

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

550 ♦ PART 3 SYSTEMS DESIGN TASKS

FORM LAYOUT AND FORMATTING

Form layout and formatting are concerned with the general look and feel of the form. You
might have encountered systems with hard-to-use input forms—the font was too small, the
labels were hard to understand, the colors were abrasive, the navigation buttons were not
obvious, and so forth. These deficiencies can occur on both windows forms and browser
forms. In contrast, forms that are easy to use are well laid out, with the fields easily identified
and understood. One of the best methods to ensure that forms are well laid out is to proto-
type various alternatives and let users test them. Users will let you know which characteristics
are helpful and which are distracting. As you design your input forms, you should think about
the following:

• Consistency
• Headings, labels, and logos
• Distribution and order of data-entry fields and buttons
• Font sizes, highlighting, and colors

Consistency belongs at the top of the list because of its importance for ease of learning
and use, as discussed previously. Some large systems require multiple input forms and several
teams of programmers and analysts to develop them. Sometimes those teams don’t coordi-
nate their efforts, resulting in inconsistencies, and a system that is not consistent across all
forms can be error-prone and difficult to use. To avoid these problems, all of the forms within
a system need to have the same look and feel. A consistent use of function keys, shortcuts,
control buttons, and even color and layout makes a system much more useful and profes-
sional looking. Cascading style sheets help designers control the consistency of Web forms.
Design templates help designers control the consistency of windows forms. For example, with
Microsoft Visual Studio .NET, a template form can be designed that is used as the superclass
of all forms in the project.

The headings, labels, and logos on the form help to convey the purpose and use of the
form. A clear, descriptive title at the top of the form helps to minimize confusion about a
form’s use. Labels should also be easy to identify and read.

The designer also should carefully place the data-entry fields around the form. Related
fields are usually placed next to each other and can even be isolated with a fine-lined box. The
designer also should carefully consider the tab order. If input is coming from a paper form, the
tab order should follow the order of the paper form—left to right, top to bottom. Blank space
should be used throughout the form so that the fields do not appear crammed together and
are easy to distinguish and read. Normally navigation buttons are at the bottom of the win-
dow. De facto traditions for the placement of buttons are developing based on standards of the
large development firms such as Apple, Microsoft, Sun, Oracle, and others. It is a good idea to
be sensitive to these traditions as they change with technology upgrades.

The purpose of font size, highlighting, and color is to make the form easy to read. A care-
ful mix of large and small fonts, bold and normal type, and different-colored fonts or back-
ground can help a user find important or critical information on the form. Too much
variation makes the form cluttered and difficult to use. However, judicious use of these tech-
niques makes the form more easily understood. Column headings and totals can be made
slightly larger or boldfaced. The form can highlight negative or credit balances by changing
font color. However, font color and background color should be used in concert to ensure
that the field is readable. For example, neither red type on green or black backgrounds nor a
dark color on a dark background is a good choice—some people with colorblindness cannot
distinguish red from green or black.

Figure 14-10 is an example of a windows form designed for the Rocky Mountain Outfitters
customer support system. This form is used to look up information about a product and to
add it to an order. Notice how the title and labels make the form easy to read. The natural

C6696_14_CTP.4c 2/6/08 1:28 PM Page 550

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 14 Designing the User Interface ♦ 551

flow of the form is top to bottom, with related fields placed together. Navigation and close
buttons are easily found but are not in the way of data-entry activity.

DATA KEYING AND DATA ENTRY

The heart of any input form is the entry of the new data. Even here, however, a primary objec-
tive is to require as little data entry as possible. Any information already in the computer, or
that can be generated by the computer, should not be reentered. A generous use of selection
lists, check boxes, automatic retrieval of descriptive fields, and so forth will speed up data
entry and reduce errors. The Product Detail form for RMO (see Figure 14-10) shows many
examples that reduce the need to enter data.

Several types of data-entry controls are widely used in windows systems today. A text box
is the most common element used for data entry. A text box consists of a rectangular box that
accepts keyboard data. In most cases, it is a good idea to add a descriptive label to identify
what should be typed in the text box. Text boxes can be designed to limit the entry to a speci-
fied length on a single line or to permit scrolling with multiple lines of data.

Variations of a text box consist of a list box, a spin box, and a combo box. A list box con-
tains a list of the acceptable entries for the box. The list usually consists of a predefined list of
data values, and the user selects one from the list. The list can be presented either within a
rectangular box or as a drop-down list. A variation of a list box is a spin box. A spin box pre-
sents the possible values within the text box itself. Two spinner arrows let the user scroll
through all the values. A combo box also contains a predefined list of acceptable entries but
permits the user to enter a new value when the list does not contain the desired value. Both a
list box and combo box facilitate data entry by minimizing keystrokes and the corresponding
possibility of errors.

Figure 14-10

The RMO Product Detail

form used to look up

information about a

product, select size and

color, and then add the

product to an order

Two types of input controls are used in groups: radio buttons (sometimes called option
buttons) and check boxes. Radio buttons are associated as a group, and the user selects one
and only one of the group. The system automatically turns off all other buttons in the group
when one is selected. Because all of the possible values appear on the form, this control is
used only when the list of alternatives is small and the values never change. Check boxes also

text box
an input control that
accepts keyboard
data entry

list box
an input control that
contains a list of
acceptable entries the
user can select

spin box
a variation of the list box
that presents multiple
entries in a text box from
which the user can select

combo box
another variation of the
list box that permits the
user to enter a new value
or select from the entries

radio buttons

(option buttons)
input controls that
enable the user to select
one option from a group

check boxes
input controls that
enable the user to select
more than one option
from a group

C6696_14_CTP.4c 2/6/08 1:28 PM Page 551

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

work together as a group. However, check boxes permit the user to select as many values as
desired within the group.

Browser forms contain similar controls. A major difference between a standard windows
input form and a browser input form is that the windows form can easily perform edits field
by field as the data is entered. In a basic browser input form, the edits are not performed until
the entire form is transmitted to the server computer. However, as browser programs have
become increasingly more sophisticated, more and more capabilities are being provided for
data entry. Windows input forms and browser input forms now have very similar capabilities.

NAVIGATION AND SUPPORT CONTROLS

Standard window interfaces provide several controls for navigation and window manipula-
tion. For Microsoft applications, these controls consist of the Minimize, Maximize, and Close
buttons in the upper-right corner, horizontal and vertical scroll bars, record selection bar on
the left panel, record navigation arrows at the bottom of the window, and so forth. To main-
tain consistency across systems, it is generally a good idea to utilize these navigation controls
when possible. A well-designed user interface, however, should also include other controls or
buttons. You can place buttons on the form to enable users to move to other relevant screens,
to search and find data, and to close the open window. Browser forms also provide naviga-
tion and support controls. Each page might also include its own navigation buttons.

HELP SUPPORT

A primary objective in the design of each input form is that it should be intuitive so that users
will not need help. However, even well-designed forms will be misunderstood, and access to
online help is always recommended. Three types of help are common in today’s systems:
a tutorial that walks you through the use of the form, an indexed list of help topics, and
the context-sensitive help.

Most systems provide tutorial help to assist in training new users. Tutorials can be orga-
nized by task, in which case the tutorial generally includes one dialog with a set of related
forms. Every new system also should have an indexed list of help topics. This list can be
invoked either through a keyword search or, as with many Microsoft systems, with a help wiz-
ard. The help wizard is simply a program that does an automatic keyword search based on
words found in a question or sentence. The wizard returns several alternative help topics
based on the results of the keyword searches.

Context-sensitive help can be based on the indexed list of help, but it is invoked differently.
Context-sensitive help automatically displays the appropriate help topic based on the location
of the insertion point. In other words, if the insertion point is within a certain text field on a
form, and the user invokes context-sensitive help, the system displays the help for that text field.

GUIDELINES FOR DESIGNING WEB SITES

Web site design draws from the guidelines and rules for designing the windows forms and
browser forms just presented. Many business systems today, including the RMO customer
support system, make use of both technologies. Yet a business system such as the order-
processing function for RMO is just part of the RMO Web site. Web sites also are used for cor-
porate communication, customer information and service, online sales and distribution, and
marketing. Because they are available 24 hours a day, 7 days a week, they need to interact
seamlessly with customers. This section introduces some guidelines and lessons for Web
design. A complete discussion of Web site design principles is beyond the scope of this book.
Many excellent books are available, and we list some of them in the “Further Resources” at
the end of this chapter.

552 ♦ PART 3 SYSTEMS DESIGN TASKS

C6696_14_CTP.4c 2/6/08 1:28 PM Page 552

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 14 Designing the User Interface ♦ 553

TEN GOOD DEEDS IN WEB DESIGN

Jacob Nielsen is an HCI researcher who now focuses specifically on Web design. Like many
useful guidelines, Nielsen’s guidelines focus on general issues, including these “Ten Good
Deeds in Web Design.”

1. Place the organization’s name and logo on every page and make the logo a link to the
home page.

2. Provide a search function if the site has more than 100 pages.
3. Write straightforward and simple headlines and page titles that clearly explain what the page

is about and that will make sense when read out of context in a search engine listing.
4. Structure the page to facilitate reader scanning and help users ignore large chunks of the

page in a single glance. For example, use grouping and subheadings to break a long list
into several smaller units.

5. Instead of cramming everything about a product or topic into a single, huge page, use
hypertext to structure the content space into a starting page that provides an overview and
several secondary pages that each focus on a specific topic.

6. Use product photos, but avoid cluttered and bloated product family pages with lots of pho-
tos. The primary product page must load quickly and function fast, so it should be lim-
ited to a thumbnail product shot.

7. Use relevance-enhanced image reduction when preparing small photos and images.
Instead of simply reducing the original image to a tiny and unreadable thumbnail, zoom
in on its most relevant detail by cropping and resizing the image.

8. Use link titles to provide users with a preview of where each link will take them,
before they have clicked on it.

9. Ensure that all important pages are accessible for users with disabilities, especially visually
impaired users.

10. Do the same as everybody else, because if most big Web sites do something in a certain way,
users will expect other sites to work similarly.

WEB SITE DESIGN PRINCIPLES

Because Web sites include so many facets, many designers take a broader view of Web site
design principles. A Web design book by Joel Sklar suggests that the designer focus on three
broad aspects of Web design: (1) designing for the computer medium, (2) designing the
whole site, and (3) designing for the user.

Designing for the Computer Medium

It is important to remember that the Web site will be displayed on a computer screen and not
on paper. Designers can select from a wide array of video display fonts, colors, and layouts, but
the look of the site should flow from its function and the organization’s goals. Hypermedia
allows the user to navigate through the site in nonlinear ways, so the designer should take
advantage of new ways to organize information. Five guidelines to consider include:

• Craft the look and feel of the pages to take advantage of the medium.
• Make the design portable because it will be accessed with a wide range of technology.
• Design for low bandwidth because users will not want to wait for a page to load.
• Plan for clear presentation and easy access to information to ease users’ navigation

through the site.
• Reformat information for online presentation when it comes from other sources.

Designing the Whole Site

The entire site must have unifying themes and a structure, and the theme should reflect
the impression the organization wants to convey. For example, a site for adult, business-
oriented users should use subdued colors, familiar business-oriented fonts, and structured

C6696_14_CTP.4c 2/6/08 1:28 PM Page 553

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

linear columns. A site for children should combine bright colors, an open and friendly
dynamic structure, and simple, appealing graphics. Four guidelines to consider include
the following:

• Craft the look and feel of the pages to match the impression desired by the organization.
• Create smooth transitions between Web pages so users are clear about where they have

been and where they are going.
• Lay out each page using a grid pattern to provide visual structure for related groups of

information.
• Leave a reasonable amount of white space on each page between groups of information.

Designing for the User

We discussed user-centered design previously in this chapter, and it is important to focus Web
design efforts on the users and their needs. If a feature will annoy or distract users, do not
include it. It is sometimes difficult to know who the Web users will be, but if the purpose and
objectives of the whole site are defined carefully, the designer can make better judgments.
Some guidelines to consider include the following:

• Design for interaction because Web users expect sites to be interactive and dynamic.
• Guide the user’s eye to information on the page that is the most important.
• Keep a flat hierarchy so that the user does not have to drill down too deeply to find

detailed information.
• Use the power of hypertext linking to help users move around and through the site.
• Decide how much content per page is enough based on the characteristics of the typical

user; don’t clutter the pages.
• Design for accessibility for a diverse group of users, including those with disabilities.

DESIGNING DIALOGS FOR ROCKY MOUNTAIN OUTFITTERS

Now that dialog design concepts and techniques have been discussed, we can demonstrate
the process of designing one specific dialog for Rocky Mountain Outfitters, as well as part of
the RMO Web site.

DIALOG DESIGN FOR THE RMO PHONE-ORDER
REPRESENTATIVES

The Rocky Mountain Outfitters customer support system includes support for the phone-
order sales representatives who process orders for customers. The dialog corresponds to the
use case Create new order and more specifically to the scenario Phone-order representative creates
new order. The target environment for this part of the system is the phone-order representa-
tive’s desktop PC on a Windows platform.

The designer starts by referring to the models produced during analysis: either the data
flow diagram fragment and corresponding detailed DFD for the activity or the UML sequence
diagram for this scenario, depending on the approach used for analysis and design. The four
basic steps followed in these models are as follows:

1. Record customer information.
2. Create a new order.
3. Record transaction details.
4. Produce order confirmation.

With the traditional approach to development, the designer would produce a structure
chart, as shown in Chapter 10, to correspond to these steps. With the object-oriented approach,
the system sequence diagram for this scenario would be expanded to include forms the user will
need for interaction, as shown in Chapter 12. With either approach, the dialog design activity
coordinates the user-interface design with the processing design for the activity or use case.

554 ♦ PART 3 SYSTEMS DESIGN TASKS

C6696_14_CTP.4c 2/6/08 1:28 PM Page 554

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 14 Designing the User Interface ♦ 555

Based on the sequence of processing required, a basic dialog can be written to convey in
more detail how the dialog will flow from the user’s perspective. The details of the interface
objects needed on each form should wait until this dialog is refined. The process of a new
customer placing an order with a phone sales representative (the user) might resemble the
following dialog:

Computer: What customer support system option do you want?
User: I need to create a new order.
Computer: Okay, is it a new or existing customer?
User: It’s a new customer.
Computer: Fine, give me the customer’s name, address, phone, and so on.
User: The customer is Ginny Dekker, 11980 Visual Blvd. . . .
Computer: Okay, what is the first item she wants to order?
User: Boots, Women’s, Hiking Supreme Line in the Spring Fling catalog.
Computer: They come in these sizes and colors, and we have all in stock except

size 9.
User: Okay, one pair of size 8 in tan.
Computer: That comes to $65.50 plus tax, shipping, and handling. Anything else?
User: Yes, Raincoat, Woman’s, On the Run Line in the Spring Fling catalog.
Computer: They come in these sizes and colors, and we have all in stock except

medium and large blue.
User: Okay, one coat size small in brown.
Computer: That comes to $87.95 plus tax, shipping, and handling. Anything else?
User: That’s it.
Computer: How does the customer want the order shipped?
User: UPS two-day air.
Computer: Does the customer want to use a credit card, or is there another pay-

ment approach for this order?
User: Use the MasterCard number xx674-22-xxxx expiring January 2011.
Computer: Okay, the order is recorded. To summarize, for customer Ginny Dekker,

ship by UPS two-day mail Boots, Women’s, Hiking Supreme Line, size 8,
tan, at $65.50, and Raincoat, Woman’s, On the Run Line, size small,
brown, at $87.95. Total cost, $153.45 plus $9.20 tax and $13.40 shipping
and handling—$176.05 charged to MasterCard xx674-22-xxxx.

User: Thanks.

While working on this dialog, the designer can begin to refine the forms that will
be required for the user and the computer. A list of required forms might include the
following:

• Main menu form
• Customer form
• Item search form
• Product detail form
• Order summary form
• Shipping and payment options form
• Order confirmation form

The designer can use the list of forms to define a design concept for the flow of interac-
tion from form to form. One approach is to show potential forms in sequence, as shown in
Figure 14-11. After the main menu form, the customer form appears first; the user fills it in or
updates it, and then the item search form displays to let the user search for an item. Product
details are shown for the item, and then the item search form is shown again. When all items
are selected, the order summary form is shown, and so on. The designer should concentrate

C6696_14_CTP.4c 2/6/08 1:28 PM Page 555

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

on highlighting parts of the dialog that occur through each form rather than worrying about
the physical design of each form. After considering what information is needed on each form,
the designer can create a more detailed storyboard or implement prototype forms using a tool
such as Visual Basic.

556 ♦ PART 3 SYSTEMS DESIGN TASKS

RMO

Order confirmation
form

RMO

Order summary form

RMO

RMO RMO

Shipping and
payment options

form

RMO

RMO

Product detail form

Item search form

Customer form

Main menu form

Figure 14-11

A design concept for the

sequential approach to

the Create new order
dialog

This initial design is very sequential but reasonable for a first iteration. Phone sales repre-
sentatives at RMO evaluated the storyboard and the prototype, and they suggested that the
sequence was too rigid; it assumes the dialog always follows the same sequence. However,
because phone-order representatives are on the phone with customers, they have to follow
the customers’ lead. Sometimes customers do not want to give information about themselves
until the order is processed and confirmed, for example. Sometimes customers want to know
the totals for the order or to review details about something already included in the order.
But the sequential design assumes that the customer information always comes first.
Although the sequential approach might work well for mail-order clerks, more flexibility is
required for the phone-order representatives.

When storyboarding the user interface for each use case, you will find that
you can reuse forms from one use case to another. Begin a list of shared
forms early in the project. Reusing forms saves design and implementation
effort, and it provides the additional benefit of consistency.

BEST PRACTICE

To address the flexibility and information needs of the users, the project team developed a
second design concept. This design concept makes the order form the center of the dialog, with
options to switch to other forms at will. After each action, the order form is redisplayed to the
phone-order representative with the current order details. The order-centered design concept is
shown in Figure 14-12. It allows the same sequence to be followed as the basic dialog, but it

C6696_14_CTP.4c 2/6/08 1:28 PM Page 556

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 14 Designing the User Interface ♦ 557

also allows flexibility when needed. It also shows the user more information about the order
throughout the dialog in case the user needs the information.

RMO

RMO

RMO

RMO

RMORMO

Customer form

Product detail form
Order summary

form

Main menu form

Order confirmation
form

Shipping and
payment options

form

Figure 14-12

A design concept for an

order-centered approach

to the Create new order
dialog

Figure 14-13

Prototype forms for an

order-centered approach

to the dialog

(a) The Main Menu form

for an order-centered

approach to the dialog

After adopting the order-centered concept, the project team designed the detailed forms.
Some of the forms are shown in Figure 14-13. After the user selects Place an order from the
main menu, the system displays the Order Summary form with a new order number assigned.
The user can add the customer information immediately (either by searching for a previous
customer based on customer number or name or by adding new customer information). The
user can then search for a requested item and look up more details about the item on the
Product Detail form. If the customer wants to order the item, the user adds it to the order,
and the Order Summary form redisplays. The user can add another item to the order, make
changes to the first item ordered, or select shipping and payment options. This flexibility and
information display are what the phone-order representatives wanted. It took quite a few iter-
ations and user evaluations to begin to achieve the best design.

C6696_14_CTP.4c 2/6/08 1:28 PM Page 557

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

558 ♦ PART 3 SYSTEMS DESIGN TASKS

Figure 14-13 cont.

(b) The Order Summary

form for an order-

centered approach to the

dialog beginning a new

order

(c) The Product Detail

form after the user has

searched for a product

C6696_14_CTP.4c 2/6/08 1:28 PM Page 558

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 14 Designing the User Interface ♦ 559

DIALOG DESIGN FOR THE RMO WEB SITE

The RMO customer support system use case Create new order requires several different dialog
designs (one for each scenario), including a scenario for the phone-order representatives just
discussed and a scenario for the mail-order clerks. But another key system objective is to allow
customers to interact with the system directly to place orders via the World Wide Web. The
design of a complete company Web site is beyond the scope of this text, but some general
rules and guidelines apply to direct customer orders.

The basic dialog between user and computer will be about the same as for the phone-
order representative, but the Web site will have to provide even more information for the user,
be even more flexible, and be even easier to use. First, customers might want to browse
through all possible information about a product. More pictures will be needed, including
pictures showing different colors and patterns of items. Although the phone-order represen-
tative needs detailed information on the screen to be able to answer questions, the customer
will probably want even more. The information will need to be displayed differently, too. For
example, the phone-order clerk is accustomed to a dense display of information and knows
where to look for the details, but customers will need organized information to make it easy
to locate details the first time they use the system.

The system will need to be very flexible because customers will have different preferences
for interacting with the system. As discussed for the phone-order scenario, the sequence
should be flexible—some customers will want to browse first and even select items to order
before entering any information about themselves. Such options as reviewing past orders and
reviewing shipping and payment approaches will also be required. If a customer wants to do
something that the system does not allow, the customer will become frustrated. Unlike
phone-order and mail-order employees, who will work through their frustration, the cus-
tomer can simply log off and shop elsewhere. Finally, the system must be so easy to learn and
use that the customer does not even have to think about it. The initial dialog options need to
be very clear, and once a sequence starts, all options should be self-explanatory. Customers

Figure 14-13 cont.

(d) The Order Summary

form after the user adds

the product

(e) The Shipping and

Payment Option form for

the completed order

C6696_14_CTP.4c 2/6/08 1:28 PM Page 559

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

cannot be expected to sit through training just to use a Web site, nor should they have to look
up instructions or help (even though both should be available).

As mentioned previously regarding the guidelines for visibility and affordance, it is impor-
tant that controls used on a Web page be clear in what they do and how they are used. Most
users are more concerned about speed than fancy graphics and animations, but novice design-
ers often go overboard on graphics and animation at the expense of speed. In addition,
because the Web site reflects the company image, it is important to involve graphic designers
and marketing professionals in the design. A well-thought-out visual theme is important.
Focus groups and other feedback techniques should be used in generating the design.

The Rocky Mountain Outfitters’ home page is shown in Figure 14-14. The main emphasis
is direct customer interaction. The user can choose to learn more about RMO, contact RMO
with an e-mail message, or request a catalog. There is no main menu option to place an order.
Instead, the Web site offers the opportunity to browse through pages of RMO products. The
customer can search for products based on keywords or product ID numbers, or the customer
can select a category of a product from a list. Weekly specials are also offered. When cus-
tomers find something they want, they can create an order. They can also change their minds
at any time.

560 ♦ PART 3 SYSTEMS DESIGN TASKS

Figure 14-14

Rocky Mountain

Outfitters’ home page

The RMO Web site uses the shopping cart analogy for orders. After customers find a prod-
uct they want, they select the quantity, size, and other options, and then they add the item to
their shopping cart. They can view the shopping cart at any time and then continue browsing
and adding items. When they are done, they check out, and the system confirms the order.
Figure 14-15 shows a Product Detail page reached after a user navigates through the women’s
clothing option. Figure 14-16 shows the shopping cart with a summary of an order.

C6696_14_CTP.4c 2/6/08 1:28 PM Page 560

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 14 Designing the User Interface ♦ 561

Figure 14-15

The Product Detail page

from the Rocky Mountain

Outfitters’ Web site

Figure 14-16

The shopping cart page

from Rocky Mountain

Outfitters’ Web site

C6696_14_CTP.4c 2/6/08 1:28 PM Page 561

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

562 ♦ PART 3 SYSTEMS DESIGN TASKS

SUMMARY
Inputs and outputs can be classified as system interfaces or user interfaces. This chapter focuses on user inter-
faces and describes concepts and techniques for designing the interaction between the user and the
computer—human-computer interaction (HCI). Chapter 15 describes system interfaces, including system out-
puts and system controls.

The user interface is everything the user comes into contact with while using the system—physically, per-
ceptually, and conceptually. To the user, the user interface is the system. The knowledge the user must have to
use the system (the user’s model) includes information about objects and functions available in the system—
the kind of information that defines the requirements model the analyst works hard to uncover during sys-
tems analysis.

User-centered design refers collectively to techniques that focus early on users and their work, evaluate
designs to ensure usability, and apply iterative development. Usability refers to the degree to which a system is
easy to learn and use. Ensuring usability is a complex task because design choices that promote ease of learn-
ing versus those that promote ease of use often conflict. In addition, there are many different types of users
to consider for any system. Human-computer interaction as a field of research grew out of human factors
engineering (ergonomics) research that studies human interaction with machines in general.

There are many different ways to describe the user interface, including the desktop metaphor, the docu-
ment metaphor, and the dialog metaphor. The dialog metaphor emphasizes the interaction between user and
computer, and interface design is often called dialog design for that reason. Interface design guidelines and
interface design standards are available from many sources. Norman’s visibility and affordance guidelines state
that controls should be visible, provide feedback indicating that they are working, and be obvious in their
function. Shneiderman’s eight golden rules are to strive for consistency, provide shortcuts, offer informative
feedback, design dialogs to yield closure, offer simple error handling, permit easy reversal of actions, support
internal locus of control, and reduce short-term memory load.

Dialog design starts with identifying dialogs based on activities or use cases. Additional dialogs are needed
for integrity controls added during design, for user preferences, and for help. Menu hierarchies can be
designed for different types of users, and after the dialogs are designed, menu hierarchies can be rearranged
easily. Writing a dialog sequence much like a script can help a developer work out the key information that
needs to be exchanged during the dialog. A storyboard showing sketches of screens in sequence can be drawn to convey the design for
review with users, or prototypes can be created using a tool such as Visual Basic. The object-oriented approach provides UML models that
can document dialog designs, including sequence diagrams, activity diagrams, and class diagrams.

Each form used in a dialog needs to be designed, and there are guidelines for the layout, selection of input controls, navigation, and
help. These guidelines apply to windows forms and to browser forms used in Web-based systems. Designing a dialog for a Web site is sim-
ilar to creating any other dialog, except users need more information and more flexibility. Additional Web design guidelines apply to design-
ing for the computer medium, designing the whole site, and designing for the user. In addition, because a Web site reflects the company’s
image to customers, graphic designers and marketing professionals should be involved.

KEY TERMS

affordance, p. 540

browser forms, p. 549

check boxes, p. 551

combo box, p. 551

desktop metaphor, p. 536

dialog metaphor, p. 537

direct manipulation, p. 536

document metaphor, p. 537

human-computer interaction (HCI), p. 532

human factors engineering (ergonomics), p. 534

hypermedia, p. 537

hypertext, p. 537

interface design standards, p. 540

list box, p. 551

radio buttons (option buttons), p. 551

spin box, p. 551

storyboarding, p. 546

system interfaces, p. 531

text box, p. 551

usability, p. 534

user-centered design, p. 533

user interfaces, p. 531

user’s model, p. 533

visibility, p. 540

C6696_14_CTP.4c 2/6/08 1:28 PM Page 562

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 14 Designing the User Interface ♦ 563

REVIEW QUESTIONS

1. Why is interface design often referred to as dialog design?

2. What are the three aspects of the system that make up the

user interface for a user?

3. What term is generally used to describe the study of end

users and their interaction with computers?

4. What are some examples of physical aspects of the user

interface?

5. What are some examples of perceptual aspects of the user

interface?

6. What are some examples of conceptual aspects of the user

interface?

7. What collection of techniques places the user interface at

the center of the development process?

8. What are the three important principles emphasized by

user-centered design?

9. What term refers to the degree to which a system is easy

to learn and use?

10. What is it about the “human factor” that engineers find

difficult? What is the solution to human factor problems?

11. What are some of the fields that contribute to the field of

human-computer interaction?

12. What research center significantly influenced the nature of

the computers we use today?

13. What are the three metaphors used to describe human-

computer interaction?

14. A desktop on the screen is an example of which of

the three metaphors used to describe human-computer

interaction?

15. What type of document allows the user to click on a link

and jump to another part of the document?

16. What type of document allows the user to click on links to

text, graphics, video, and audio?

17. What is the name for general principles and specific rules

that developers must always follow when designing the

interface of a system?

18. What two key principles are proposed by Norman to ensure

good interaction between a person and a computer?

19. List the eight golden rules proposed by Shneiderman.

20. What is the technique that shows a sequence of sketches

of the display screen during a dialog?

21. What UML diagram can be used to show how the inter-

face objects are plugged in between the actor and the

problem domain classes during a dialog?

22. What are the three basic types of windows and browser

forms used in business systems?

23. What are some of the input controls that can be used to

select an item from a list?

24. What two types of input controls are included in groups?

25. What are three requirements for usability of a direct cus-

tomer access Web site beyond those of a windows inter-

face used by employees?

26. What popular analogy is used for direct customer access

with a Web site when customers shop online?

27. What are three principles of Web design that guide designers?

28. What are four of the 10 good deeds of Web design?

THINKING CRITICALLY

1. Think of all of the software you have used. What are some

examples of ease of learning conflicting with ease of use?

2. Visit some Web sites and identify all of the controls used for

navigation and input. Are they all obvious? Discuss some

differences in visibility and affordance of the controls.

3. Consider the human factor solution that states it is better

to change the machine than to try to change the human to

accommodate the machine. Are there machines (or sys-

tems) that you use in your daily life that still have room for

improvement? Are the current generations of Windows PC

and Apple Mac as usable as they might be? If not, what

improvements can you suggest? Is the World Wide Web as

usable as it might be? If not, what improvements would

help? Are we just beginning to see some breakthroughs in

usability, or have most of the big improvements already

been made?

4. Review the dialog between the user and computer shown

for DownTown Videos. Create a table like Figure 14-6 that

shows how the dialog can be converted to the user’s lan-

guage and the computer’s language. Discuss how moving

from the dialog to the table starts with a logical model and

then creates a physical model.

5. Refer again to the table shown in Figure 14-6. Create a

storyboard for the e-mail system based on the information

in the table.

C6696_14_CTP.4c 2/6/08 1:28 PM Page 563

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

564 ♦ PART 3 SYSTEMS DESIGN TASKS

THE 21ST CENTURY UNIVERSITY SYSTEM

Consider the following dialog for a user interacting with the course

registration system at 21st Century University. The user is a student

registering for classes at the university.

System: What course registration function do you want

to perform?

User: Preregistration.

System: Okay, what is your account ID and password?

User: My account ID is SATZ791, and my password is

xxxxxxxx.

System: Okay, welcome back, Kevin. You last adjusted

your schedule on 7/7.

What preregistration function do you want to

perform?

User: To add courses.

System: These are the courses you are preregistered

for now:
(The system displays a list of course information
for three courses.)

EXPERIENTIAL EXERCISES

1. Review the sequential design concept and the order-

centered design concept for the Rocky Mountain Outfitters

Create new order dialog. Consider what information and

navigation options are not needed by the mail-order clerks.

Then design the forms that would be appropriate for clerks

to use when entering mail orders for RMO. Either sketch

the forms or implement the forms using a tool such as

Visual Basic. Use input controls that minimize data entry.

2. Evaluate the course registration system at your university.

List the basic steps followed through a dialog with the sys-

tem. What are some of the problems with the system from

the perspective of ease of learning and ease of use? In

what ways is the system inflexible? In what ways is needed

information not available? Is too much information pro-

vided that distracts from the task at hand?

3. Evaluate the online catalog system at your university library

(see some of the questions and issues in exercise 2). Write

a dialog that shows the interaction between the user and

the system. Rewrite the dialog to improve it. Create a sto-

ryboard to show how your design would look and feel.

4. Locate a system that users work with all day. Ask some of

the users of the system what they like and dislike about it.

Ask how they learned the system. Ask them what typical

errors they make when using the system and how these

errors are prevented or corrected. Observe the users work-

ing with the system. Does it appear that any of the interac-

tion is “automatic”?

5. Find a Web site with direct customer ordering. Browse

through some product descriptions and note the design of

the dialog and the Web pages. What do you like and dis-

like about the design? Evaluate the Web site based on visi-

bility and affordance and on the eight golden rules.

Evaluate the design based on the 10 good deeds and three

principles of Web design.

6. Read through the following dialog, which shows a user try-

ing to place an order with the system. Critique the dialog

in terms of ease of learning and ease of use.

User: I want to order a product.

System: Okay. Enter your name and address.

User: My name is Timothy Mudd, 5139 North Center

Street, Los Angeles, CA 98210.

System: Oh, we have all of that information on file, but

thank you for entering it again.

User: I want to order the Acme Drill Press with

adjustable belt drive.

System: Sure, continue with your request.

User: I want the blue color and rubber feet but not

the foot brake.

System: Sure, anything else?

User: I want it shipped priority with the special dis-

count you offer.

System: We hear you.

User: Okay, that’s all.

System: We are sorry, but your transaction violated

transaction code 312 and we must terminate

the session.

7. Review all of the controls that come with Visual Basic that

are visible when added to a form. Discuss how well each

satisfies the visibility and affordance requirements.

CASE STUDIES

C6696_14_CTP.4c 2/6/08 1:28 PM Page 564

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 14 Designing the User Interface ♦ 565

Because you are a CIS major, these are all of the

CIS courses you might add that have no time con-

flicts with your present schedule (note, though,

that prerequisites have not been checked for

these courses).

(The system displays a list of CIS courses available.)
Your options are as follows:

• Switch to a list of courses in another
department.

• List these courses again but ignore time
conflicts.

• List these courses again after checking
prerequisites.

• Provide details of the indicated course.
• Add the indicated course to your schedule.
• Cancel.

User: I want to switch to courses in another department.

System: Fine. To what department do you want to switch?

User: Art.

System: These are the courses for which you are regis-

tered now:

(The system displays a list of course information

for three courses.)

As requested, these are the art courses you

might add that have no time conflicts with your

present schedule (note, though, that prerequi-

sites have not been checked for these courses).

(The system displays a list of art courses available.)

Your options are as follows:

• Switch to a list of courses in another
department.

• List these courses again, but ignore time
conflicts.

• List these courses again after checking pre-
requisites.

• Provide details of the indicated course.
• Add the indicated course to your schedule.
• Cancel.

User: Add the second course in the list.

System: (The system continues the dialog.)

1. Is this dialog a logical or a physical model? Could it be a

phone registration system? Could a clerk at a desk handle

the dialog manually? Discuss.

2. Discuss how well this dialog follows the eight golden rules.

3. Complete the dialog by adding likely exchanges between

the student and the system as the student adds one more

course. The student should request more details about a

course and then decide to add the course. Include a

request from the student to see final schedule details.

4. Design and implement either a storyboard or prototype for

this dialog, using a tool such as Visual Basic and being as

faithful to the dialog as possible. Make up some sample

data to show in your design as needed.

THE DOWNTOWN VIDEOS RENTAL SYSTEM

This chapter includes an example of a storyboard for DownTown

Videos, a case study first introduced in Chapter 7. The storyboard

showed the Rent videos to customer dialog. Revisit the DownTown

Videos case and complete the following:

1. Implement the storyboard in this chapter as a prototype

using a tool such as Visual Basic.

2. Write a dialog, and then create a storyboard for the use

case Return rented videos. Consider that one or more

videos might be returned and that one or more of them

might be late, requiring a late charge.

3. Using a tool such as Visual Basic, implement the storyboard

as a prototype, and then ask several people to evaluate it.

Discuss the suggestions made.

THE WAITERS ON CALL SYSTEM

Review the Chapter 5 opening case study that describes Waiters on

Call, the restaurant meal-delivery service. The analyst found at least

14 use cases for the system, which are listed in the case.

1. Create a set of menu hierarchies for the system based on the

use cases listed. Then add more menu hierarchies for system

utilities based on controls, user preferences, and help.

2. The most important event listed in the case is Customer

calls in to place an order, and the use case might be

named Process food order. Write out a dialog between the

user and the computer with a natural sequence and appro-

priate exchange of information.

3. Sketch a storyboard of the forms needed to implement the

dialog.

4. Ask several people to evaluate the design and discuss any

suggested changes.

5. Implement a prototype of the final dialog design using a

tool such as Visual Basic.

THE STATE PATROL TICKET PROCESSING SYSTEM

Review the State Patrol ticket processing system introduced as a

case study at the end of Chapter 5.

1. Create a set of menu hierarchies for the system based on the

use cases in the case. Then add more menu hierarchies for

system utilities based on controls, user preferences, and help.

2. Write out a dialog between the user and the computer for

the use case Record new ticket with a natural sequence

and appropriate exchange of information.

3. Sketch a storyboard of the forms needed to implement the

dialog. Be sure to use input controls that minimize data

entry, such as list boxes, radio buttons, and check boxes.

4. Ask several people to evaluate the design and discuss any

suggested changes.

C6696_14_CTP.4c 2/6/08 1:28 PM Page 565

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

566 ♦ PART 3 SYSTEMS DESIGN TASKS

5. Implement a prototype of the final dialog design using a

tool such as Visual Basic.

RETHINKING ROCKY MOUNTAIN OUTFITTERS

A few of the phone-order representatives at Rocky

Mountain Outfitters were not completely satisfied

with the order-centered dialog design presented in

this chapter. They suggested that the design could

be streamlined if only one form were displayed throughout

the dialog—the order summary form. They thought the order sum-

mary form could expand to show additional information instead of

switching to separate forms for customer information, product

information, or shipping information. When the additional informa-

tion is not needed, the form could contract. They thought this

approach would be easier on the eyes, requiring less effort to focus

and refocus on multiple forms that pop up. They requested that a

prototype of the one-form design concept be created for their

review. The interface might include both options, allowing users to

choose the one they prefer.

1. Draw a storyboard to show how the one-form design concept

might look as customer information, product information,

and shipping information are added to the expanded form.

2. Implement a prototype of the storyboard using a tool such

as Visual Basic.

3. Ask several people to evaluate the design, specifically com-

paring it with the order-centered design in the text, and

discuss the results.

4. Can you describe or implement yet another alternative?

FOCUSING ON RELIABLE PHARMACEUTICAL SERVICE

The Reliable Pharmaceutical Service system has

users who process orders in the Reliable offices

and users who place orders and monitor order

information in the nursing homes. Consider the events and use cases

that apply to Reliable employees versus nursing home employees.

1. Design two separate menu hierarchies, one for Reliable

employees and one for nursing home employees.

2. Write out the steps of the dialog between the user and the

system for the use case Place new order for nursing home

employees.

3. Create a storyboard for the dialog for Place new order by

making a sketch of the sequence of interaction with Web

pages. Implement a prototype for the Web pages using a

Web development tool such as Dreamweaver or

FrontPage.

C6696_14_CTP.4c 2/6/08 1:28 PM Page 566

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 14 Designing the User Interface ♦ 567

FURTHER RESOURCES

Merlyn Holmes, Web Usability and Navigation. McGraw-Hill

Osborn, 2002.

Patrick J. Lynch and Sarah Horton, Web Style Guide: Basic

Design Principles for Creating Web Sites. Yale University Press, 1999.

Deborah J. Mayhew, Principles and Guidelines in Software User

Interface Design. Prentice Hall, 1992.

Jakob Nielsen, Designing Web Usability: The Practice of

Simplicity. New Riders Publishing, 2000.

Donald Norman, The Design of Everyday Things. Doubleday, 1990.

Jenny Preece, Yvonne Rogers, David Benyon, Simon Holland, and

Tom Carey, Human Computer Interaction. Addison Wesley, 1994.

Ben Shneiderman, Designing the User Interface (3rd ed).

Addison Wesley, 1998.

Joel Sklar, Principles of Web Design (3rd ed). Course

Technology, 2006.

C6696_14_CTP.4c 2/6/08 1:28 PM Page 567

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

568

DESIGNING SYSTEM
INTERFACES, CONTROLS,
AND SECURITY15
L E A R N I N G O B J E C T I V E S

After reading this chapter, you should be able to:

■ Discuss examples of system interfaces found in information systems

■ Define system inputs and outputs based on the requirements of the application

program

■ Design printed and on-screen reports appropriate for recipients

■ Explain the importance of integrity controls

■ Identify required integrity controls for inputs, outputs, data, and processing

■ Discuss issues related to security that affect the design and operation of

information systems

CHAPTER

C H A P T E R O U T L I N E

Identifying System Interfaces

Designing System Inputs

Designing System Outputs

Designing Integrity Controls

Designing Security Controls

C6696_15_CTP.4c 2/6/08 1:29 PM Page 568

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 15 Designing System Interfaces, Controls, and Security ♦ 569

Downslope Ski Company is a medium-sized manufacturer of skis and snowboards. The com-
pany started with the manufacture of downhill snow skis, hence its name. But a few years ago,
it expanded into the production of snowboards and then into water skis. In the company’s
early years, ski manufacturing was fairly straightforward. However, with the introduction of
advanced materials such as carbon-laced resins and other sophisticated compounds, manu-
facturing has become quite complicated, requiring exacting controls for the precise mixture
of ingredients and temperature tolerances in baking furnaces. To maintain consistency in
snowboard production, Downslope has been very demanding in the quality of the raw mate-
rials that it buys. Several times over the last few years, it has had to change suppliers to ensure
an adequate supply of high-quality raw materials.

In addition to controlling the quality of materials for manufacturing, Downslope insti-
tuted a modified just-in-time (JIT) manufacturing process, which means that it does not
stockpile a large quantity of raw materials. Generally, it keeps about a five-day supply on hand
and depends on its suppliers to restock materials at least weekly. To facilitate quick ordering
and delivery of its many raw materials, senior management at Downslope decided to permit
its suppliers to access its inventory database. Depending on which types of boards were being
produced, the various raw materials would be depleted at different rates. So, Downslope
began developing and installing a complex inventory management system that was integral
to the manufacturing process.

Nathan Lopez, Downslope’s system development project manager, was fast recognizing
that providing a system interface for suppliers to access the database was more complex than
he originally thought. He reported to Downslope management the results of a two-month
study to determine the feasibility of various alternatives for this electronic approach to supply
chain management.

“I have met with each of our suppliers and determined what information they need and
the formats they would like it in. As expected, there was little consistency in the desired for-
mats. I have been able to consolidate some of their needs to narrow them down to three basic
formats. Originally, we thought we could convince our suppliers to accept our output
design—in other words, to make them conform to our output. However, that does not seem
to be such a good idea anymore. If we do not build flexibility into our system, it will be more
difficult for us to add or change suppliers. Instead, if we build the interface correctly, with sev-
eral versions, it should be much easier for suppliers to gain access to the data that we allow
them to see.

“Another critical issue that has surfaced is the integrity and security of our data and our sys-
tems. For example, our production process is unique and one of our competitive advantages. If
the wrong company got access to our data, it could potentially analyze our usage patterns and
not only discover what materials we used but perhaps even reverse-engineer our processes. To
protect our data, we need to ensure that our computers allow only secure access. We also need
to ensure that data is secure while being transmitted to our suppliers and is protected after
arrival there. These security issues relate to both our systems and our suppliers.”

The meeting lasted a long time, with considerable discussion about the opportunities and
dangers of opening company systems to an outside system interface. The oversight committee
finally decided that Nathan should study the situation for a couple more weeks and develop
a list of every possible breach of security with potential solutions for each one. Only after
these issues were addressed would the project move forward. Nathan knew that the develop-
ment of this new type of system interface would be a very sticky problem. He hoped he would
be able to find solutions for all of the issues that had been raised.

DOWNSLOPE SKI COMPANY: DESIGNING A SECURE
SUPPLIER SYSTEM INTERFACE

C6696_15_CTP.4c 2/6/08 1:29 PM Page 569

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

OVERVIEW

Most modern information systems involve extensive input and output (I/O), and many peo-
ple and organizations require access to the data stored by a system. In Chapter 14, you read
about human-computer interaction (HCI) and user interfaces, where I/O is the result of user
interaction with the computer. But many system inputs and outputs do not involve much
human interaction. Many of these system interfaces are not as obvious to end users. But sys-
tems analysts need a deep understanding of existing systems, databases, and network tech-
nologies where I/O occurs to design an information system that incorporates all I/O needs.
We therefore discuss system interfaces separately from user interfaces in this chapter.

Many system interfaces are electronic transmissions or paper outputs to external agents,
including reports, statements, and bills. They need to be identified and designed to suit their
intended purpose. Frequently, the quality of the system outputs is a mark of the quality of the
entire system and of the company that uses it. This chapter discusses the design of these outputs.

Because of the many and varied inputs and outputs, system developers need to design and
implement integrity controls and security controls to protect the system and its data. Today
more than ever, designing system controls is crucial because computer systems increasingly
exist in an open environment. They are part of networks that provide broad access to many dif-
ferent people both within and outside an organization. So, one of the major considerations in
systems design is how to ensure that errors or fraudulent transactions are not entered into a
system. Integrity controls validate data when it is input and processed. Internal checks and
cross-checks help ensure that data integrity is maintained. This chapter discusses techniques to
provide the integrity controls to reduce errors, fraud, and misuse of system components.

Finally, outside threats to systems, business organizations, and individuals continue to be
a major concern of companies that are connected to the Internet. Many companies use the
Internet as a marketing and sales channel, so they need to let customers and prospective cus-
tomers into their systems, yet keep intruders and malicious hackers out. In addition, e-commerce
entails transmission of private information, such as credit-card numbers and financial trans-
actions. The last section of the chapter discusses security controls and explains the basic con-
cepts of data protection, digital certificates, and secure transactions.

IDENTIFYING SYSTEM INTERFACES

The user interface, as described in the previous chapter, includes inputs and outputs that
directly involve system users. But there are many other system interfaces. We define system
interfaces broadly as any inputs or outputs with minimal or no human intervention. Included
in this definition are standard outputs, such as billing notices, reports, printed forms, and
electronic outputs to other automated systems. Inputs that are automated or come from
nonuser interface devices are also included. For example, inputs from automated scanners,
bar-code readers, optical character recognition devices, and other computer systems are
included as part of a system interface.

It often seems that user interfaces are the most common—and thus most important—
interfaces to consider when analyzing and designing an information system. In fact, consid-
erable progress has been made in understanding human-computer interaction and applying
user-centered design principles to user-interface design. However, today’s highly integrated
and interconnected information systems increasingly go beyond user needs, requiring system
interfaces to handle inputs and outputs faster, more efficiently, more accurately, and at any
hour of the day or night.

System interfaces can process inputs, interact with other systems in real time, and distribute
outputs with minimal human intervention. When researching and modeling the requirements

570 ♦ PART 3 SYSTEMS DESIGN TASKS

C6696_15_CTP.4c 2/6/08 1:29 PM Page 570

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 15 Designing System Interfaces, Controls, and Security ♦ 571

for a system, analysts must look carefully for system interfaces that might not appear obvious at
first. When designing the system, they should consider alternatives to HCI to automate the capture
of inputs and the distribution of outputs. The full range of inputs and outputs in an information
system is shown in Figure 15-1.

H
CI

 to
 in

pu
t d

at
a

System user interacting
with computer to enter

data (dialog design)

Our system

External system

External system
External system

Inputs from

external database

R
e

a
l-

ti
m

e
 l

in
k

 (
I/

O
)

Highly automated
inputs

Messages fr
om

extern
al s

ystems

Outp
uts

 to

ex
te

rn
al

 dat
ab

as
e

Outputs with
minimal HCI

Messages to

external systems

HCI to output data

System user interacting
with computer to query

data (dialog design)

External
database

Statement,
report, bill,

notice

External
database

Figure 15-1

The full range of inputs

and outputs in an

information system

The following list provides some categories of system interfaces to aid in identifying I/O
requirements and design possibilities:

• Inputs from other systems
• Highly automated inputs
• Inputs that are from data in external databases
• Outputs that are to external databases
• Outputs with minimal HCI
• Outputs to other systems
• Real-time connections (both input and output)

System interfaces are becoming more and more important as information
systems are being linked and as they function in real time. Be sure to identify
opportunities to automate system interfaces whenever possible because they
have a large impact on system performance and return on investment.

BEST PRACTICE

C6696_15_CTP.4c 2/6/08 1:29 PM Page 571

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Inputs can arrive directly from other information systems as network messages. Electronic
data interchange (EDI) and many Web-based systems are integrated with other systems through
direct messaging. The message received triggers system processing much the way that user inter-
action does. For example, in RMO’s integrated supply chain management and customer support
systems, the arrival of inventory items from a supplier might trigger the shipment of a back-
ordered item to a customer. No human intervention is required, and as a result, the transaction
can be processed immediately and with little chance of error. In Web-based systems, a separate
shopping cart order-entry application might send a message to the order fulfillment system to
process a new order. Analysts decide what is an input and what is an internal message by deter-
mining the scope of the system.

Highly automated input devices such as scanners can capture many system inputs. An
item in a warehouse that is picked for shipment, for example, might have a machine-readable
label that an attendant can scan. This highly automated process represents an input to a sys-
tem. In some cases, a scanner might record the input as an item moves by on a conveyor
belt—with no human interaction at all. We discuss specialized input devices later.

Many inputs may come from external databases. For example, one system might record
transactions in a database, perhaps as a batch of transactions. Another system might periodi-
cally search those transactions and process one or more of them. For example, consider a
charge-account system in which charges are stored in a database throughout the billing
period. A separate billing and collection system might later process those transactions. As
with inputs from other systems, whether these inputs come from an external database or are
processed within one billing system is a question of scope.

Some inputs from an external database might occur during processing of another input,
such as verifying credit history or verifying employment prior to extending credit. When a
credit application is received, the user processing the application might have to rely on infor-
mation from an external database before the application can be approved. Within the use
case Process credit application is a requirement for a system input from an external database.

The output side of system interfaces mirrors the input side. Outputs to external databases
might be required when the system produces large amounts of detailed data. Many system
outputs are produced with minimal human intervention. Reports are produced and e-mailed
to recipients or printed and distributed, but the user is not interacting with the system directly
to obtain the output. Bills, notices, statements, form letters, and so on are similarly produced
with minimal human intervention. They might be sent electronically or be printed. Messages
sent to external systems, triggering processing, are also system outputs.

Sometimes system inputs and outputs must be real-time connections. RMO’s real-time
credit-card authorization is an example. Rather than accessing an external database, RMO’s sys-
tem establishes a real-time connection with another system that accepts inputs and provides
outputs. A real-time connection is, therefore, both a system output and a system input much like
a system-to-system dialog. In this aspect, real-time connections parallel user-interface functions,
which use a dialog to enter data and look up data in the system (as shown in Figure 15-1).

Another mechanism for correct system input is to have a direct interface with another sys-
tem. EDI reduces the need for user input. Purchase orders, invoices, inventory updates, and
payment all are generated by one system sending transactions to another. With EDI, these
transactions normally occur between systems in separate organizations. However, the same
principle can be applied to systems within an organization.

One of the main challenges of EDI is in defining the format of the transactions. It is easy
enough to design the format for a single type of transaction, but it becomes more complex
when many different types of transactions are going to many different systems. The complexity
and difficulty multiplies when many different companies are trying to work together. For
example, General Motors, which was one of the early users of EDI, has literally thousands of
suppliers with thousands of different transactions, each in a different format. To complicate
the situation further, each of these suppliers might also be linked via EDI with tens or hundreds

572 ♦ PART 3 SYSTEMS DESIGN TASKS

C6696_15_CTP.4c 2/6/08 1:29 PM Page 572

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 15 Designing System Interfaces, Controls, and Security ♦ 573

of customers, many of whom might also use EDI. So, a single type of transaction might have a
dozen or more defined formats. It is easy to see why it is so costly to set up and maintain EDI
systems. Even so, EDI is much more efficient and effective than paper transactions, which must
be printed and reentered.

In recent years, there has been a move to develop a standard communication method
between systems based on Hypertext Markup Language (HTML) concepts. As you know,
HTML embeds beginning and ending markup codes within a text-based document to define
the characteristics, such as formatting, of text or figures. HTML embeds formatting infor-
mation within the document itself. Thus, a program that can read HTML reads a text docu-
ment and then, using the embedded markup codes, can format the document correctly.
Although this system is not extremely efficient from a computational point of view, it has
many advantages due to its simplicity and readability by human beings.

A relatively new system-to-system interface that is gaining popularity is called eXtensible
Markup Language (XML). XML is an extension of HTML that embeds self-defining data struc-
tures within textual messages. So, a transaction that contains data fields can be sent with XML
codes to define the meaning of the data fields. Many newer systems are using XML to provide
a common system-to-system interface. Figure 15-2 illustrates a simple XML transaction that
can be used to transfer customer information between systems.

<customer record>
<accountNumber>RMO10989</accountNumber>
<name>William Jones</name>
<billingAddress>

<street>120 Roundabout Road</street>
<city>Los Angeles</city>
<state>CA</state>
<zip>98115</zip></billingAddress>

<shippingAddress>
<street>120 Roundabout Road</street>
<city>Los Angeles</city>
<state>CA</state>
<zip>98115</zip></shippingAddress>

<dayPhone>215.767.2334</dayPhone>
<nightPhone>215.899.8763</nightPhone>

</customer record>

Figure 15-2

A system-to-system

interface based on XML

Just like HTML, XML is simple and readable by human beings. For it to work, both sys-
tems must recognize the markup codes, but after a complete set of codes is established, trans-
actions can include many different formats and still be recognized and processed. The
receiving system merely has to parse the incoming data stream and extract the values from
the markup codes. XML is extremely scalable—it does not matter how many different compa-
nies or different transaction types there are. Every transaction can have its own format as long
as it uses the standard markup codes.

Markup codes for XML are defined in a separate file called a document type definition (DTD)
file or its successor XML schema. Many industries and specialty groups have now formed stan-
dards committees that are defining sets of markup codes. Standard codes already exist for gen-
eral business, retailing, railroad, news media, and medical transactions. The list of groups
forming and defining standard codes is extensive.

C6696_15_CTP.4c 2/6/08 1:29 PM Page 573

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Chapter 9 introduced the idea of Web services. Web services are based on XML, so these
business transactions can be sent over the Internet. In fact, XML was designed to take
advantage of the Internet.

DESIGNING SYSTEM INPUTS

When designing inputs for a system, the system developer must focus on three areas:

• Identifying the devices and mechanisms that will be used to enter input
• Identifying all system inputs and developing a list with the data content of each
• Determining what kinds of controls are necessary for each system input

The first task, identifying devices and mechanisms, is a high-level review of the most up-
to-date method of entering information into a system. In nearly all business systems, end
users perform some input through electronic forms. However, in today’s high-technology
world, there are numerous ways to enter information into a system—among them are scan-
ning, reading, and transmitting devices that are faster, more efficient, and less error-prone
than user input.

The second task, developing the list of required inputs, provides the link between the
design of the application software and the design of the user and system interfaces. As
described earlier, the design of the system inputs and interfaces must be integrated with the
design of the application. This activity accomplishes that purpose.

The third task is to identify the control points and the level of security required for the
system being developed. The project team should develop a statement of policy and control
requirements before beginning the detailed design of the electronic forms that make up the
system interface. These concepts are discussed in the last two sections of the chapter.

INPUT DEVICES AND MECHANISMS

Often when analysts begin developing a system, they assume that all input will be entered via
electronic, graphical forms because they are now so common on personal computers and
workstations. However, as the design of the user inputs commences, one of the first tasks is to
evaluate and assess the various alternatives for entering information into the system.

The primary objective of any form of data input is to enter or update error-free data into
the system. The key term here is error-free. Several good practices can help reduce input errors:

• Capture the data as close to the originating source as possible.
• Use electronic devices and automatic entry whenever possible.
• Avoid human involvement as much as possible.
• If the information is available in electronic form anywhere, use it instead of reentering the

information.
• Validate and correct information at the time and location it is entered.

Today, many systems enable the data to be captured electronically at the point that it is
generated. For example, the old way of selling a life insurance policy is to have the applicant
or the insurance agent fill out a paper policy application. Then the agent sends the applica-
tion to a central office to be entered into the system. With this method, numerous errors can
occur from indecipherable writing, key-entry errors, missing fields, and so forth. Currently,
agents often carry laptop computers with easy-to-use electronic forms, so applicants can fill
in the data themselves. Or the agent can enter the data while the applicant looks over the
agent’s shoulder and verifies that the information is accurate and complete. A portable printer
can even be attached to the laptop to print the completed form for the applicant to review
immediately. This new approach dramatically reduces the error rate and speeds the business
process of new policy data entry.

574 ♦ PART 3 SYSTEMS DESIGN TASKS

C6696_15_CTP.4c 2/6/08 1:29 PM Page 574

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 15 Designing System Interfaces, Controls, and Security ♦ 575

The second and third practices, automating data entry and avoiding human involvement,
are very closely related and often are essentially different sides of the same coin, although using
electronic devices does not automatically avoid human involvement. When system developers
think carefully about minimizing human input and using electronic input media, they can
design a system with fewer electronic input forms and avoid some common data-entry prob-
lems. One of the most pervasive sources of erroneous data is typing mistakes by users. A few of
the more prevalent devices used to avoid human keystroking are as follows:

• Magnetic card strip readers
• Bar-code readers
• Optical character recognition readers and scanners
• Radio-frequency identification tags
• Touch screens and devices
• Electronic pens and writing surfaces
• Digitizers, such as digital cameras and digital audio devices

We have all seen new electronic input devices. At the grocery store, electronic scanners
identify and price each item from the printed UPC codes. Machines weigh and price the pro-
duce automatically at the checkout. Cash registers now read your check, including the
amount and customer and bank information. New self-service checkout stations depend
almost entirely on automated data-entry devices.

Historically, paper contracts and ink signatures were necessary for legally binding contracts.
Today, new laws and regulations allow paper documents and signatures to be digitized. Credit-
card purchases now also record digitized signatures to eliminate the need for paper vouchers.
This technique conforms to the good practices stated previously—the information is captured
at its source in electronic form, which eliminates many of the sources of errors.

The next principle of error reduction is to reuse the information already in the computer
whenever possible. Some outdated systems require reentry of the same information multiple
times. This practice not only generates errors but also creates multiple copies of the same infor-
mation, which require more checks and balances—as well as computer resources—to synchro-
nize the various copies. And when an error is discovered, it is very difficult to know which copy
is correct. Also, when a change is required, it must be made to all copies of the data. One cur-
rent high-tech example of using existing information is found in car rental systems. When a cus-
tomer rents a car, the rental agency’s system captures the customer’s name and credit-card, car
mileage, and fuel information. Then when the customer returns the car, an agent in the parking
lot simply scans the contract ID and enters the return mileage and fuel-gauge level. The system
calculates the charges and prints a credit-card receipt for the customer right in the parking lot.
This solution was designed primarily to provide a higher level of customer service, but it also
eliminates many problems and errors with data entry.

Eliminating input errors through various techniques, one of which is using electronic devices
for data input, is critical, but another potential source of problems is the input of fraudulent
information. Two problems need to be addressed with fraudulent data: access control and input
control. First, access to the system must be controlled so that only authorized people or systems
can gain access. Today, devices such as fingerprint readers, body temperature sensors, and iris
scanners are used more and more often to provide additional security to standard password
access. Second, input controls must be built into the system so that fraudulent data cannot easily
be entered. Although it is impossible to completely eliminate the potential for fraud, the careful
design of input controls will help minimize the risk. More discussion on security devices and
input controls is provided later in the chapter.

DEFINING THE DETAILS OF SYSTEM INPUTS

The objective of this task is to ensure that the designer has identified all of the required inputs
to the system and specified them correctly. In the previous chapter, you learned various methods
of defining user inputs based on the analysis of activities or use cases. Those techniques

C6696_15_CTP.4c 2/6/08 1:29 PM Page 575

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

defined the user interface through user-centered design. In this chapter, we focus on defining
the system inputs, including user inputs, by analyzing models that were built during the
analysis activities. As with other aspects of analysis and design, this task also provides a mech-
anism to cross-check the quality of both the user-centered design and the detailed informa-
tion developed in the analysis models.

The fundamental approach that analysts use to identify user and system inputs is to iden-
tify all information flows that cross the system boundary for each activity or use case. The idea
is the same for both traditional structured models and object-oriented models; however, the
detailed techniques are unique to each model. We begin with the structured approach.

Using Traditional Structured Models

During systems design with structured techniques, one of the first tasks is to define the automa-
tion boundary. Figure 15-3, duplicated from Figure 10-2, is an example of an automation
boundary on a data flow diagram. Several of the inputs to the system based on this data flow
diagram are as follows:

• Time card information
• Updates to tax rate tables
• Updates to employee files

The updates to employee files are probably done with a graphical user interface screen.
However, both the time card information and the updates to the tax tables are more likely
done through a system interface that is not graphical. Time card information frequently

576 ♦ PART 3 SYSTEMS DESIGN TASKS

Process that is
partially in and

partially out

Program boundary

Tax rates

Time cards

Payroll ttns

Employee records

Inspected checks

W-2 form

W-2 detail
report

Automation system
boundary

Correct
errors

Calculate
payroll

Print
checks

Inspect
checks

Produce
year-end

tax

Tax
agency

d2

Batch program
(Check printing)

Batch program
(Year-end tax)

Online program
(Payroll)

Online program
(Maintain tax tables)

Update
tax tables

Management

Enter time
cards

1

Hourly
employee

Hourly
employee

Update
employees

Time card
information

Updates to
tax rates

Updates to
employees

2

4

3

6 7

8

5

Printed
checks

Online program
(Maintain employee database)

Data flows crossing the
boundary are inputs and

outputs

Figure 15-3

An automation boundary

on a system-level DFD

C6696_15_CTP.4c 2/6/08 1:29 PM Page 576

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 15 Designing System Interfaces, Controls, and Security ♦ 577

comes through an automated employee check-in system. Tax updates can come directly from
a government service bureau and can be provided electronically.

Even though it is possible to build an automation boundary on a high-level DFD and identify
the inputs on this diagram, it usually is better to work from the DFD fragments or even more
detailed DFDs. The high-level diagram frequently does not provide enough detail to discern many
data flows and, hence, inputs to the system. For example, one of the processes on the diagram,
Correct errors, is intersected by the system boundary. Thus, a view from a lower-level DFD, which
provides more detailed process bubbles for the Correct errors process, would be necessary to discern
what processes to include within the automated system and what data flows cross the boundary.

Chapter 6 explained how to build DFD fragments based on the events in the event table.
For more complex models, you can define system inputs by looking at each DFD fragment
and creating the system boundary on each fragment. The high-level DFD with an automation
boundary gives a good overview, but the DFD fragments, or even the detailed DFD for each
fragment, are easier to work with.

Figure 15-4 shows the Create new order detailed data flow diagram from RMO with the
automation boundary superimposed. The input data flows crossing the boundary are clearly
defined, so required inputs will be the new order information data flow and the real-time link
from the credit bureau. The input for the user interface will be the new order information, and
the real-time link to the credit bureau will be an electronic system interface.

Order details
Record

customer
information

2.1

Customer
Shipping

Bank
Credit
bureau

Build
order

2.2

Produce
confirmation

2.4

Process
order

transaction

2.3

Order confirmation

New order

TransactionCredit verification

Order
details

Transaction
details

Order ID

Customer

Order

Order item

Product item

Inventory item

Order transaction

Figure 15-4

The Create new order
DFD with an

automation boundary

C6696_15_CTP.4c 2/6/08 1:29 PM Page 577

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The designer analyzes each DFD fragment to determine the required inputs. The data flows
that cross the boundary on the DFDs as inputs correspond to triggers for external events in the
event table. The result of this task is a list of high-level inputs for the new system. Figure 15-5 is
a list of inputs for RMO’s customer support system as developed from the DFD fragments. To
develop this list, the designer analyzes every DFD fragment in Figure 6-12, as well as all other
DFD fragments for RMO. The purpose of this preliminary list is to provide a master control list
of all system inputs and user inputs that need to be designed. It does not, however, provide quite
enough detailed information to design the inputs themselves. The additional information that
is needed is obtained from the data flow definitions, structure charts, and the user-centered
design activities (for the user interface) as explained in Chapter 14.

578 ♦ PART 3 SYSTEMS DESIGN TASKS

Item inquiry
New order information
Change order information
Order status inquiry
Order fulfillment notice
Back-order notice
Order return notice
Catalog request
Customer account update
Promotion package information
Customer change adjustment
Catalog update information
Special promotion information
New catalog information
Credit-card authorization

Figure 15-5

List of inputs (system and

user) for the customer

support system

While developing the structure charts, the designer defines individual program modules
and their associated data couples. Chapter 10 discussed the process of defining the detailed
data content of each data couple. Each input data flow on a data flow diagram might trans-
late into one or more physical inputs on the structure chart. In Figure 15-6, which derives
from Figure 10-15, input modules have been defined for getting customer information and
for getting order information, including the details for several order line items. In this figure,
the New order data flow on the DFD is expanded into four separate data couples on the struc-
ture chart. The structure chart identifies three modules that get data from outside the system.
These three modules and their associated data couples are named Get customer information,
Get order information, and Get credit-card information. In other words, it requires three modules
to provide all of the information from outside the system on the Customer information and
New order information data flows.

The next step is to analyze each module and data couple and list the individual data fields for
each data couple. This analysis consists of reviewing the elements in the data stores to ensure that
all elements can be built based on the input data couples. Figure 15-7 expands Figure 15-5 to
include the data couples associated with each data flow as well as the data fields to be associated
with each data couple. Because the identification of the detailed data elements is based on the
analysis models, including the entity-relationship data model, it provides a cross-check for the
approach explained in Chapter 14. Ensuring that the two approaches yield the same data ele-
ments is a powerful technique to verify the quality of the design.

Each of the items identified as inputs made by end users and listed in the data couple col-
umn of Figure 15-7 becomes part of an electronic input data form or an input/output form. An
input/output form permits users to enter key blank fields and then query the database to display

C6696_15_CTP.4c 2/6/08 1:29 PM Page 578

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 15 Designing System Interfaces, Controls, and Security ♦ 579

Record order

Create customer
record

Create new
order

Get order
information

Produce
confirmation

Record customer
information

Customer
information

Order
information

Line item information

Customer
information

Customer
information Order information

Customer information

Process order
transaction

Line item
information

Get customer
information

Customer
information

Order
information

Line items

Line item
information

Write
transaction

Check credit
authorization

Verify credit
information

Create order
line item

Read product/
inventory items

Get requested
item

Credit
verificationProduct

information
Line item
details

Inventory
information

Requested
item

Customer
verification

Customer
information

Customer
payment

information

Order
financial

information

Process order
item

Get credit-card
information

Credit
information

Credit-card
number

Figure 15-6

Structure chart for

Create new order

Data flow Data couples Data elements

New order Customer information Account number, Name, Billing address, Shipping address, Day phone,
Night phone

Order information Order date, Priority code

Line item information Product ID, Color, Size, Quantity

Credit-card number Credit-card name, Credit-card number, Expiration date

Credit authorization (real time) Credit information (output) Credit-card number, Expiration date, Customer name, Amount

Credit verification (input) Accept/Reject code, Date/time, Authorization number, Amount

Figure 15-7

The data flows, data

couples, and data

elements making up

inputs

C6696_15_CTP.4c 2/6/08 1:29 PM Page 579

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

information such as product descriptions. These tasks associated with design of input forms are
best done in conjunction with the application architecture design tasks and then refined through
careful consideration of interaction between humans and computers. Let’s now shift to the
object-oriented approach to see how to identify the inputs.

Using Object-Oriented Models

Identifying user and system inputs with the object-oriented approach consists of the same
tasks as with the traditional structured approach. The difference is that system sequence dia-
grams and design class diagrams are used. The system sequence diagrams identify the incom-
ing messages, and the design class diagrams are used to identify and describe the input
parameters.

Figure 15-8 is a simplified system sequence diagram for an object-oriented version of a
payroll system (such as the traditional structured version shown in Figure 15-3). In this sys-
tem sequence diagram, snippets from various use cases have been combined to illustrate the
same major inputs as indicated in Figure 15-3. The messages that cross the system boundary
identify inputs, both system inputs and user interface inputs. The identification of these
inputs on the sequence diagram provides a cross-check with the graphical user interface
(GUI) forms defined with the user-centered design, as described in Chapter 14. The three sys-
tem inputs that cross the system boundary are as follows:

• updateEmployee (empID, empInformation)
• updateTaxRate (taxTableID, rateID, rateInformation)
• inputTimeCard (empID, date, hours)

580 ♦ PART 3 SYSTEMS DESIGN TASKS

Consider and plan for the system interfaces for inputs and outputs very
early—when defining requirements with use case descriptions and system
sequence diagrams.

BEST PRACTICE

The first input is part of the GUI and is detailed during the design of the user interface.
The other two inputs, however, are from external systems and do not require user involve-
ment. The information from the tax bureau can be sent as a set of real-time messages or in
the form of an input file on a CD or some other electronic device. The time card information
could come into the system in various formats. Perhaps physical time cards are entered via an
electronic card reader. Or an input from a subsystem, such as an electronic employee ID card
reader, might send time card information at the end of every workday. These last two input
messages need to be precisely defined, including transmission method, content, and format.

Figure 15-9 is a variation of the system sequence diagram for the telephone order scenario
of the Create new order use case, as originally shown in Figure 7-13. In the figure, the Order
Clerk actor and the BankSystem package are external to the system. The messages that go from
the Order Clerk to the system are part of the user interface. The messages that go between the
external BankSystem package and the system are system inputs. In the object-oriented models,
the boundary between actors and external packages with the internal objects is more explicit
than in structured models. In Figure 15-9, four messages go from the Order Clerk actor to the
system, and one input message enters the system boundary from the BankSystem package. The
input messages, along with the actual message signatures as shown in the figure, are as follows:

• startOrder(accountNo)
• addItem(catalogID, prodID, size, quantity)
• completeOrder ()
• makePayment(paymentAmt, ccInformation)
• returnVerification (creditCard#, verificationCode, amount)

C6696_15_CTP.4c 2/6/08 1:29 PM Page 580

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 15 Designing System Interfaces, Controls, and Security ♦ 581

The system sequence diagram developed during the analysis activities identifies the series
of steps that occur in the overall process to create a new order from a telephone call. Along
with a sequence diagram, a detailed dialog is developed to highlight the communications
between the user and computer, as explained in Chapter 14. The point to note here is that a
sequence diagram provides a detailed perspective of the user and system inputs to support
the use case and the corresponding business event.

Additional analysis of the messages themselves also supplies information about the data
fields on the message. To obtain a more thorough analysis of the messages, the developer
might need to consult the design class diagram. The actual parameters that are passed in on
the messages need to be consistent with the attributes that are found in the design classes.
Because the design class attributes are typed, the input parameters can also be typed to be
consistent with the design class attributes.

Figure 15-10 lists each input message and the data fields that must be passed with the
message. In the example, we show the data associated with every input message. However, the
messages associated with the user interface might have already been precisely specified dur-
ing the design of the user interface. In that case, only the system inputs need to be placed in
the table. Not only is this analysis necessary to develop the details of system inputs, but it also
provides a good check on the analysis. Notice that the table is more detailed to define the
input parameters more precisely. Often this detail will be transferred back to the sequence
diagram to make it more complete as well.

Manager

updateEmployee (empID, empInformation)

:System

*updateTaxRate (taxTableID, rateID, rateInformation)

Employee

TaxBureauSystem

*inputTimeCard (empID, date, hours)

*signOut (time)

*signIn (time)

TimeCardSystem

Figure 15-8

Partial system sequence

diagram for the payroll

system use cases

C6696_15_CTP.4c 2/6/08 1:29 PM Page 581

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

582 ♦ PART 3 SYSTEMS DESIGN TASKS

Order Clerk

startOrder (accountNo)

:System

addItem (catalogID, prodID, size, quantity)

description, price, extendedPrice

makePayment (paymentAmt, ccInformation)

completeOrder ()

totalDue

summaryInformation

BankSystem

checkCreditCard (creditCard#, expDate, name, amount)

returnVerification (creditCard#, verificationCode, amount)

Loop for all items

Figure 15-9

System sequence

diagram for

Create new order

Message Data parameters

startOrder accountNo

addItem catalogID, prodID, size, quantity

completeOrder —

makePayment paymentAmt, creditCard#, expDate, name

returnVerification creditCard#, verificationCode, amount

Figure 15-10

Input messages and data

parameters from an RMO

system sequence

diagram

DESIGNING SYSTEM OUTPUTS

The primary objective of system outputs is to present information in the right place at the
right time to the right people. Historically, the most common form of output information has
been printed textual reports. Although straight text and tables are still used extensively, new
formats such as charts and diagrams provide many more options to present, emphasize, and
summarize information.

C6696_15_CTP.4c 2/6/08 1:29 PM Page 582

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 15 Designing System Interfaces, Controls, and Security ♦ 583

As with input design, the tasks in this activity accomplish four objectives:

• Determine the type of each system output.
• Make a list of specific system outputs required based on application design.
• Specify any necessary controls to protect the information provided in the output.
• Design and prototype the output layout.

The purpose of the first two tasks is to evaluate the various alternatives and to design the
most appropriate approach for each needed output. The list of required output reports is nor-
mally specified during the analysis activities as part of modeling system requirements. During
design, the task is to coordinate the production of those outputs with the modules (structured
techniques) and methods (object-oriented techniques) that are identified during the applica-
tion architecture design.

The third task ensures that the designer evaluates the value of the information to the organiza-
tion and protects it. Frequently, organizations implement controls on the inputs and system access
but forget that output reports often have sensitive information. The upcoming section “Designing
Integrity Controls” identifies several important controls that all outputs should include.

Today users can develop their own reports using tools and preformatted templates. These
reports, called ad hoc reports, have not been designed by programmer/analysts. Instead, an
ad hoc report is the result of a new user query to a database in response to a specific question
or need. In Chapter 13, you learned about relational databases and Structured Query
Language (SQL). Many systems provide a simplified graphical tool to permit users to formu-
late queries in SQL to produce ad hoc reports. Obviously, analysts do not design those reports
during system development. However, the tools and capability to support user requests do
need to be built into the system. The report-design activity is a good time to ask whether the
system requires an ad hoc reporting capability and to add it if necessary.

DEFINING THE DETAILS OF SYSTEM OUTPUTS

The objective of this task is to ensure that the designer has identified and specified all of the
outputs for the new system. The technique is the same as that used for the definition of the
system inputs. This model-based approach utilizes the information in the event table and
other models to identify and define the detailed specifications of the outputs. Although many
system inputs might be defined as part of the user-interface design, many outputs do not
require dynamic human-computer interaction—for example, printed reports, turnaround
documents, or simple screen displays. So, analysts must look to the analysis models they
developed earlier for many more system outputs. For analysts using traditional structured
techniques, the data flows from an internal process to an external agent or external process
identify the outputs. For object-oriented techniques, messages that originate on internal
classes and whose destination is an actor or another external system are the outputs.

Using Traditional Structured Models

To identify the outputs in the traditional approach, analysts look at data flows coming out of the
system across the system boundary in the data flow diagrams and fragments. The payroll example
shown in the DFD of Figure 15-3 contains several system outputs that are not normally part of the
graphical user interface. Processes 6, Print checks, and 8, Produce year-end tax, have three outputs
that are generated in a batch execution. The program to print checks prints all payroll checks at
once for a specific payroll period. Similarly, the year-end tax program will print W-2 forms and a
detail report. Batch-oriented reports are always classified as system outputs.

Figure 15-4, the Create new order DFD, shows three outputs: a confirmation to the cus-
tomer, a notice to shipping, and a payment transaction that goes to the bank. As with system
inputs, analysts should build a table of the DFD outputs, defining exactly what reports are
needed and determining the data fields. Data flow definitions for each of these outputs
should have been created and documented on a data flow diagram as part of the analysis of
requirements. One additional system output shown in Figure 15-4, which is not a report, is
the electronic credit verification going to the credit bureau.

ad hoc reports
reports that are not
predefined by a
programmer but
designed as needed by
a user

C6696_15_CTP.4c 2/6/08 1:29 PM Page 583

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

As analysts build the table of DFD outputs, report definitions, and data fields, they add two
more columns to the three identified in the input table. These two additional columns list
(1) the files or data stores that are required to produce the report and (2) the number of records
from which the report is generated—a single record or a set of records. Figure 15-11 is an exam-
ple of the table of system outputs. The single/multiple record column generally indicates whether
the report is printed immediately after each process or in batch at some other time. For example,
from Figure 15-3, the W-2 reports will process multiple records to print the report.

584 ♦ PART 3 SYSTEMS DESIGN TASKS

DFD data flow Structure chart Data content Database files Single record/
data couple required multiple records

Order Produce confirmation Account-Number, Name, Billing- Customer, Order, Single
confirmation Address, Shipping-Address, Order- Order Item

Number, Date, Priority-Code,
Shipping-And-Handling, Tax, Total
*(Product-Item-Number, Description,
Size, Color, Options, Quantity, Price)

Shipping order Produce confirmation Account-Number, Name, Shipping Customer, Order Single
details Address, Order-Number, Date,

Priority-Code

Transaction Write transaction Account-Number, Shipping-And Customer, Transaction Single
details Handling, Tax, Total

Credit Credit information Credit-Card-Number, Expiration- Customer, Order Single
verification Date, Customer-Name, Amount
(real time)

Figure 15-11

A table of system outputs

based on the traditional

structured approach

To verify that the structure chart modules are consistent with the structure of the output
report, analysts again look at the data couples and the report data requirements. An analysis
of the data couple being sent to the module and the data fields on the output report will ver-
ify that the application has been designed correctly to generate the report.

Using Object-Oriented Models

In the object-oriented approach, outputs are indicated by messages in sequence diagrams that
originate from an internal system object and are sent to an external actor. In Figure 15-9,
the message with the parameters of description, price, extendedPrice is an example of an
output message. This message is generated as a result of the input message
addItem(catalogID, prodID, size, quantity) to the internal order object. A review of all the
output messages generated across all sequence diagrams provides the consistency check
against the required outputs identified during analysis activities.

Output messages that are based on an individual object (or record) are usually part of the
methods of that object class. To report on all objects within a class, a class-level method is
used. A class-level method is a method that works on the entire class of objects, not a single
object. For example, a customer confirmation of an order is an output message that contains
information for a single order object. However, to produce a summary report of all orders for
the week, a class-level method looks at all the orders in the Order class and sends output
information for each one with an order date within the week’s time period.

The system sequence diagram in Figure 15-9 shows four output messages—three from the
system to the Order Clerk actor, and one to the BankSystem package. Each of these messages
must have a list of parameters that are transmitted with it, even though the completeOrder ()
message in the diagram does not show them. Output design is a good time for analysts to
elaborate on the messages to include all of the required parameters. Similar to the traditional
approach, Figure 15-12 shows a table listing the output messages, the database files or tables
required, and the number of objects (a single object or a set of objects) to be included in the
report. Comparing this figure with Figure 15-11, you might notice that some outputs are not
identified. Because Figure 15-12 derives from a single use case, the Create order use case, it
does not include other messages such as shipping messages that are on other use cases.

C6696_15_CTP.4c 2/6/08 1:29 PM Page 584

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 15 Designing System Interfaces, Controls, and Security ♦ 585

DESIGNING REPORTS, STATEMENTS, AND
TURNAROUND DOCUMENTS

With the advent of office automation and other business systems, businesspeople originally
thought that paper reports would no longer be needed. In fact, just the opposite has hap-
pened. Business systems have made information much more widely available, with a prolifer-
ation of all types of reports, both paper and electronic. In fact, one of the major challenges to
organizations and the designers of their information systems today is to organize the over-
whelming amount of information so that it is meaningful. One of the most difficult aspects
of output design is to decide what information to provide and how to present it to avoid a
confusing mass of complex data.

Type of Output

Before looking at the different formats that analysts use in designing reports, let’s discuss four
types of output reports that users require: detailed reports, summary reports, exception
reports, and executive reports.

Detailed reports are used to carry out the day-to-day processing of the business. They
contain specific information on business transactions. Sometimes a report might be for a sin-
gle transaction, such as an order confirmation sheet with details of a particular customer
order. Other detailed reports list a set of transactions—for example, a list of all overdue
accounts, with each line of the report presenting information about a particular account. A
clerk could use this report to research overdue accounts and determine actions to collect past-
due amounts. The purpose of detailed reports is to provide working documents for people in
the company.

Summary reports are often used to recap periodic activity. An example of this report is a
daily or weekly summary of all sales transactions, with a total dollar amount of sales. Middle
managers often use this type of report to track departmental or division performance.
Exception reports are also used to monitor performance. An exception report is produced
only when a normal range of values is exceeded. When business is progressing normally, no
report is needed. But when something exceeds an expected range, a report is produced to alert
staff. An example is a report from a production line that lists rejected parts. If the reject rate is
above a set threshold, a report is generated. Sometimes exception reports are produced regu-
larly. The rejected parts report might be produced every day if the production line usually has
some rejected parts. An aged accounts receivable report might be produced each month show-
ing the accounts that are past due. Unfortunately, the organization may always have some
accounts to list in such reports, so they are produced regularly.

Output message Data parameters Classes or database Single record/
tables multiple records

Response to addItem () description, price, CatalogProduct, Single
extendedPrice ProductItem,

InventoryItem,
OrderItem

Response to totalDue Order, OrderItem Single
completeOrder ()

checkCreditCard () creditCard#, expDate, Customer, Single
name, amount OrderTransaction

summary Information— customerName, Order, OrderItem, Single
response to billingAddress, Customer
makePayment () shippingAddress,

orderNumber, date,
s&h, tax, totalAmount

Figure 15-12

A table of system outputs

based on

object-oriented

messages

detailed report
a report containing
detailed transactions or
records

summary report
a report that recaps or
summarizes detailed
information over a period
of time or some category

exception report
a report that contains
only information about
nonstandard, or
exception, conditions

C6696_15_CTP.4c 2/6/08 1:29 PM Page 585

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Top management uses executive reports to assess overall organizational health and per-
formance. These reports thus contain summary information from activities within the com-
pany. They might also contain comparative performance with industry-wide averages. Using
these reports, executives can assess competitive strengths or weaknesses of their company.

Chapter 1 discussed the various types of information systems that systems analysts
develop. You will note that some types of information systems focus on producing a particu-
lar type of report. Although there is no strict requirement for a system to produce only one
type of report, we often categorize a system based on the type of report it produces. The next
section looks at some examples of printed reports.

Internal Versus External Outputs

Printed outputs are classified as either internal outputs or external outputs. Internal outputs are
produced for use within the organization. The types of reports just discussed fall under this cat-
egory. External outputs include statements, notices, and other documents that are produced for
people outside the organization. Because they are official business documents for an outside
audience, they need to be produced with the highest-quality graphics and color. Some examples
include monthly bank statements, late notices, order confirmation and packing slips (such as
those provided to Rocky Mountain Outfitters’ customers), and legal documents such as insur-
ance policies. Some external outputs are referred to as turnaround documents because they are
sent to a customer but include a tear-off portion that is returned for input later, such as a bill
that contains a payment stub to be returned with a check. All of these printed outputs must be
designed with care, but organizations have many more options for printed output. Today’s high-
speed color laser printers enable all types of reports and other outputs to be produced.

An example of a detailed report for an external output is shown in Figure 15-13. This report is
produced from a Web order similar to that shown in Figure 14-16. Good user-interface design
specifies that when a customer places an order over the Web, the system will be able to print the
order information as a confirmation. Of course, a user can always print the Web screen display

586 ♦ PART 3 SYSTEMS DESIGN TASKS

05 12

Description

Customer Name: Fred Westing

Customer Number: 6747222

Product ID Color Price
Extended

PriceSizeQty

 Payment Information:

Account Number

American Express MasterCard VISA Discover

Expiration Date

MO YR

Shipping Information:

Shipping Method: Normal 7-10 day

Shipping Company: UPS

Tracking Number: To be sent via email

Email Address: FredW253@aol.com

Shipping Address:

936 N Swivel Street
Hillville, Ohio 59222

Order Number: 4673064

Today's Date: May 18, 2010

Billing Address:

936 N Swivel Street
Hillville, Ohio 59222

Rocky Mountain Outfitters—Shopping Cart Order

1 458238WL

1 347827OP

2 8759425SH

1 5858642OR

Jordan Men's Jumpman Team J

Woolrich Men's Backpacker Shirt

Nike D.R.I. – Fit Shirt

Puma Hiking Shorts

Oatmeal Plaid

Black

Tan

$119.99

$41.99

$30.00

$15.00

$119.99

$41.99

$60.00

$15.00

$236.98

Shipping

Subtotal

Tax

Total

$8.50

$11.25

$256.73

X X X X – X X X X – X X X X – 5 7 8 4

Thank you for your order. It is a pleasure to serve you.
Check back next week for new weekly specials!!

X

12

XL

M

L

White/ Light Blue

Figure 15-13

RMO shopping cart

order report

executive report
a summary report from
various information
sources that is normally
used for strategic
decisions

internal output
a printed report or
document produced for
use inside an
organization

external output
printed documents—
such as statements,
notices, form letters, and
legal documents—
produced for use outside
an organization

turnaround

document
an external output that
includes a portion that is
returned to the system
as an input

C6696_15_CTP.4c 2/6/08 1:29 PM Page 586

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

mailto:FredW253@aol.com

CHAPTER 15 Designing System Interfaces, Controls, and Security ♦ 587

using the browser’s print capability, but doing so is time consuming because it includes all of the
graphics and index links on the page. It is much more user-friendly to provide shoppers a format-
ted order confirmation only. Figure 15-13 illustrates such a report. This type of report is based on
the information of a single order. The data required to print this order are a customer record, an
order record, and all of the line-item records for ordered items. Notice that it is nicely formatted
for easy reading. Different pieces of information are grouped together and placed within bound-
aries. The report is comprehensive; it contains complete and current information about the order,
including today’s date, items on the order, payment details, and shipping details.

In contrast to the Web shopping cart order report, Figure 15-14 is an example of an internal
output. This report is different in several ways. First, it is based on an entire set of records from
the inventory database, whereas the shopping cart order is for a single order. The report includes

Rocky Mountain Outfitters — Products and Items

ID Season Category Supplier DiscontinuedUnit Price Special Price

Description Outdoor Nylon Jacket with Lining

RMO12587 Spr/Fall Mens C 8201 $39.00 $34.95 No

Size Color Style Units in Stock Reorder Level Units on Order
Small

Medium

Large

Xlarge

Blue
Green
Red
Yellow
Blue
Green
Red
Yellow
Blue
Green
Red
Yellow
Blue
Green
Red
Yellow

150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150

ID Season Category Supplier DiscontinuedUnit Price Special Price

Description Hiking Walkers with Patterned Tread Durable Uppers
RMO28497 All Footwe 7993 $49.95 $44.89 No

Size Color Style Units in Stock Reorder Level Units on Order

 7

 8

 9

10

11

12

13

Brown
Tan
Brown
Tan
Brown
Tan
Brown
Tan
Brown
Tan
Brown
Tan
Brown
Tan

389
422
597
521
633
654
836
954
862
792
754
788
830
921

100
100
100
100
100
100
100
100
100
100
100
100
100
100

691
723
569
827
722
756
698
590

1289
1455
1329
1370
1498
1248
1266
1322

Figure 15-14

RMO inventory report

C6696_15_CTP.4c 2/6/08 1:29 PM Page 587

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

588 ♦ PART 3 SYSTEMS DESIGN TASKS

both a detailed and summary section, sometimes called a control break report. A control break
is the data item that divides the report into groups. In this example, the control break is on the
product item number—called ID on the report. Whenever a new value of the ID is encountered
on the input records, the report begins a new control break section. The detailed section lists the
transactions of records from the database, and the summary section provides totals and recaps
of the information. The report is sorted and presented by product. However, within each prod-
uct is a list of each inventory item showing the quantity currently on hand.

External outputs can consist of complex, multiple-page documents. A well-known exam-
ple is the set of reports and statements that you receive with your car insurance statement.
This statement is usually a multipage document consisting of detailed automobile insurance
information and rates, summary pages, turnaround premium payment cards, and insurance
cards for each automobile. Another example is a report of employment benefits with multi-
ple pages of information customized to the individual employee. Sometimes the documents
are printed in color with special highlighting or logos. Figure 15-15 is one page of an exam-
ple report for survivor protection from an employee benefit booklet. The text is standard
wording, and the numbers are customized to the individual employee.

Survivor Protection
In the event of your death while working for a participating employer, your designated beneficiaries
could receive:

Lump Sum Benefits
$50,000 Basic Life Insurance

$230,000 Supplemental Life Insurance
$148,677 Thrift Plan

$31,686 Tax Sheltered Annuity (TSA) Plan
$255 Social Security for your eligible dependents

$460,618 Total*

You have not elected Universal Life Insurance. If you would like more information on this plan, please
call 1-800-555-7772.
*Refer to page 7 for additional information on the amount of coverage needed to provide ongoing replacement income.

Accidental Death Benefits
If your death is due to an accident, your designated beneficiaries will receive the above benefits plus:

$100,000 24-Hour Accidental Death and Dismemberment Insurance
$100,000 Occupational Accidental Death and Dismemberment

Insurance, if the accident is work related

Monthly Death Benefits
If you die before receiving the Master Retirement Plan benefits and you are vested and have a surviving
spouse, your spouse may be eligible for a Qualified Pre-Retirement Survivor Annuity.

In addition, your family may be eligible for the following estimated monthly benefits from Social
Security, not to exceed a maximum of $2,591 based on:

 $1,110 for each child under age 18
 $1,110 for a spouse with children under age 16; or

$1,058 for a spouse age 60 or older

Figure 15-15

A sample employee

benefit report

Electronic Reports

Organizations use various types of electronic reports, each serving a different purpose, and
each with its respective strengths and weaknesses. Electronic reports provide great flexibility
in the organization and presentation of information. In some instances, screen output is

control break

report
a report that includes
detailed and summary
information

C6696_15_CTP.4c 2/6/08 1:29 PM Page 588

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 15 Designing System Interfaces, Controls, and Security ♦ 589

formatted like a printed report but displayed electronically. However, electronic reports can
also present information in many other formats: Some have detailed and summary sections,
some show data and graphics together, others contain boldface type and highlighting, others
can dynamically change their organization and summaries, and still others contain hotlinks
to related information. An important benefit of electronic reporting is that it is dynamic—it
can change to meet the specific needs of a user in a particular situation. In fact, many systems
provide powerful ad hoc reporting capabilities so that users can design their own reports on
the fly. For example, an electronic report can provide links to further information. One tech-
nique, called drill down, allows the user to activate a “hot spot hyperlink” on the report,
which tells the system to display a lower-level report, providing more detailed information.
For example, Figure 15-16 contains a summary valuation report of inventory on hand. The
report provides a summary valuation for each product item. However, if the user clicks on the
hotlink for any product, a detailed report pops up with the list of inventory items, the quanti-
ties on hand, and the valuation for each inventory item.

Rocky Mountain OutfittersMonthly Sales Summary

Year 2010 Month January

Category Season Web Telephone Mail Total
 Code Sales Sales Sales Sales

Footwear All $ 289,323 $ 1,347,878 $ 540,883 $ 2,178,084

Men’s Clothing Spring $ 1,768,454 $ 2,879,243 $ 437,874 $ 4,691,484
Summer 213,938 387,121 123,590 724,649
Fall 142,823 129,873 112,234 384,930
Winter 2,980,489 6,453,896 675,290 10,109,675
All 1,839,729 4,897,235 349,234 7,086,198

 Totals $ 6,945,433 $14,747,368 $ 1,698,222 $ 23,391,023

Women’s Spring 387,432 $ 454,329 $ 123,849 965,610
Clothing Summer 89,322 187,987 34,879 312,188

Fall 78,398 99,873 56,890 235,161
Winter 782,982 899,490 278,389 1,960,861
All 778,394 678,987 328,122 1,785,503

 Totals $ 2,116,528 $ 2,320,666 $ 822,129 $ 3,359,323
Monthly Sales Detail

Year 2010 Month January Category Men’s Clothing Season Winter

Product Product Web Telephone Mail Total
 ID Description Sales Sales Sales Sales

RMO12987 Winter Parka $ 1,490,245 $ 3,226,948 $ 337,640 $ 5,054,833
RMO13788 Fur-Lined Gloves 149,022 322,695 33,765 505,482
RMO23788 Wool Sweater 596,097 1,290,775 135,058 2,021,930
RMO12980 Long Underwear 298,050 645,339 68,556 1,003,005
RMO32998 Fleece-Lined Jacket 447,075 1,258,079 100,271 1,805,425
Total $ 2,980,489 $ 6,743,836 $ 675,290 $ 10,394,615

Figure 15-16

An RMO summary report

with drill down to the

detailed report

Another variation of this hotlink capability lets the user correlate information from one
report to related information in another report. Most people are familiar with hotlinks from
using their Internet browsers. In an electronic report, hotlinks can refer to other information
that correlates or extends the primary information. This same capability can be very useful
in a business report, which, for example, links the annual statements of key companies in a
certain industry.

Another dynamic aspect of electronic reports is the capability to view the data from different
perspectives. For example, it might be beneficial to view sales commission data by region, by
sales manager, by product line, or by time period or to compare the data with last season’s data.
Instead of printing all these reports, you can use an electronic format to generate the different

drill down
to link a summary field to
its supporting detail and
enable users to view the
detail dynamically

C6696_15_CTP.4c 2/6/08 1:29 PM Page 589

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

views only as needed. Sometimes long or complex reports include a table of contents with
hotlinks to the various sections of the report. Some report-generating programs provide elec-
tronic reporting capability that includes all of the functionality found on pages on the Internet,
including frames, hotlinks, graphics, and even animation.

Graphical and Multimedia Presentation

The graphical presentation of data is one of the greatest benefits of the information age. Tools
that permit data to be presented in charts and graphs have made information
reporting much more user-friendly for printed and electronic formats. Information is being
used more and more for strategic decision making as businesspeople examine their data for
trends and changes. In addition, today’s systems frequently maintain massive amounts of
data—much more than people can review. The only effective way to use much of this data is
by summarizing and presenting it in graphical form. Figure 15-17 illustrates a bar chart and a
pie chart, which are two common ways to present summary data.

590 ♦ PART 3 SYSTEMS DESIGN TASKS

Men’s Clothing Sales - January 2010

Web Sales

Telephone Sales

Mail Sales

Men’s Clothing Sales by Season - January 2010

Web Sales

Telephone Sales

Mail Sales

7,000,000

6,000,000

5,000,000

4,000,000

3,000,000

2,000,000

1,000,000

0
Spring Summer Fall Winter

Figure 15-17

Sample bar chart and pie

chart reports

Multimedia outputs have become available recently as multimedia tool capabilities have
increased. Today it is possible to see a graphical, and possibly animated, presentation of the infor-
mation on a screen and have an audio description of the salient points. Combining visual and
audio output is a powerful way to present information. (Of course, video games are pushing the
frontier of virtual reality to include visual, audio, tactile, and olfactory outputs.)

As the design of the system outputs progresses, it is beneficial to evaluate the various
presentation alternatives. Reporting packages can be designed into the system to provide a
full range of reporting alternatives. Developers should carefully analyze each output report
to determine the objective of the output and to select the form of the output that is most
appropriate for the information and its use.

C6696_15_CTP.4c 2/6/08 1:29 PM Page 590

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 15 Designing System Interfaces, Controls, and Security ♦ 591

The previous examples illustrated some reports for RMO’s customer support system. RMO
has many options to present data to satisfy the needs of the different users. In Chapter 4, the
RMO organization chart showed that many upper and middle managers had an interest in
the new system. Each of the departments represented needs information from the system, and
in most cases, each will want the information to be presented in a format unique to its needs.
Barbara Halifax emphasized to her team the importance of this flexibility at various times
during the development of the outputs (see the accompanying memo).

FORMATTING REPORTS

With all of the choices available today for output format, system designers have more flexibility
in what they can offer users. But sifting through those options to provide workable reports can
be challenging. Analysts must keep three principles in mind during the design of output reports:

• What is the objective of the report?
• Who is the intended audience?
• What is the medium for presentation?

The importance of these principles cannot be overemphasized when designing reports. In
some instances users only need the reports to monitor progress. In others, however, the report
might be a critical element in a strategic decision. As a system designer, you should be sure you
understand who is going to use the report and how he or she is going to use it. Both the content
and the format of the report should be decided based on the audience and the use of the report.

C6696_15_CTP.4c 2/6/08 1:29 PM Page 591

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Without considering these factors, you could easily omit critical information or present it in an
unwieldy format.

Often designers must decide on the level of detail for the format of the report. It can be
tempting to produce reports that mirror the structure and format of the data in the database.
Newer systems, however, maintain a tremendous amount of detail in the database. Without
careful consideration, designers can easily produce reports that suffer from information over-
load. Information overload occurs when so much data is provided that it becomes difficult
for the user to find and focus on the information that is important. Many people have this
problem when searching the Internet—the search engine often returns an overwhelming
number of results for the search. Careful design and presentation are required to prevent the
same problem with output reports.

The format of the report is also important. Every report should have a meaningful title to
indicate the data content. The heading should also list both the date the report was produced
and a separate date indicating the effective date of the underlying information; sometimes the
two dates might be different. Reports should also be paginated. In earlier systems, when reports
were printed on continuous forms, page numbers were not as critical. With today’s sheet-fed
printers, however, it is easy for pages to be misplaced, and results can then be misinterpreted.

Labels and headings should be used to ensure the correct interpretation of the report data.
Charts should be clearly labeled with the identification of the axes and units of measure, and a
legend should be provided. In Figure 15-14, notice the headings and labels on the report,
which help to ensure that the reader does not misinterpret the data. Control breaks are used to
divide the data into meaningful pieces that can be easily referenced. Use of lines, boldfacing,
and different-sized fonts makes the report easy to read. Generally, report design is not difficult
if you remember that the objective of any report is to provide meaningful information, not just
data, and to provide it in a format that is easy to read.

Designers often assume that reports will be printed on standard stock paper. However,
that assumption might not be correct. As we just saw, electronic reports are also a very power-
ful method of producing output information, and the forms of electronic presentation are
becoming more and more diverse, ranging from standard computer screens to wireless
portable devices. Designers need to carefully consider whether output information will be
accessed from nonstandard devices and transmitted via limited-bandwidth channels.

DESIGNING INTEGRITY CONTROLS

Information system controls are mechanisms and procedures that are built into a system to
safeguard both the system and the information within it. Let’s describe a few scenarios to
illustrate the need for controls.

• A furniture store sells merchandise on credit with internal financing. An error was made
to a customer balance. How do we ensure that only a manager, someone with authority
to make adjustments to credit balances, can make the correction?

• A person in accounts payable uses the system to write checks to suppliers. How does the
system ensure that the check is correct and that it is made out to a valid supplier? How
does the system ensure that no one can commit fraud by writing checks to a bogus sup-
plier? How does the system know that a given payment has been authorized?

• Many companies now have internal LAN networks or intranets. How does a company protect
its sensitive data from being accessed by outsiders or even from disgruntled employees?

• Electronic commerce is expanding exponentially, and many companies are now provid-
ing e-commerce sites. How does a company ensure that the financial transactions of its
customers are protected and secure? How does a company make sure that its systems and
databases are protected from hackers who use the Internet access paths to break in?

592 ♦ PART 3 SYSTEMS DESIGN TASKS

C6696_15_CTP.4c 2/6/08 1:29 PM Page 592

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 15 Designing System Interfaces, Controls, and Security ♦ 593

• Many companies are now connected to the Internet to provide online access to
external employees, such as salespeople, or to customers and suppliers. How does a com-
pany safeguard its systems from viruses, worms, and other malicious attacks?

All of these situations involve common business and system activities. Because a com-
pany’s information is one of its most valuable assets, developers of a new system must con-
sider how to protect and maintain information integrity. As illustrated in Figure 15-18,
various locations must be protected with security measures and controls. Some of the con-
trols must be integrated into the application programs that are being developed and the data-
base that supports them. Other controls are part of the operating system and the network.
Generally, controls that are integrated into the application and database are called integrity
controls. The controls in the operating system and network are often referred to as security
controls. This section explains integrity controls. Later sections discuss security controls.

Output controls

Processing controls

Input controls

Network access security

Data encryption

Database controls

OS security

Internet
transport

Data

Operating
system

Browser

Application
programs

Figure 15-18

Points of security and

integrity controls

Usually when considering integrity controls, system developers focus on avoiding prob-
lems with the application systems and the employees who rightly have access to those sys-
tems. Thus, the primary focus is internal—inside the organization. The primary objectives of
integrity controls are to:

• Ensure that only appropriate and correct business transactions occur
• Ensure that the transactions are recorded and processed correctly
• Protect and safeguard the assets of the organization (including hardware, software, and

information)

The first objective, to ensure that only appropriate and correct business transactions occur,
focuses on the identification and capture of input transactions. Integrity controls must make
sure that all important business transactions are included—that is, that none are lost or miss-
ing and that no fraudulent or erroneous transactions are entered.

integrity control
mechanisms and
procedures that are built
into an application
system to safeguard
information contained
within it

C6696_15_CTP.4c 2/6/08 1:29 PM Page 593

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The second objective, to ensure that the transactions are recorded and processed correctly,
also relates to errors and fraudulent activities. Controls need to detect and alert users to data-entry
errors and system bugs that cause problems in processing and recording data. An example of a
fraudulent activity is a user who changes the dollar amount on an otherwise valid transaction.

The third objective, to protect and safeguard the assets of the organization, addresses loss of
information from computer crashes or catastrophes. It also includes protection of important
information on computer files that could be destroyed by a disgruntled employee or possibly
even a hacker.

Frequently, system developers are so focused on designing the system software itself that
they forget to develop the necessary controls. Because computer systems are so pervasive and
companies depend on information systems so heavily, a development project that does not
specifically include integrity controls is inviting disaster. The system will be subject to errors,
fraud, and deceptive practices, making it unusable. One of the primary control points for
ensuring correct data is at the point of data input.

INPUT INTEGRITY CONTROLS

Input integrity controls are used with all input mechanisms, from electronic devices to stan-
dard keyboard inputs. Input controls are an additional level of verification that helps reduce
errors on input data. For example, a system might need a certain amount of information for a
valid entry, but an input device cannot ensure that all the necessary fields have been entered.
An additional level of verification, a control, is necessary to check for completeness.

The old computer systems adage of “garbage in, garbage out” relates to input controls, in
which the objective is to reduce bad data within the system by limiting erroneous input.
Historically, the most common control method to ensure correct input was to enter data
twice. This technique, called keypunch and verify, was first developed for batch entry of large
amounts of data. One person would enter the data, and a second person would reenter it on
equipment that would then verify that the two inputs were the same. Today, that technique
is not used as much because many high-volume transactions are scanned for data. Online
systems also validate input as it is being entered. Here are the more common control
techniques in use today:

• Field combination controls review various combinations of fields to ensure that the cor-
rect data is entered. For example, on an insurance policy, the application date must be
prior to the date the policy is placed in force.

• Value limit controls check numeric fields to make sure that the amount entered is rea-
sonable. For example, the amount of a sale or the amount of a commission usually falls
within a certain range of values.

• Completeness controls ensure that all the necessary fields are completed. This check can
be executed as input occurs so that, depending on which fields are entered, additional
required fields must also be entered. For example, if a dependent is entered on an insur-
ance form, that person’s birthday must also be entered.

• Data validation controls ensure that numeric fields that contain codes are correct. For
example, bank account numbers might be created with a seven-digit field and a trailing
check digit to make an eight-digit account number. The check digit is calculated based
on the previous seven digits, and the system recalculates it as the data-entry person enters
the account number with the check digit. If results do not match, an input error has
occurred. Other data validation can be done online against internal tables or files. For
example, a customer number can be validated against the customer file at the time a new
order is entered. The systems designer can reduce the need for this type of control by
designing a system to obtain the data for a particular field from other information
already in the system.

594 ♦ PART 3 SYSTEMS DESIGN TASKS

field combination

control
an integrity control that
verifies the data in one
field based on data in
another field or fields

value limit control
an integrity control that
identifies when a value
in a field is too large or
too small

completeness

control
an integrity control to
ensure that all necessary
fields on an input form
have been entered

data validation

control
an integrity control to
validate the input data for
correctness and
appropriateness

C6696_15_CTP.4c 2/6/08 1:29 PM Page 594

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 15 Designing System Interfaces, Controls, and Security ♦ 595

DATABASE INTEGRITY CONTROLS

Most database management systems include integrity controls and security features that pro-
vide an additional layer of control. Five major areas of security and control can be imple-
mented at the database level:

• Access control
• Data encryption
• Transaction control
• Update control
• Backup and recovery protection

Access Controls

Access controls refer to the ability of a user to get access to the data. An operating system
typically applies security and access controls on a file-by-file basis. A DBMS can apply
these controls at a much finer level of detail. Controls can be defined on schema subsets
such as groups of related tables or objects, single tables or objects, or single fields or
attributes. For example, different controls might be applied to the name, Social Security
number, and salary fields of an employee table. Also, controls on a single field might differ
for read and write access.

A DBMS stores security access information within the schema and applies controls each
time data is read or written. When the DBMS enforces security controls, it automatically
enforces them for application programs that access the database. Some DBMSs rely on the
operating system to identify the user who is attempting to access data, which relieves the user
from having to identify himself or herself multiple times. Other DBMSs implement security
controls independently of the operating system.

Encryption

Encryption is used both for data within a database and the transmission of data, especially
over public carriers. Data within a database is normally encrypted with a single-key encryp-
tion method. More details on the various types of encryption are explained in the section on
security controls.

Transaction Controls

Transaction logging is a technique by which any update to the database is logged with audit
information such as user ID, date, time, input data, and type of update. The fundamental idea
is to create an audit trail of all updates to the database that can trace any errors or problems
that occur. The more advanced database systems—such as those that run on servers, worksta-
tions, and mainframes—include transaction logging as part of the DBMS software. However,
several smaller DBMSs, particularly those that run on personal computers, do not include this
capability, so design teams must add it directly to those applications.

Transaction logging achieves two objectives. First, it helps discourage fraudulent transac-
tions. If a person knows that every transaction is logged, that person is less apt to attempt a
fraudulent transaction. For example, if a person knows that her ID will be associated with
every check request, that person is not likely to request a bogus payment.

The second objective of a logging system is to provide a recovery mechanism for erro-
neous transactions. A mid-level logging system maintains the set of all updates. The system
can then recover from errors by “unapplying” the erroneous transactions. More sophisticated
logging systems can provide a “before” and “after” image of the fields that are changed by the
transaction, as well as the audit trail of all transactions. These sophisticated systems are typi-
cally used only for highly sensitive or critical data files, but they do represent an important
control mechanism that is available when necessary.

access control
an integrity control that
determines who has
access to a system and
its data

transaction logging
a technique whereby all
updates to a database
are recorded with the
information of who,
when, and how the
update was performed

C6696_15_CTP.4c 2/6/08 1:29 PM Page 595

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Update Controls

Database management systems are designed to support many application programs
simultaneously. Thus, several programs might want to access and update a record or field at
the same time. Update controls within a DBMS provide record locking to protect against mul-
tiple updates that might conflict with or overwrite each other.

In addition, some transactions that are applied to the database have multiple parts, such
as a financial transaction that must credit one account and debit a different account. Delaying
commitment of the update until all updates have been verified is a technique used to protect
the data from partial updates of these complex transactions.

Backup and Recovery

Backup and recovery procedures are designed to protect the database from all other types of
catastrophes. Many database management systems provide various levels of backup and
recovery. Partial or incremental backups are used to capture changes to the database during
the time periods between total backups. A total backup is used only periodically to archive a
complete copy of all the data. Frequently, this archive is placed in a secure off-site location to
protect it against catastrophic threats, such as fire, earthquake, or terrorist attacks.

Another popular security measure used for systems that rely on up-to-the-minute data is a
mirror database or mirror site. This technique completely duplicates the database and all
transactions as they occur. Obviously, this approach can be expensive, but it is becoming
more important as information becomes more and more critical to the daily operations of
organizations.

OUTPUT INTEGRITY CONTROLS

As already discussed, output from a system comes in various forms, such as output that is
used by other systems, printed reports, and data output on computer screens. The purpose of
output controls is to ensure that output arrives at the proper destination and is accurate, cur-
rent, and complete. It is especially important that reports with sensitive information arrive at
the proper destination and that they not be accessed by unauthorized parties.

Destination Controls

In the past, when most output was in printed form, a distribution control desk collected all the
printed reports from the nightly processing and distributed them to the correct departments and
people. This control desk was important because some of the reports had sensitive, confidential
information, and it was vital to keep those reports secure. Systems with good controls printed
destination and routing information on a report cover page along with the report. Today, busi-
nesses accomplish the same function of a control desk by placing printers in each of the locations
that need printed reports. It is still a good idea to print a cover sheet with destination and report
heading information. Destination codes and routing capabilities are included during the design
process to handle the distribution of reports to separate printing facilities. Controlling access to
these reports then becomes an issue of physical access. These types of controls are called destina-
tion controls.

Electronic output to other systems is usually provided in two forms: either an online
transaction-by-transaction output or a single data file with a batch of output transactions.
Each form has its own type of controls. If the system produces online transactions, it must
ensure that each transaction includes the routing codes identifying the correct destination.
Both systems need to work together to ensure that each transaction is sent and received
correctly. The output transaction will have verification codes and bits to permit the receiving
system to verify the accuracy of the transaction. The receiving system also responds with an
acknowledgment of a successful receipt of the transaction. Many of these controls are now
built into the network transmission protocols. However, during the design activities, the systems
designers need to be aware of the network and operating system capability and supplement it
where necessary to ensure that the data is received successfully.

596 ♦ PART 3 SYSTEMS DESIGN TASKS

destination

controls
integrity controls to
ensure that output
information is channeled
to the correct people

C6696_15_CTP.4c 2/6/08 1:29 PM Page 596

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 15 Designing System Interfaces, Controls, and Security ♦ 597

Controls for output data files carefully identify the contents, version, date, and time of the
file. Normally, a system produces a data file, either on magnetic tape or disk, and another sys-
tem must find that data file and use it. The major control issue is how to ensure that the sec-
ond system uses the correct data file. For example, to avoid serious problems, we want to
make sure that Friday’s transactions aren’t run twice. Or, if by some processing quirk, two data
files are produced for the same day—one for the first half of the day and another for the sec-
ond—the system must use both data files. Or, if the second system had processing errors and
needs to be rerun, it must be able to find the correct file to use on its rerun. Controls for this
situation generally have special beginning and ending records that contain date, time, ver-
sion, record counts, dollar control totals, processing period, and so forth. During systems
design, provision must be made to accumulate the appropriate totals and to produce the
necessary control records.

Destination controls for computer screen output are not as widely used as those for
printed reports. Normally, the previously discussed user access controls manage the availabil-
ity of information on computer screens. In some instances, however, destination controls
limit what information can be displayed on which terminal. This extra safeguard is used pri-
marily for military or other systems that house computer terminals in secure areas and pro-
vide access to the system’s information to anyone who has access to the area. The design of
these systems requires close coordination between the application program and the network
security control system.

Completeness, Accuracy, and Correctness Controls

The completeness, accuracy, and correctness of output information are a function primarily
of the internal processing of the system rather than any set of controls. System developers
ensure completeness and accuracy by printing control fields on the output report. For example,
every report should have a date and time stamp, both for the time the report was printed and
for the date of the underlying data. Frequently, they are the same, but not always, especially
when a report is reprinted because of a previous error. The following items are controls that
should be printed on reports:

• Date and time of report printing
• Date and time of data in the report
• Time period covered by the report
• Beginning header with report identification and description
• Destination or routing information
• Pagination in the form “page __ of __”
• Control totals and cross footings
• An “End of Report” trailer
• The report version number and version date (such as those for special printed forms)

INTEGRITY CONTROLS TO PREVENT FRAUD

The preceding sections have identified several types of integrity controls that support the three
control objectives. Many of those techniques are focused on preventing errors and protecting
the system from foreign intrusion. However, an equally serious problem is the use of the sys-
tem by authorized people to commit fraud against an organization.

Fraud is a problem that is reaching epidemic proportions in the United States and
around the world. Almost every week we see newspaper articles describing fraud and other
white-collar crime. The economic losses caused by fraudulent activity around the world are
staggering. These losses reach into the billions of dollars and far exceed those from violent
and personal crimes. In the last few years, several major corporations have been forced into
bankruptcy or closure due to the fraudulent behavior of key executives. Obviously, software
and system controls will not completely eliminate fraud. However, system developers
should be aware of the fundamental elements that make fraud possible and incorporate

C6696_15_CTP.4c 2/6/08 1:29 PM Page 597

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

system controls to combat it. The controls that we discussed previously—input controls,
database controls, and output controls—are critical components in the battle against fraud,
but several additional techniques should be considered in systems design to further
increase protection.

Research into the perpetration of fraud indicates that three conditions are present in
almost all fraud cases:

• Personal pressure, such as the desire to maintain an extravagant lifestyle
• Rationalization, such as a person’s thoughts that “I will repay this money”
• Opportunity, such as unverified cash receipts

The objective of integrity controls is to reduce or eliminate the opportunity for fraud by hav-
ing adequate manual controls and automated records of money and assets. Control of fraud
requires both manual procedures and computer integrity controls. Neither component is suffi-
cient by itself to reduce the opportunities for fraud. System developers need to work closely with
business users who are knowledgeable about accounting principles to prevent fraud.

Sometimes system developers might think that integrity controls are not necessary because
the system in development is not a financial or accounting system. However, an opportunity for
fraud exists in almost every business system. Because most business systems track an organiza-
tion’s assets, someone could manipulate those assets, writing checks for incorrect amounts or to
fictitious parties. Hence, almost every system requires some type of integrity controls.

Figure 15-19 contains several of the more important factors that increase the risk of fraud.
This list is not comprehensive, but it does provide a foundation from which developers can
design a computer system that reduces the opportunity for fraud. As a system developer, you
should include discussions both with your users and within the project teams to ensure that
adequate controls have been included to reduce fraud.

598 ♦ PART 3 SYSTEMS DESIGN TASKS

Factors affecting fraud risk Techniques to reduce risk

Separation of duties Design separate electronic forms, with separate access controls,
for request, approval, and generation of expenditures.

Inadequate audit trails Include transaction logging.
Avoid, or very tightly control, manual override capability that
circumvents logs.

Inadequate records Implement a comprehensive database with sufficient detail
and logs.

Inadequate monitoring Include manual procedures and automated routines to monitor
patterns and out-of-bound conditions.
Include exception reports.
Implement third-person audit capability.

Easily removable assets Include an easy-to-use capability to cross-check physical counts
with automated records.

Inadequate security system Supplement operating system security features with additional
program and data-level security.
Include automatic shutdown and lockup features.
Include routines to analyze access patterns.

Figure 15-19

Fraud risks and

prevention techniques

Source: Information in

the table was provided by

Dr. Marshall Romney of

the School of Accountancy

and Information Systems

at Brigham Young

University

Now that we have an overview of input and output integrity controls, we turn our attention
to security controls.

C6696_15_CTP.4c 2/6/08 1:29 PM Page 598

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 15 Designing System Interfaces, Controls, and Security ♦ 599

DESIGNING SECURITY CONTROLS

Although the objective of security controls is to protect the assets of an organization from all threats,
as indicated earlier, the primary focus is generally on external threats. In addition to the objectives
enumerated earlier for integrity controls, security controls also have the following two objectives:

• Maintain a stable, functioning operating environment for users and application
systems (usually 24 hours a day, seven days a week).

• Protect information and transactions during transmission outside the organization
(public carriers).

The first objective, to maintain a stable operating environment, focuses on security mea-
sures to protect the organization’s systems from external attacks, such as from hackers, viruses,
worms, and message overloads. Most organizations today have gateways between their inter-
nal systems and the Internet. Every time someone in an organization sends a communication
to or receives one from the Internet, there is the potential for a security violation and for
undesirable access that could disrupt the internal systems. So, eliminating and controlling
any undesirable access help avoid disruption of the system.

Be prepared to answer this question every time your system project is
discussed with management: “Are you sure the company will be protected
from all threats when this system is operating?"

BEST PRACTICE

The second objective, to protect transactions during transmission, focuses on the infor-
mation that is sent or received via the Internet. More and more organizations utilize the
Internet as a portal to their customers and to their suppliers. After a transaction is sent out-
side the organization, it could be intercepted, destroyed, or modified. So, security controls
use techniques to protect data while it is in transit from the source to the destination.

Security controls can be implemented within different types of software, including the network
and computer operating system, the database management system, or the application programs.
The most common security control points are network and computer operating systems because
they exercise direct control over assets such as files, application programs, and disk drives. All mod-
ern operating systems contain extensive security features that can identify users, restrict access to
files and programs, and secure data transmission among distributed software components.
Operating system security is the foundation of security for most information systems.

On some occasions, developers might implement security controls directly within appli-
cation software. Developers can define their own security controls over individual data items
or records when data is stored in files instead of a database. Developers can also implement
security controls to prevent unauthorized users from performing certain functions such as
deleting existing data or creating backup copies on removable storage media.

Most developers avoid implementing security controls within application software
because of the complexity and importance of security functions. Most operating system and
DBMS developers have a large programming staff dedicated exclusively to developing and
maintaining security software. It is difficult for application developers to dedicate sufficient
resources to implement system security controls correctly and fully. Thus, security-related
implementation tasks in a typical information system development project are usually limited
to configuring security software in the underlying operating system or DBMS.

SECURITY FOR ACCESS TO SYSTEMS

Modern operating systems, networking software, and Internet access all need implemented
control mechanisms. These mechanisms can be used to control access to any resource managed

security control
mechanisms usually
provided by the operating
system or environment to
protect the data and
processing systems from
malicious attack

C6696_15_CTP.4c 2/6/08 1:29 PM Page 599

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

by the operating system or network—including hardware, application programs, and data files.
System access controls are mechanisms that are established to restrict what portions of

the computer system a person can use. This category includes controls to limit access to cer-
tain applications or functions within an application, restrict access to the computer system
itself, and limit access to certain pieces of data.

With proper design and implementation, an information system can use access control
functions embedded in system software. The advantage to this approach is that a consistent
set of access controls is then applied to every resource on a hardware platform or network.
Thus, the systems designer can implement a single access control scheme and apply it to every
resource or information system.

The systems designer can also add controls over and above those already provided by sys-
tem software. However, designing and implementing effective application-based access con-
trols require technical expertise. Operating system and network software developers expend
considerable energy and resources to develop reliable and efficient access controls, and it is
difficult and expensive for a typical organization to duplicate these efforts. For these reasons,
most information systems build on the access control already within system software.

Types of Users

System developers must consider different types of users when designing access controls.
Figure 15-20 illustrates various types of users and the access that is appropriate for each. The
following paragraphs explain the types of system access available to users.

600 ♦ PART 3 SYSTEMS DESIGN TASKS

Security system

Internet

Data

Plotter

Hackers Former employees

Suppliers
Internet

customers

ClerksSystem
programmers

System
administrators

Managers

Registered usersRegistered users

Unauthorized users

Privileged users

Figure 15-20

Users and access roles

to computer systems

C6696_15_CTP.4c 2/6/08 1:29 PM Page 600

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 15 Designing System Interfaces, Controls, and Security ♦ 601

To begin development of access controls, designers first must identify and consider all
three of these user categories: unauthorized users, registered users, and privileged users.
Unauthorized users are people who are not allowed access to any part or functions of the
system. Such users include employees who are prohibited from accessing the system, former
employees who no longer are permitted to access the system, and outsiders such as hackers
and intruders. Controls must be able to identify and exclude access from these people.

Registered users are those who are authorized to access the system. Normally, various lev-
els of registered users are set up depending on what they are authorized to view and update.
The different levels of access are defined during the design of the new system. For example,
some users might be allowed to view data but not update it, and other users can update only
certain data fields. Some screens and functions of the new system might be hidden from other
levels of registered users. The important point for systems designers to recognize is that there
might be multiple levels of registered users. Authorization is the process of determining
whether a user is permitted to access a specific resource for a particular purpose. In other
words, it is the process of deciding whether a user should be a registered user. The security
system stores an access control list for each protected resource. An access control list is a list
of users or user groups that can access a resource and the permitted access type(s).

Privileged users include people who have access to the source code, executable program,
and database structure of the system. These people include system programmers, application
programmers, operators, and system administrators, and they might also have differing levels
of security access. Usually, system programmers have full access to all components of the sys-
tems and data. Application programmers have access to the applications themselves but often
not to the secure libraries and data files used for the systems in production. System adminis-
trators have access to all functions of the system and can control and establish the various lev-
els of registration and register users. A system administrator also usually has software
programs to help control access and to monitor access attempts.

Passwords and Smart Cards

Authentication is the process of identifying users (that is, the authorized or registered users)
who request access to sensitive resources. Authentication is the basis of all security because
security controls are useless unless the user is correctly identified. In many operating systems,
authentication requires the user to enter a user name and password. The user is authenticated
if the password he or she enters matches the password stored in the security database.

Two techniques are used to define passwords. The computer can randomly generate and
assign passwords, or each user can define his or her own password. There are advantages to
both techniques. The first creates passwords that are usually longer and more random, but
they tend to be hard for users to remember. Most users would have a hard time trying to
remember a password such as a3x7869bts21. User-developed passwords are easier to remem-
ber, but they are usually not as complex and, therefore, not quite as secure. Some restrictions
can be placed on the syntax of the password to ensure at least a minimum level of security.

Of course, one of the problems with passwords is remembering what they are. It is not
uncommon for heavy computer users to have 5 or even 10 different passwords for different
systems that they access. One alternative is to use the same password for all systems, but if
someone determines the password, all the systems are compromised. Most often, the security
system should be organized so that all resources can be accessed with the same unique
identifier and password combination. In other words, only one user ID/password combina-
tion should be required for access to the different systems throughout the organization. When
users have to remember different IDs and passwords to access different systems, they often
write them down and post them near the computer. Obviously, this practice defeats the
purpose of user verification security.

A smart card is a computer-readable plastic card with a small amount of stored security
data that can be read by a card scanner in much the same way a credit or debit card can be
read at a supermarket checkout counter. The smart card stores an encrypted version of the
user’s password, fingerprint, retinal scan, or voice characteristics. To authenticate himself or

unauthorized user
a person who does not
have authorized access
to a system

registered user
a user who is registered
or known to the system
and is authorized to
access some part of it

authorization
the process of
determining whether
a user is permitted to
have access to the
system and data

access control list
the list of users who have
rights to access the
system and data

privileged user
a user who has special
security access
privileges to a system

authentication
the process of identifying
a user to verify that he
can have access to the
system

smart card
a computer-readable
plastic card with security
information embedded
within it

C6696_15_CTP.4c 2/6/08 1:29 PM Page 601

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

herself, the user scans the card and then enters the password or submits to a fingerprint, reti-
nal, or voice scan. Such a system enhances security because the user must possess both the
card and the appropriate identifying information to be authenticated. Only the security sub-
system knows the key, which prevents potential intruders from using cards with altered data.

A final security step is to make sure the system keeps a record of attempted logons, especially
unsuccessful ones. An unsuccessful logon might simply indicate that the user mistyped or forgot a
password, but it might also indicate an attempted breach of security, which should be investigated.

Biometric Devices

Authentication can also be based on other forms of personal identification, including keystroke
patterns, fingerprints, retinal scans, and voice characteristics. When a user enters a password or
other keystroke sequence, the timing and force of each keystroke are unique. Some security sys-
tems use both the password and the keystroke pattern to authenticate the user, which prevents
someone with a stolen password from accessing system resources.

Many companies are now experimenting with a new form of security based on biometric
devices. The principle behind use of a biometric device is that the person himself becomes
the password or gateway into a secure system. These more sophisticated security systems can
scan fingerprints, retinal blood vessels, or voices, which are unique for every person. With the
advent of very small computer chips with very high memory densities and logic circuitry, bio-
metric devices can be built into almost any of the normal hardware components of a com-
puter. In addition, the complex logic necessary to do sophisticated pattern matching of
fingerprints, hand vein patterns, retinas, iris patterns, or complete facial patterns can be
located right in the micro-sized biometric device itself.

Biometric fingerprint devices are now being embedded in such components as a com-
puter mouse, computer keyboard, and small touch pads. Other biometric scanners, such as
very small cameras, can be embedded in the computer monitor. Such a device might do an
iris or facial scan of the person looking at the monitor. Figure 15-21 illustrates a computer
mouse with an embedded touch pad to test fingerprints. Other types of mouse devices have
the sensor on the side so that the thumb must be placed on it and authorization can be per-
formed before every mouse action.

Security based on biometric devices can also be multilevel. Security verification can be
done when the user first tries to log on. Higher levels of security can later be activated within
a given program to obtain additional authorization to access specific forms or database
records. Obviously, each individual must be authorized and appropriate information stored
for the level of security allowed.

DATA SECURITY

In addition to the need for controlling access to an organization’s systems and internal net-
work, it is frequently important to make the data itself secure. For example, user IDs and pass-
words are important information that must be secret. Frequently, the password information
is even kept secret from the system administrators. They can assign a new password to a user,
but they cannot read or access the current password. So, if a user forgets her password, the
administrator assigns a new one.

Many other types of files are also kept confidential. Some examples include files that contain
the following:

• Financial information
• Credit-card numbers, bank account numbers, payroll information, and other personal data
• Strategies and plans for products and other mission-critical data
• Government and sensitive military information

Some operating systems, especially UNIX and its derivations, have built-in security for
each file in the system. Each UNIX file has security corresponding to three types of users: the

602 ♦ PART 3 SYSTEMS DESIGN TASKS

Figure 15-21

Biometric mouse

C6696_15_CTP.4c 2/6/08 1:29 PM Page 602

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 15 Designing System Interfaces, Controls, and Security ♦ 603

owner of the file, other members of the owner’s workgroup, and all other users. The security for
each user is also further divided into three levels: read access, update (create, update, and delete)
access, and execute access. Execute access determines whether the file is executable (such as an
.exe file in Windows), and the security level determines who is allowed to execute the file.

Data that resides on an internal system needs to be protected, but data that is being trans-
mitted outside the organization is especially subject to snooping and even modification. With
the increasing acceptance of electronic communications, more and more organizations are
transmitting and receiving transactions via the Internet. On the sales and distribution side of
business, customers are viewing catalogs, ordering products, making payments, and tracking
shipments via the Internet. On the supply side, organizations are ordering inventory, moni-
toring receivables, sending purchase orders, and making financial transactions through the
Internet. Because this information is being transmitted via the public Internet, the raw data is
available to anybody who has tools to listen and intercept information packets.

The primary method of maintaining the security of data, both on internal systems and
transmitted data, is by encrypting the data. Encryption is the process of altering data so that
unauthorized users cannot view it. Decryption is the process of converting encrypted data
back to its original state. Data stored in files or a database on hard drives or other storage
devices can be encrypted to protect it against theft. Data sent across a network can be
encrypted to prevent eavesdropping or theft during transmission. A thief or eavesdropper who
steals or intercepts encrypted data receives a meaningless group of bits that are difficult or
impossible to convert back into the original data.

An encryption algorithm is a complex mathematical transformation that encrypts or
decrypts binary data. An encryption key is a binary input to the encryption algorithm—typically
a long string of bits. The encryption algorithm varies the data transformation based on the
encryption key so that data can be decrypted only with the same key or a compatible decryp-
tion key. Many encryption algorithms are available, and a few, including Data Encryption
Standard (DES) and several algorithms developed by RSA Security, are widely deployed gov-
ernmental or Internet standards. An encryption algorithm must generate encrypted data that
is difficult or impossible to decrypt without the encryption key. Decryption without the key
becomes more difficult as key length is increased. Both sender and receiver must use the same
or compatible algorithms.

Figure 15-22 is an example of symmetric key encryption, where the same key encrypts and
decrypts the data. A significant problem with symmetric key encryption is that both sender and
receiver use the same key, which must be created and shared in a secure manner. Security is
compromised if the key is transmitted over the same channel as messages encrypted with the
key. Also, sharing a key among many users increases the possibility of key theft.

Secret keySecret key

Person 1 Person 2

Same key

InternetMessage:
How are you?

Message:
How are you?

Message:
wp93nznieh?

Message:
wp93nznieh?

Figure 15-22

Symmetric key encryption

encryption
the process of altering
data so that it is
unreadable by
unauthorized users

decryption
the process of converting
encrypted data back into
a readable format

encryption

algorithm
a complex mathematical
formula and process that
encrypts or decrypts data

encryption key
a binary field that the
encryption algorithm uses
to transform the data

symmetric key

encryption
an encryption process
that uses the same key to
encrypt and to decrypt
the data

C6696_15_CTP.4c 2/6/08 1:29 PM Page 603

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Asymmetric key encryption uses different but compatible keys to encrypt and decrypt data.
Public key encryption is a form of asymmetric key encryption that uses a public key for encryp-
tion and a private key for decryption. The two keys are like a matched pair. After information is
encrypted with the public key, it can be decrypted only with the private key. It cannot be
decrypted with the same public key that encrypted it. Organizations that use this technique
broadcast their public key so that it is freely available to anybody who wants it. Then when
some entity—for example, someone who wants to order something from the vendor—wants to
transmit a secure message to a vendor, that customer reads the vendor’s public key from a pub-
lic source such as a Web site. The customer encrypts the message with the public key and sends
the message to the vendor. The vendor decrypts the message with the private key. Because no
one else has the private key, no one else can decrypt the message.

Some asymmetric encryption methods can encrypt and decrypt messages in both directions.
That is, in addition to encrypting a message with the public key that can be decrypted with the
private key, an organization can also encrypt a message with the private key and decrypt it with
the public key. Notice that both keys must still work as a pair, but the message can go forward
or backward through the encryption/decryption pair. This second technique is the basis for digi-
tal signatures and certificates, which are explained in the next section. Figure 15-23 illustrates an
asymmetric key encryption transmittal.

604 ♦ PART 3 SYSTEMS DESIGN TASKS

Pe r son 1 Pe r son 2

Get public ke y Br oadcast public ke y

Public ke y
of per son #2

Priv ate ke y
of per son #2

Message :
xito w7ei12q

Message :
xito w7ei12q

Internet Message :
Ho w are y ou?

Message :
Ho w are y ou?

=yes=

Figure 15-23

Asymmetric key

encryption

You might ask, “How can an encryption algorithm go one direction (with one key) and
not be able to come back the same way (be decrypted with the same key)?” The mathematics
of this type of algorithm is beyond the scope of this text. However, you should be able to
understand a simple example: multiplication and factoring. If someone gives you two or three
numbers, even big numbers, and asks you to multiply them, you can do that fairly easily.
However, if someone gives you one very big number and asks you to factor it (that is, find the
numbers that were originally multiplied to get that number), you would not be able to do
that easily. It would take you a long time. Algorithms based on this one-directional mathe-
matical characteristic form the basis of many asymmetric key encryption routines.

asymmetric key

encryption
an encryption process
that uses one key to
encrypt and a different
key to decrypt the data

public key

encryption
an asymmetric key
method in which one key
is publicized and the
other key is kept private

C6696_15_CTP.4c 2/6/08 1:29 PM Page 604

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 15 Designing System Interfaces, Controls, and Security ♦ 605

DIGITAL SIGNATURES AND CERTIFICATES

The encryption of messages is an effective technique to enable a secure exchange of informa-
tion between two entities who have appropriate keys. However, how do you know that the
entity on the other end of the communication is really who you think it is? A digital signature
is a technique in which a document is encrypted using a private key to verify who wrote the
document. If you have the public key of an entity, and that entity sends you a message with its
private key, you can decode it with the public key. You know that the party is the one you want
to communicate with because that entity is the only one who can encode a message with that
private key. The encoding of a message with a private key is called digital signing.

Taking the example one step further, you can ask the question, “How do I know that the
public key I have is the correct public key and not some counterfeit key?” In other words,
maybe someone is impersonating another entity and is passing out false public keys to be
able to intercept encoded messages (such as financial transactions) and steal information. In
essence, the problem is ensuring that the key that is purported to be the public key of some
institution is, in fact, that institution’s public key. The solution to that problem is a certificate.

A certificate, or digital certificate, is an institution’s name and public key (plus other
information such as address, Web site URL, and validity date of the certificate) that is
encrypted and certified by a third party. Many third parties are very well known and widely
accepted certifying authorities, such as VeriSign or Equifax. In fact, they are so well known
that their public keys are built right into Netscape and Microsoft Internet Explorer. As shown in
Figure 15-24, you can know that the entities with whom you are communicating are, in fact,
who they say they are and that you do have their correct public key.

1. Client sends request to
connect to secure server

3. Client verifies certificate
signer is a trusted certifying
authority and authenticates
server

4. Client generates a secret
key to be used for the session
and encrypts it with the
server’s public key

Client
Secure Server

6. Server uses its private key
to decrypt secret session key

2. Server sends signed digital certificate
(containing server’s public key)

7. Client and server communicate
securely using the secret session key

5. Client sends encrypted secret session key

Figure 15-24

Using a digital certificate

An entity who wants a certificate with its name and public key goes to a certifying author-
ity and buys a certificate. The certifying authority encrypts the data with its own private key
(signs the data) and gives the data back to the original entity. Now when someone, such as a
customer, asks the entity for its public key, it sends the certificate. The customer receives the
certificate and opens it with the certifying authority’s public key. Again, the certifying author-
ity is so well known that its public key is built into everyone’s browser and is essentially
impossible to counterfeit. Now the customer can be sure that he or she is communicating
with the original entity and can do so with encrypted messages using the entity’s public key.

A variation of this scenario occurs when the buyer and seller transmit their certificates to
one another. Each participant can decrypt the certificate using the certifying authority’s public

digital signature
a technique in which a
document is encrypted
using a private key to
verify who wrote the
document

certificate, or

digital certificate
a text message that
is encrypted by a
verifying authority and
used to broadcast an
organization’s name
and public key

certifying

authority
a well-known third party
that sells digital
certificates to
organizations

C6696_15_CTP.4c 2/6/08 1:29 PM Page 605

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

key to extract information such as name and address. However, to ensure that the public key
contained within the certificate is valid, the certificates are transmitted to the certifying author-
ity for verification. The authority stores certificate data, including public keys, within its data-
base and verifies transmitted certificates by matching their content against the database.

SECURE TRANSACTIONS

Secure electronic transactions require a standard set of methods and protocols that
address authentication, authorization, privacy, and integrity. Netscape originally developed
the Secure Sockets Layer (SSL) to support secure transactions. SSL was later adopted as an
Internet standard and renamed Transport Layer Security (TLS), though the original name,
SSL, is still widely used.

TLS is a protocol for a secure channel to send messages over the Internet. The sender and
receiver first establish a connection using ordinary Internet protocols and then ask each other
to create a TLS connection. The sender and receiver then verify each other’s identity by
exchanging and verifying identity certificates as explained previously. At this point, either or
both have exchanged public keys, so they can send secure messages. Because asymmetric
encryption is quite slow and difficult, the two entities agree on a protocol and encryption
method, usually a single-key encryption method. Of course, all of the messages to establish a
secure connection are sent using the public key/private key combination. After the encryption
technique has been decided and the secret, single key has been transmitted, all subsequent
transmission is done using the secret, single key.

IP Security (IPSec) is a newer Internet standard for secure message transmission. IPSec is
implemented at a lower layer of the network protocol stack, which enables it to operate with
greater speed. IPSec can replace or complement SSL. Both protocols can be used at the same
time to provide an extra measure of security. IPSec supports more secure encryption methods
than SSL, but these methods are not yet fully deployed on the Internet.

Secure Hypertext Transport Protocol (HTTPS or HTTP-S) is an Internet standard for
securely transmitting Web pages. HTTPS supports several types of encryption, digital signing,
and certificate exchange and verification. All modern Web browsers and servers support
HTTPS. It is a complete approach to Web-based security, though security is enhanced when
HTTPS documents are sent over secure TLS or IPSec channels.

Security is an important consideration in the development and deployment of informa-
tion systems in today’s networked environment. Fortunately, many tools and programs are
available and can be integrated into new systems as part of the total solution. System devel-
opers need to be aware of the need to include security measures and to be familiar with the
latest tools and techniques.

606 ♦ PART 3 SYSTEMS DESIGN TASKS

Secure Sockets

Layer (SSL)
a standard protocol to
connect and transmit
encrypted data

Transport Layer

Security (TLS)
an updated version of SSL

Secure Hypertext

Transport

Protocol (HTTPS

or HTTP-S)
an Internet standard for
transmitting Web pages
securely

C6696_15_CTP.4c 2/6/08 1:29 PM Page 606

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 15 Designing System Interfaces, Controls, and Security ♦ 607

SUMMARY
The chapter began with a discussion of identifying and then designing system interfaces. System interfaces
include all inputs and outputs except those that are part of the interactive user interface.

Designing the inputs to the system is a three-step process:

• Identify the devices and mechanisms that will be used to enter input.
• Identify all system inputs and develop a list with the data content of each.
• Determine what kinds of controls are necessary for each system input.

To develop a list of the inputs to the system, designers use diagrams that were developed during the
analysis and application design activity. For the traditional structured approach, DFDs, data flow definitions,
and structure charts are used. For the object-oriented approach, sequence diagrams are the primary source of
information, but the design class diagram is used to ensure that designers provide the correct data fields and
the correct methods that produce the outputs.

The process to design the outputs from the system consists of the same steps as for input design. For out-
put design, the DFDs and sequence diagrams are used to identify data flows and messages that exit the sys-
tem. New technology provides numerous ways to present output with charts, graphs, and multimedia. Before
deciding on output media, the designer should carefully consider the intended audience and the purpose of
the output.

This chapter next discussed the concepts of integrity controls in systems. The objectives of integrity
controls are to:

• Ensure that only appropriate and correct business transactions occur
• Ensure that the transactions are recorded and processed correctly
• Protect and safeguard the assets (including information) of the organization

Integrity controls are concerned with defining who has access to the various components of the system
and the database. Access controls identify various classifications of users—such as unauthorized users, regis-
tered users, and privileged users—to ensure that systems are safeguarded. Additional integrity controls are
concerned with reducing errors, preventing fraud, and maintaining the correctness of the data in the system.

The last section of the chapter introduced the basic concepts of security for systems that have access to public networks (primarily the
Internet). Security is becoming more and more important, and various techniques should be considered when developing new information
systems. The underlying technology in many of the security approaches is based on public key systems that have public and private key
components. Encryption and public key systems are the basis for digital signatures, digital certificates, secure connection, and secure trans-
action implementations.

KEY TERMS

access control, p. 595

access control list, p. 601

ad hoc reports, p. 583

asymmetric key encryption, p. 604

authentication, p. 601

authorization, p. 601

certificate, or digital certificate, p. 605

certifying authority, p. 605

completeness control, p. 594

control break report, p. 588

data validation control, p. 594

decryption, p. 603

destination controls, p. 596

detailed report, p. 585

digital signature, p. 605

drill down, p. 589

encryption, p. 603

encryption algorithm, p. 603

encryption key, p. 603

exception report, p. 585

executive report, p. 586

external output, p. 586

field combination control, p. 594

integrity control, p. 593

internal output, p. 586

privileged user, p. 601

public key encryption, p. 604

registered user, p. 601

Secure Hypertext Transport Protocol (HTTPS or HTTP-S), p. 606

Secure Sockets Layer (SSL), p. 606

security control, p. 599

smart card, p. 601

C6696_15_CTP.4c 2/6/08 1:29 PM Page 607

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

608 ♦ PART 3 SYSTEMS DESIGN TASKS

summary report, p. 585

symmetric key encryption, p. 603

transaction logging, p. 595

Transport Layer Security (TLS), p. 606

turnaround document, p. 586

unauthorized user, p. 601

value limit control, p. 594

REVIEW QUESTIONS

1. What does XML stand for? Explain how XML is similar to

HTML. Also discuss the differences between XML and HTML.

2. Compare the strengths and weaknesses of using a DFD to

define inputs with using a system sequence diagram to

define inputs. Which do you like the best? Why?

3. Explain the system boundary. Why was one used on a DFD

but not on a system sequence diagram?

4. What additional information does the structure chart pro-

vide that is not obtained from a DFD in the development of

input forms?

5. How are the data fields identified using the traditional

structured approach?

6. How are the data fields identified using UML and the

object-oriented approach?

7. Explain four types of integrity controls for input forms.

Which have you seen most frequently? Why are they

important?

8. What protection does transaction logging provide? Should

it be included in every system?

9. What are the different considerations for output screen

design and output report design?

10. What is meant by drill down? Give an example of how you

might use it in a report design.

11. What is the danger from information overload? What

solutions can you think of to avoid it?

12. Describe what kinds of integrity controls you would recom-

mend to place on all output reports. Why?

13. What are the objectives of integrity controls in information

systems? In your own words, explain what each of the

three objectives means. Give an example of each.

14. What are the four types of input controls used to reduce

input errors? Describe how each works.

15. Explain what is meant by update controls for a database

management system.

16. What is the basic purpose of transaction logging?

Microsoft Access does not have automatic transaction log-

ging. Is this a deficiency, or is it not really an important

consideration in database integrity?

17. On a printed output report, what is the difference between

the date the report was printed and the date of the data?

18. What are the two primary objectives of security controls?

19. Explain the three categories of user access privileges. Is

three the right number, or should there be more or fewer

than three? Why or why not?

20. How does single-key (symmetric) encryption work? What

are its strengths? What are its weaknesses?

21. How does public key (asymmetric) encryption work? What

are its strengths? What are its weaknesses?

22. What is a digital certificate? What role do certifying

authorities play in security systems?

23. What is a digital signature? What does it tell a user?

C6696_15_CTP.4c 2/6/08 1:29 PM Page 608

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 15 Designing System Interfaces, Controls, and Security ♦ 609

THINKING CRITICALLY

1. The chapter described various situations that emphasized

the need for controls. In the first scenario presented, a fur-

niture store sells merchandise on credit. Based on the

descriptions of controls given in the chapter, identify the

various controls that should be implemented in the system

to ensure that corrections to customer balances are made

only by someone with the correct authorization.

2. In the second scenario illustrating the need for controls, an

accounts payable clerk uses the system to write checks to

suppliers. Based on the information in the chapter, what

kinds of controls would you implement to ensure that

checks are written only to valid suppliers, that checks are

written for the correct amount, and that all payouts have

the required authorization? How would you design the

controls if different payment amounts required different

levels of authorization?

3. The executives of a company have asked for a special deci-

sion support system report on corporate financials. They

want this report to be based on actual financial data for

the past several years. The report is to have several input

parameters so that the executives can do “what-if” analy-

sis of future sales based on past performance. They want

the report to be viewable online and in printed form.

What kinds of controls would you implement to ensure

that (1) only authorized executives can request the

report, (2) the executives understand the basis (past and

projected data) for a given report, and (3) executives are

aware of the sensitive nature of the information and treat

it as confidential?

4. A payroll system has a data-entry subsystem that is used to

enter time card information for hourly employees. What

kinds of controls would you implement to ensure that the

data is correct and error-free? What other controls would

you include to ensure that a data-entry clerk (who might

be a friend of an employee) does not inflate the hours on

the time card (after it was approved by a supervisor)?

5. Based on the DFD (Figure 10-26) given in Chapter 10,

“Thinking Critically” problem 3, Add class to schedule, and

the structure chart you developed there, identify the set of

input and output screens for the system. Include the data

fields that will be required.

6. Based on the DFD (Figure 10-27) given in Chapter 10,

“Thinking Critically” problem 5, Special-order purchasing,

and the structure chart you developed there, identify the

set of inputs and outputs required. Develop the list of data

fields for each screen and report.

7. A university library system is depicted in Figure 15-25, with

partial system sequence diagrams for two use cases, Check

out a book and Return a book. Based on the figure, con-

struct four tables showing inputs and outputs, as shown in

Figures 15-10 and 15-12: (1) Inputs for the Library System,

(2) Outputs for the Library System, (3) Inputs for the

Student Record System, and (4) Outputs for the Student

Record System.

8. You work for a grocery chain that always has many cus-

tomers in the stores. To facilitate and speed checkout, the

company wants to develop self-service checkout stands.

Customers can check their own groceries and pay by credit

card or cash. How would you design the checkout register

and equipment? What kinds of equipment would you use

to make it easy and intuitive for the customers, make sure

that prices are entered correctly, and ensure that cash or

credit-card payments are done correctly? In other words,

what equipment would you have at the checkout station?

In your solution, you can use existing state-of-the-art solu-

tions or invent new devices.

C6696_15_CTP.4c 2/6/08 1:29 PM Page 609

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

610 ♦ PART 3 SYSTEMS DESIGN TASKS

Library Clerk

verifyStudent (studentID)

verifyStudent (studentID)

:Library System :StudentRecordSystem

studentID, name, status

addBookToLoan (catalogNo, copyNo)

title, author, lendingCategory

returnBook (catalogNo, copyNo)

Book is overdue. Fine
is calculated, but not
paid.

changeStatus (StudentID, fineStatus)

Loop for all items

Figure 15-25

Partial system sequence

diagram for the university

library system

C6696_15_CTP.4c 2/6/08 1:29 PM Page 610

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 15 Designing System Interfaces, Controls, and Security ♦ 611

CASE STUDIES
ALL-SHOP SUPERSTORES

All-Shop Superstores is a regional chain of superstores in the Boston,

New York, and Washington, D.C., corridor. These stores compete

with other giants, such as Wal-Mart, Kmart, Target, and other budget

retailers. The stores contain large grocery stores as well as domestics,

clothing, automobile, and home improvement products. Overall, the

margins in this portion of the retail industry are very small. Grocery

profits have always been small, in the range of 5 to 10 percent. The

margin for domestics, clothing, and other goods is a little higher, but

to compete with Wal-Mart, All-Shop must keep all margins low.

To reduce operating costs as much as possible, All-Shop has

decided to move very heavily into electronic data interchange (EDI)

with its suppliers. All-Shop is aware that several of its more

advanced competitors allow their suppliers to manage inventory

levels in the stores themselves. For example, paper hygiene products

such as disposable diapers and toilet paper are high-volume prod-

ucts that require very close monitoring of inventory levels. All-Shop

has already installed sophisticated sales and inventory systems that

track activity of each individual item (using the UPC code) daily.

These systems not only capture daily activity but also maintain his-

tories in a data warehouse to support online data analysis.

The first step for All-Shop was to enable its major suppliers to

have access to its daily sales and inventory database. That way, the

suppliers could monitor sales activities and check inventory to

ensure that deliveries are made on time to maintain optimal inven-

tory levels. The system should also permit each supplier to access

and check the status of its individual accounts and a history of past

payment activity. Obviously, All-Shop must control all of this infor-

mation so that suppliers cannot observe each other’s information.

1. Based on what you have learned in this and previous chap-

ters, develop a use case diagram identifying the use cases

that apply to the supplier as an actor. Even though this is

really a system-to-system interface, the supplier system can

be considered an actor. Identify two lists of controls that

you consider necessary for this interface. On the first list,

identify overall controls for the entire EDI interface. Then,

for the second list, for each identified use case, develop a

specific set of controls that will be necessary. Base your

analysis on the types of controls discussed in the chapter

as well as the three primary objectives of integrity controls.

In other words, your assignment is to develop a statement

of required controls that the system developers can use to

ensure that the system adequately protects the assets and

information of All-Shop.

EXPERIENTIAL EXERCISES

1. Look on the Web for an e-commerce site (for example,

Amazon.com or eBay). Evaluate the effectiveness of the

screens. What kind of security and controls are integrated

into the system? Do you see potential problems with the

integrity controls? Evaluate the design of the individual

screens. How easy are they to read and use? What sugges-

tions would make them easier to use? How effective are

they in minimizing data-entry errors?

2. Examine the information system of a local business (a fast-

food restaurant, doctor’s office, video store, grocery store,

and so forth). Evaluate the screens (and reports, if possible)

for ease of use and effectiveness. What kind of integrity

controls are in place? How easy are the screens to use?

What kinds of improvements would you make?

3. Find and research a system that is being constructed or has

recently been constructed. You may work for a company

that has a development project in progress or have a friend

who works for such a company. Another source of devel-

opment projects is your university or college itself.

Interview one of the developers. Ask about integrity con-

trols, methodology for screen design, and guidelines to

ensure consistency across the user interface. Ask about the

number and scope of the input and output design tasks

(for example, how many screens or hours required) and the

method used to lay out the screens and reports (such as

prototyping, visual modeling tools, and so forth).

4. If your university uses Java, find out about the JSwing class

library. Write a one-page description of the JSwing library,

its purpose, and ways to use it. Your objective is to demon-

strate that you understand the concept of JSwing and the

way it is used to build windows and input screens in a

Windows environment.

5. If your university uses Studio .NET from Microsoft, find out

about using the .NET class library to build user interfaces.

Write a one-page description of the .NET library, its pur-

pose, and ways to use it. Your objective is to demonstrate

that you understand the concept of .NET forms design and

the way it is used to build windows and input screens in a

Windows environment.

6. Go to the Internet and find out what you can about

Pretty Good Privacy. What is it? How does it work?

Research what you can about a passphrase. What does

it mean? Here are two sites that you can use to start your

research: www.pgpi.org/ and web.mit.edu/network/pgp.html.

C6696_15_CTP.4c 2/6/08 1:29 PM Page 611

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

http://www.pgpi.org/

612 ♦ PART 3 SYSTEMS DESIGN TASKS

2. All-Shop is considering a plan to provide supplier access to

its data warehouse to enable executives to analyze past

trends and help design promotions to increase overall sales

and those of individual products. In other words, All-Shop

is building partnerships with its suppliers to maximize its

presence in the retail marketplace. One major concern

of All-Shop executives is how to ensure that the sup-

pliers treat this information with maximum security and

not damage All-Shop. How can they ensure that the sup-

pliers do not use this information to benefit All-Shop’s

competitors inadvertently, as suppliers also work with

these competitors?

3. Do you think this second step is a wise move for All-Shop?

If not, why not? If so, what kinds of controls and contrac-

tual arrangements should be made to protect All-Shop?

You can see how a narrow focus on integrity controls

might be inadequate to protect proprietary information. A

broader view and understanding of controls and their

objectives are required in this instance.

REAL ESTATE MULTIPLE LISTING SERVICE SYSTEM

Based on the DFD fragments you developed in Chapter 6 and the

structure charts from Chapter 10, develop a table of inputs along

with the associated data couples and data fields for each input.

Also, develop a table of outputs with the required data fields.

THEEYESHAVEIT.COM BOOK EXCHANGE SYSTEM

Based on the system sequence diagrams you developed in Chapter

7, develop a list of inputs and outputs required for this system. Also,

identify any specific controls that may be necessary to ensure that

information is entered accurately.

DOWNTOWN VIDEOS RENTAL SYSTEM

Using the system sequence diagrams you developed in Chapter 7,

develop a list of inputs and outputs, along with the necessary data

fields, for the system.

RETHINKING ROCKY MOUNTAIN OUTFITTERS

The RMO event table lists six system reports that are

part of the new system:

• Order summary
• Transaction summary
• Fulfillment summary
• Prospective customer activity
• Customer adjustments
• Catalog activity

For each of these six reports, answer the following questions:

1. Identify the data fields that each report should include.

2. What questions will users want each report to answer?

3. What type of report is it: detailed, summary, or exception?

4. How might graphics be used? What about drill-down

capabilities?

5. How would you prepare a mock-up of each report, assum-

ing a printed output and also an online output?

6. What output controls should be associated with each report?

FOCUSING ON RELIABLE PHARMACEUTICAL SERVICE

One of the challenges of a pharmaceutical com-

pany is keeping current with new drugs and

changes to existing drugs. New drugs are con-

tinually being developed and approved. In addition, generic drugs are

often available to compete with brand-name drugs. One of the ser-

vices that Reliable provides is to try to find the least expensive alterna-

tive to fulfill a prescription. This cost-saving service is one of the

marketing advantages that the nursing homes can use to promote

their services. Obviously, this service builds tremendous loyalty

between Reliable and its customers.

To keep current with these changes, Reliable subscribes to an

online drug-update service. The service provides updates in several

formats, one of which is an XML file.

1. Based on the content of your design class diagrams that

you developed in Chapter 11, illustrate a sample XML

input file that could be used to update drug information in

the Reliable database.

2. In earlier chapters, the case description indicated that a

case manifest was produced for each patient whenever

prescriptions needed to be filled and delivered. Based on

the data found in your class diagrams, design a case mani-

fest. Consider that a patient might have multiple prescrip-

tions that are being filled on the same delivery.

3. Each month, Reliable produces a statement for each nurs-

ing home. The statement lists each patient who received

prescriptions during the month. All the filled prescriptions

are listed. For each prescription, the following information

is listed: the price, the amount billed to the patient’s insur-

ance provider, the amount paid by the insurance provider,

and the co-pay amounts due from the patients. Design this

monthly statement. Also, identify and highlight output con-

trols that you believe are appropriate for this type of report.

4. In the preceding chapter, you defined an input form to be

used to collect orders from the nursing homes. Go back and

analyze that input form and identify all of the input controls

that you think are necessary to ensure that the prescriptions

are correct. What other procedures or controls would you

recommend to make sure that there are no mistakes on the

prescriptions?

C6696_15_CTP.4c 2/6/08 1:29 PM Page 612

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 15 Designing System Interfaces, Controls, and Security ♦ 613

FURTHER RESOURCES

David Benyon, Diana Bental, and Thomas Green, Conceptual

Modeling for User Interface Development. Springer-Verlag, 1999.

Elfriede Dustin, Jeff Rashka, Douglas McDiarmid, and Jakob

Nielson, Quality Web Systems: Performance, Security, and Usability.

Addison-Wesley, 2001.

Simson Garfinkel, Gene Spafford, and Debby Russell, Web

Security, Privacy, & Commerce. O’Reilly Publishing, 2001.

Anup K. Ghosh, E-Commerce Security: Weak Links, Best

Defenses. John Wiley & Sons, 1997.

IS Audit and Control Association, IS Audit and Control Journal,

Volume I. 1995.

Brenda Laurel, The Art of Human-Computer Interface Design.

Addison-Wesley, 1990.

Ben Shneiderman, Designing the User Interface: Strategies

for Effective Human-Computer Interaction. Addison-Wesley-

Longman, 1998.

Donald Warren Jr. and J. Donald Warren, The Handbook of IT

Auditing. Warren Gorham & Lamont, 1998.

Donald A. Wayne and Peter B. B. Turney, Auditing EDP Systems.

Prentice Hall, 1990.

C6696_15_CTP.4c 2/6/08 1:29 PM Page 613

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

615

IMPLEMENTATION
AND SUPPORT

C H A P T E R 1 6
Making the System Operational

C H A P T E R 1 7
Current Trends in System Development

4
PART

C6696_16_CTP.4c 2/6/08 1:29 PM Page 615

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

616

M A K I N G T H E S Y S T E M
O P E R A T I O N A L16
L E A R N I N G O B J E C T I V E S

After reading this chapter, you should be able to:

■ Describe implementation and support activities

■ Choose an appropriate approach to program development

■ Describe various types of software tests and explain how and why each

is used

■ List various approaches to data conversion and system installation and

describe the advantages and disadvantages of each

■ Describe different types of documentation and the processes by which

they are developed and maintained

■ Describe training and user support requirements for new and operational

systems

CHAPTER

C H A P T E R O U T L I N E

Program Development

Quality Assurance

Data Conversion

Installation

Documentation

Training and User Support

Maintenance and System Enhancement

C6696_16_CTP.4c 2/6/08 1:29 PM Page 616

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 16 Making the System Operational ♦ 617

TRI-STATE HEATING OIL: JUGGLING PRIORITIES TO BEGIN OPERATION

It was 8:30 on Monday morning, and Maria Grasso, Kim Song, Dave Williams, and Rajiv
Gupta were just about to begin the weekly project status review meeting. Tri-State Heating
Oil had started developing a new customer order and service call scheduling system five
months earlier. The target completion date was 10 weeks away, but the project was behind
schedule. Analysis and design had taken eight weeks longer than anticipated because key
users had disagreed on what new system requirements to include and the system scope was
larger than expected.

Maria began the meeting by saying, “We’ve gained a day or two since our last meeting due
to better-than-expected unit testing results. All of the methods developed last week sailed
through unit testing, so we won’t need any time this week to fix errors in that code.”

Kim spoke, “I wouldn’t get too cocky just yet. All of the nasty surprises in my last project
came during integration testing. We’re completing the user-interface classes this week, so we
should be able to start integration testing with the business classes sometime next week.”

Dave nodded enthusiastically and said, “That’s good! We have to finish testing those
user-interface classes as quickly as possible because we’re scheduled to start user training in
three weeks. I need that time to develop the training materials and work out the final training
schedule with the users.”

Rajiv replied, “I’m not sure that we should be trying to meet our original training sched-
ule with so much of the system still under development. What if integration testing shows
major bugs that require more time to fix? And what about the unfinished business and data-
base classes? Can we realistically start training with a system that’s little more than a user
interface with half a system behind it?”

Dave replied, “But we have to start training in three weeks. We contracted for a dozen tem-
porary workers so that we could train our staff on the new system. Half of them are scheduled
to start in two weeks and the rest two weeks after that. It’s too late to renegotiate their start
dates. We can extend the time they’ll be here, but delaying their starting date means we’ll be
paying for people we aren’t using.”

Maria said, “I think that Rajiv’s concerns are valid. It’s not realistic to start training in three
weeks with so little of the system completed and tested. We’re at least five weeks behind
schedule, and there’s no way we’ll recapture more than four or five days of that during the
next few weeks. I’ve already looked into rearranging some of the remaining coding to give pri-
ority to the work most critical to user training. There are a few batch processes that can be
back-burnered for awhile. Kim, can you rearrange your test plans to handle all of the interac-
tive applications first?”

Kim replied, “I’ll have to go back to my office and take another look at the dependencies
among those programs. Offhand, I’d say yes, but I need a few hours to make sure.”

Maria replied, “Okay, let’s proceed under the assumption that we can rearrange coding
and testing to complete a usable system for training in five weeks. I’ll confirm that by e-mail
later today as soon as Kim gets back to me. I’ll also schedule a meeting with the CIO to deliver
the bad news about temporary staffing costs.”

After a few moments of silence, Rajiv asked, “So what else do we need to be thinking about?”
Maria replied, “Well, let’s see. . . . There’s user documentation, hardware delivery and

setup, operating system and DBMS installation, importing data from the old database, the
network upgrade, and stress testing for the distributed database accesses.”

Rajiv smiled and said to Maria, “You must have been a juggler in your youth, and it was
good practice for keeping all of these project tasks up in the air. Does management pay you
by the ball?”

Maria chuckled and replied, “I do think of myself as a juggler sometimes. And if manage-
ment paid me by the ball, I could retire as soon as this project is finished!”

C6696_16_CTP.4c 2/6/08 1:29 PM Page 617

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

OVERVIEW

This chapter focuses on the implementation and support activities of the systems develop-
ment life cycle (see Figure 16-1). Activities that occur before the system is turned over to its
users are collectively called implementation. Activities that occur after the system becomes
operational are collectively called support.

618 ♦ PART 4 IMPLEMENTATION AND SUPPORT

Project
planning
activities

Analysi s
activities Design

activities
Construct software components
V erify and test
Convert data
T rain and document
Install the system

Implementation
activities

Maintain the system
Enhance the system
Support users

Support activities

Figure 16-1

Implementation and

support activities

Implementation and support activities are often considered straightforward and dull—they
don’t attract the same attention or enthusiasm as analysis and design activities. The situation is
analogous to the difference between architecture and construction. An architect gets most of
the credit for creating a new building, even though his or her job essentially ends with the

C6696_16_CTP.4c 2/6/08 1:29 PM Page 618

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 16 Making the System Operational ♦ 619

blueprints. Yet, the vast majority of the effort that goes into making the building a reality
occurs after the blueprints are finished. The same is true of information system development.

Implementation consumes substantially more time and resources than other system develop-
ment life cycle (SDLC) activities. A large number of people are required to perform implementa-
tion activities—particularly software construction and testing. In addition, implementation
activities are highly interdependent. Project management complexity is at its greatest during the
implementation activities because so many people and tasks must be coordinated. The RMO pro-
ject progress memo on the preceding page illustrates the complexity of project management and
the many tasks that must be completed.

Information systems are the lifeblood of a modern organization. Thus, supporting those
systems is one of the most important jobs in an organization. Support activities ensure that
the system and its users function efficiently and effectively for years after installation. Most
organizations spend much more money maintaining and supporting existing systems than
they do building new ones.

PROGRAM DEVELOPMENT

Developing a complex system is an inherently difficult process. Consider the complexity of
manufacturing automobiles. Tens of thousands of parts must be fabricated or purchased.
Parts are assembled into small subcomponents (such as dashboard instruments, wiring har-
nesses, and brake assemblies), which are, in turn, assembled into larger subcomponents (such
as instrument clusters, engines, and transmissions) and eventually into a complete automo-
bile. Parts and subcomponents must be constructed, tested, and passed on to subsequent
assembly steps. There are tens or hundreds of thousands of individual production steps. The
effort, timeliness, cost, and output quality of each step depend on all of the preceding steps.

Program development is similar in many ways to automobile manufacturing.
Requirements and design specifications have already been determined. What remains is a
complex production and assembly process that must ensure efficient resource use, minimal
construction time, and maximum product quality. But unlike automobile manufacturing, the
process is not designed once and then used to build thousands of similar units. Instead, a
software manufacturing process must be redeveloped for each new project to match that
project’s unique characteristics.

When most people think of system development, they primarily think of programming.
Programming isn’t the only development activity, but it is clearly one of the most important.
Its importance arises from several factors, including the following:

• Required resources
• Managerial complexity
• System quality

Program development consumes more resources than any other system development activ-
ity. Program development (including unit testing) typically accounts for at least one-third of
all development labor. Program development also accounts for between one-third and
one-half of the project development schedule. The magnitude of resources and time consumed
during program development clearly warrants careful planning and management attention.

ORDER OF IMPLEMENTATION

One of the most basic decisions to be made about program development is the order in which
program components will be developed. Several orders are possible, including the following:

• Input, process, output
• Top-down
• Bottom-up

C6696_16_CTP.4c 2/6/08 1:29 PM Page 619

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Each project must adapt one or a combination of these approaches to specific project require-
ments and constraints.

Input, Process, Output Development Order

The input, process, output (IPO) development order is based on data flow through a system
or program. Programs or modules that obtain external input are developed first. Programs or
modules that process the input (that is, transform it into output) are developed next.
Programs or modules that produce output are developed last.

For structured designs and programs, an analyst can determine IPO ordering by
examining the system flowchart and structure charts. For example, consider the payroll sys-
tem flowchart in Figure 16-2. The programs Maintain tax tables and Maintain employee data-
base obtain and modify data inputs for other programs, so they would be the first programs
implemented. The Payroll program combines input and processing, so it would be imple-
mented next. The Check printing and Year-end tax programs produce system outputs, so they
would be implemented last.

Figure 16-3 shows a structure chart for the Payroll program. An analyst can apply IPO
implementation order to modules within a program by classifying them as input, process,
and output modules. If the analyst developed the structure chart using transform analysis,

620 ♦ PART 4 IMPLEMENTATION AND SUPPORT

Pa yroll progra m

T ax tab le
Inspect time

cards

Correct
errors

Maintain tax
tab les progra m

Empl oy ee
database

Maintain empl oy ee
database progra m

Error repor t

Pa yrol l
transactions

Pa yrol l
transaction

histor y

Chec k pr inting
progra m

Empl oy ee W- 2

F ederal 940
fo rm s

State 940 fo rm s

Y ear-end tax
progra m

Pa yroll summar y
repor t

Chec ks

Inspect
chec ks

Figure 16-2

A system flowchart for a

payroll system

input, process,

output (IPO)

development

a development order
that implements input
modules first, process
modules next, and
output modules last

C6696_16_CTP.4c 2/6/08 1:29 PM Page 620

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 16 Making the System Operational ♦ 621

modules will be clearly organized into afferent (input), central transform (process), and effer-
ent (output) “legs.” (See the section “Developing a Structure Chart” in Chapter 10 for a review
of structure chart organization.) For this program, the modules in the afferent leg of the struc-
ture chart (those below and including Enter time cards) would be implemented first, followed
by the modules in the transform leg (those below and including Calculate amounts), and finally
the modules in the efferent leg (those below and including Output payroll).

IPO development order can also be applied to object-oriented (OO) designs and pro-
grams. The key issue to analyze is dependency—that is, which classes and methods capture or
generate data that is needed by other classes or methods. Dependency information is docu-
mented in package, sequence, and class diagrams.

For example, the package diagram in Figure 16-4 shows that the customer and catalog main-
tenance subsystems are not dependent on each other or on either of the other two subsystems.
The order-entry subsystem is dependent on both the customer and catalog maintenance subsys-
tems, and the order fulfillment subsystem is dependent on the order-entry subsystem.

Data dependency among the packages (subsystems) implies data dependency among
their embedded classes. Thus, the classes Customer, Catalog, and Package have no data
dependency on the remaining RMO classes. Under IPO development order, those three
classes are implemented first.

The chief advantage of the IPO development order is that it simplifies testing. Because
input programs and modules are developed first, they can be used to enter test data for process
and output programs and modules. The need to write special-purpose programs to generate or
create test data is reduced, thus speeding the development process.

IPO development order is also advantageous because important user interfaces (for exam-
ple, data-entry routines) are developed early. User interfaces are more likely to require change
during development than other portions of the system, so early development allows for early
testing and user evaluation. If changes are needed, there is still plenty of time to make them.
Early development of user interfaces also provides a head start for related activities such as
training users and writing documentation.

Output pa yrol l Calculate amount s Enter time cards

T
 op

-d
o w

n
de

 ve
lo

pm
en

t o
r d

er
 B

 ottom
-up de velopm

ent or der

Input, pr ocess, output de velopment or der

V a lid fla g

P ayrol l
progra m

R
 ates

E m
 p l

o y
 e e

p a
 y /
ta

 x
 r a

 te
 s

P
a yrol l

am
ount s

P a y r o ll in f o r m a ti o n

Va lidated
tim

e car d

Va lid
ated tim

e ca
rd in fo

E m p lo y e e in f o r m a t io n

Tim
e c

ar d

Time car d

E
m

pl
 oy

 ee
 d

at
 a

E
m

pl
 o

y e
e

na
m

e Pa yroll in fo

Pa y
rol

l in
 fo

P
a yroll in fo

Jo b ca te g o ry H ours Deductio n

in fo r matio n

D
ependent s

Ta
 xe

 s

O ve r tim
 e am n t

H o u rs

B a se p a y
P

 a yroll a m
 o unts

Enter empl oy ee
time car d

Read empl oy ee
r ecor d

Va lidat e
time car d

Get empl oy ee
pa y rates

Calculate pa y
amount s

Update empl oy ee
r ecor d

Wr ite pa yrol l
transactions

Update general
l edger

Calculate base
amount

Calculate ov er tim e
amount

Calculate ta xe s Calculate other
deductions

Deductio n

amount

Figure 16-3

A structure chart for the

Payroll program in

Figure 16-2

C6696_16_CTP.4c 2/6/08 1:29 PM Page 621

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

A disadvantage of IPO development order is the late implementation of outputs. Output
programs are useful for testing process-oriented modules and programs; analysts can find
errors in processing by manually examining printed reports or displayed outputs. IPO devel-
opment defers such testing until late in development. However, analysts can usually generate
alternate test outputs by using the query processing or report writing capabilities of a data-
base management system (DBMS). If such outputs can be quickly and easily defined, the dis-
advantage of late implementation of output routines is substantially mitigated.

Top-Down and Bottom-Up Development Order

The terms top-down and bottom-up have their roots in traditional structured design and structured
programming. Both terms describe the order of implementation with respect to a module’s loca-
tion within a structure chart. For example, consider the structure chart in Figure 16-3. Top-down
development begins with the module at the top of the structure chart (Payroll program).
Bottom-up development begins with the set of modules at the lowest level of the structure chart.

Top-down and bottom-up program development can also be applied to OO designs and
programs, although a visual analogy is not as obvious with OO diagrams as with structure
charts. The key issue is method dependency—that is, which methods call which other meth-
ods. Within an OO subsystem or class, method dependency can be examined in terms of nav-
igation visibility, as discussed in Chapter 11.

For example, consider the three-layer design of part of the RMO order-entry subsystem
shown in Figure 16-5. The arrows among packages and classes show navigation visibility
requirements. Methods in the view layer call methods in the domain layer, which, in turn,
call methods in the data access layer. Top-down implementation would implement the view

622 ♦ PART 4 IMPLEMENTATION AND SUPPORT

O rder-entr y subsystem

D ata access layer

MainWindo w ProductQuer y

OrderWindo w N ew ItemWindo w

Domain layer

OrderHandler Av ailabilityHandler

Order OrderItem

OrderT ransaction

OrderItem DA

OrdT ransactionD A

Vi ew layer

OrderD A

Shipper Shipment

O rder fulfillment subsystem

Customer

C ustomer maintenance
subsystem

C atalog

C atalog maintenance
subsystem

C atalogProduct

ProductItem In v entor yItem

Figure 16-4

A package diagram for

the four RMO

subsystems

top-down

development
a development order that
implements modules at
the top of a structure
chart first

bottom-up

development
a development order that
implements modules at
the bottom of a structure
chart first

C6696_16_CTP.4c 2/6/08 1:29 PM Page 622

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 16 Making the System Operational ♦ 623

layer classes and methods first, the domain layer classes and methods next, and the data
access layer classes and methods last. Bottom-up implementation would reverse the top-
down implementation order.

Method dependency can also be documented in a sequence diagram. For example, in
Figure 16-6, method dependency is documented in the left-to-right flow of messages among
objects. Rotating the figure 90 degrees clockwise creates a top-down and bottom-up visual
analogy similar to a structure chart. Top-down development would start with ProductQuery,
AvailabilityHandler, CatalogDA, and Catalog. Bottom-up development would start with
InventoryItem, InventoryDA, CatalogProduct, and CatalogProductDA.

The primary advantage of top-down development is that there is always a working version
of a program. For example, top-down development of the program in Figure 16-3 would begin
with a complete version of the topmost module and dummy (or stub) versions of its three
subordinate modules (stub modules are discussed later in the “Unit Testing” section). This
set of modules is a complete program that can be compiled, linked, and executed, although
at this point it wouldn’t do very much when executed. Top-down development of the three-
layer design in Figure 16-5 would begin with a complete version of the view layer classes and
dummy (or stub) versions of the domain layer classes.

View Layer

Data Access Layer

MainWindow

y

Domain Layer

OrderHandler CustomerHandler

Catalog CatalogProduct ProductItem InventoryItem

Customer Order OrderItem OrderTransaction

CatalogDA

CustomerDA OrderDA OrderItemDA

CatalogProductDA ProductItemDA

OrdTransactionDA

InventoryDA

ProductQueryForm OrderWindowForm NewItemForm

Figure 16-5

A package diagram for a

three-layer OO design

C6696_16_CTP.4c 2/13/08 10:58 AM Page 623

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

After the topmost module or layer is completed, development proceeds downward to the
next level of the structure chart or package diagram. As each module or class is implemented,
stubs for the modules or classes on the next lower level are added. At every stage of develop-
ment, the program should be complete (that is, it should be able to be compiled, linked, and
executed). Its behavior becomes more complex and realistic as development proceeds.

The primary disadvantage of top-down development order is that it doesn’t use program-
ming personnel very efficiently at the beginning of software development. Development has
to proceed through two or three levels before a significant number of modules or methods
can be developed simultaneously. However, if the first few levels of the program can be com-
pleted quickly, the disadvantage is minimal.

The primary advantage of bottom-up development is that many programmers can be put to
work immediately. In addition, lower-level modules are often the most complex and difficult to
write, so early development of those modules allows more time for development and testing.
Unfortunately, bottom-up development also requires writing a large number of driver programs to
test bottom-level modules, which adds additional complexity to the development and testing
process (this issue is discussed further in the “Testing” section). Also, the entire system isn’t assem-
bled until the topmost modules are written. Thus, testing of the system as a whole is delayed.

Other Development Order Considerations

IPO, top-down, and bottom-up development are only a starting point for creating a software
development plan. Other factors that must be considered include user feedback, training,
documentation, use case driven development, and testing. User feedback, training, and docu-
mentation all depend heavily on the user interfaces of the system. Early implementation of
user interfaces enables early user training and early development of user documentation. It

624 ♦ PART 4 IMPLEMENTATION AND SUPPORT

Clerk :AvailabilityHandler

:CatalogDA

aC:Catalog

:ProductDA

aP:ProductItem

:CatalogProductDA

aCP:CatalogProduct

:InventoryItemDA

anll:InventoryItem

«View»
:ProductQuery

inquire
(catalogID, prodID, size)

aC := getCatalog (catalogID)

createCatalog (info...)

inquireOnItem (prodID, size)

aP := getProd (prodID)

createProd (info...)

quantity := getQty (size) createInvItem (info..)anll := getInvItem (prodID, size)

quantity := getQty (size)

desc, price, quantity

desc, price, quantity

desc, price, quantity

desc := getDescriptioin()

aCP := getCatProd (catalogID, prodID)

price := getPrice()

createCatProd (info...)

Figure 16-6

A sequence diagram for

the event Look up item
availability

C6696_16_CTP.4c 2/6/08 1:29 PM Page 624

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 16 Making the System Operational ♦ 625

also gathers early feedback on the quality and usability of the interface. Note the important
role that this issue played in the opening case of this chapter.

In projects that follow the Unified Process, use cases are one of the primary bases for
dividing a development project into iterations. In most UP projects, developers choose a set
of related use cases for a single iteration and complete all requirements, design, implementa-
tion, and testing activities for those use cases. The choice of use cases might be based on many
factors, including minimizing project risk, efficiently using nontechnical staff, or installing
some parts of the system earlier than others. For example, use cases with uncertain require-
ments or high technical risks are typically addressed in early iterations.

As individual software components (such as modules or methods) are constructed, they
must be tested. Programmers must find and correct errors as soon as possible because they
become much harder to find and more expensive to fix as the construction process proceeds.
It’s important both to identify portions of the software that are susceptible to errors and to
identify portions of the software where errors can pose serious problems that affect the sys-
tem as a whole. These portions of the software must be built and tested early regardless of
where they fit within the basic approaches of IPO, top-down, or bottom-up development.

Testing and construction are highly interdependent. For this reason, a formal plan cover-
ing both testing and construction is normally created before either activity begins. The con-
struction and test plan covers many specifics, including the following:

• Development order
• Testing order
• Data used to test modules, module groups, methods, classes, programs, and subsystems
• Acceptance criteria
• Personnel assignments (construction and testing)

Testing is discussed in detail later in this chapter. But for now, keep in mind that construction
and testing go hand in hand. Their interdependence and complexity necessitate formal plan-
ning and regular comparisons between the plan and actual performance.

FRAMEWORK DEVELOPMENT

When implementing a large OO system, it is not unusual to build an object framework (or
set of foundation classes) that covers most or all of the domain and data access layer classes.
For example, when implementing an OO account maintenance system for a bank, developers
might build a set of classes to represent and store customers and various types of bank
accounts (for example, savings accounts, checking accounts, and certificates of deposit).

Foundation classes are typically reused in many parts of the system and across many dif-
ferent applications. Because of this reuse, they are a critical system component. Errors in a
foundation class can affect every program in the system. In addition, later changes to founda-
tion classes might require significant changes throughout the system.

Foundation classes are typically implemented first to minimize the impact of errors and
changes. They are typically assigned to the best programmers and are tested more thoroughly
than other classes. Early and thorough testing guarantees that bugs or other problems will be
discovered before other code that depends on the foundation classes has been written.

TEAM-BASED PROGRAM DEVELOPMENT

A team of programmers normally works on program development. Using multiple
programmers compresses the development schedule by allowing many portions of the system to
be developed simultaneously. However, team-based program development introduces its own set
of management issues, including the following:

• Organization of programming teams
• Task assignment to specific teams or members
• Member and team communication and coordination

C6696_16_CTP.4c 2/6/08 1:29 PM Page 625

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

You can organize an implementation team in many different ways. Some commonly used
organizational models include the following:

• Cooperating peer
• Chief developer
• Collaborative specialist

Figure 16-7 summarizes the characteristics of each team type and the types of projects and
tasks best suited to each.

626 ♦ PART 4 IMPLEMENTATION AND SUPPORT

Team type Team characteristics Task and project types

Cooperating peers Equal skill levels Experimentation
Overlapping specialities Creative problem solving
Consensus-based decision making

Chief developer Organized as a military platoon or squad Well-defined objectives
One leader makes all important decisions Well-defined path to completion

Collaborative specialists Wide variation in skill and experience Diagnosis or experimentation
Minimal overlap in technical specialities Creative and integrative problem solving
Leader is primarily an administrator Wide range of technology
Consensus-based decision making

Figure 16-7

A comparison and

summary of development

team types

A cooperating peer team includes members of roughly equal skill and experience with
overlapping areas of specialization. Members are considered equals, although they might be
assigned tasks of varying importance or complexity. Decisions are primarily made by consen-
sus, and the team frequently meets to exchange information and build consensus.

A chief developer team is similar to a small military unit. An assigned leader performs a
number of functions, including technical consulting, team coordination, and task assign-
ment. In this type of team, there is much less communication than with a cooperating peer
team. The chief developer makes most of the important decisions, although he or she might
seek input from members individually or collectively.

A collaborative specialist team is similar to a cooperating peer team, but its members
have wide variation in and minimal overlap of skills and experience. Such teams are often
composed of members from different organizational subunits. The team might have an
appointed leader, but his or her leadership covers only administrative functions, such as
scheduling, coordinating, and interacting with external constituencies. Technical decisions
are generally made by consensus, although member opinions usually carry extra weight
within the member’s own area of expertise. In large projects, a collaborative specialist team
might be formed to “float” among other teams to deal with complex problems as they arise.

Some common principles of team organization underlie all development projects and
organizational structures. One is that team size should be kept relatively small (no more than
10 members). Larger teams tend to be inefficient because of the inherent complexity of com-
munication and coordination in large groups. When more than 10 developers are assigned to
a project, it is best to break them up into small teams (approximately five members each).
Each team should be assigned a relatively independent portion of the project. One member
of each team should be designated to handle coordination and communication with other
teams. Having a single point of contact simplifies communication and provides for some spe-
cialization of functions within each team.

Another common principle of team organization is that team structure should be
matched to the task and project characteristics. Teams with a well-defined implementation
task that does not push the limits of member knowledge or technical feasibility are usually
best organized as chief programmer teams.

cooperating

peer team
a team with members of
roughly equal skill and
experience and with
overlapping areas of
specialization

chief developer

team
a team with a single
leader who makes all
important decisions

collaborative

specialist team
a team with members
who have wide variation
in and minimal overlap of
skills and experience

C6696_16_CTP.4c 2/6/08 1:29 PM Page 626

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 16 Making the System Operational ♦ 627

Teams assigned to tasks that require experimentation or a high level of creativity are better
served by a cooperating peer or collaborative specialist model. Because of their more open
communication, cooperating peer teams are especially well suited to tackling tasks that
require generating and evaluating a large number of ideas. Overlap in skill, specialty, and
experience allows thorough evaluation of each idea.

Collaborative specialist teams are well suited to projects that span a wide range of
cutting-edge technology. They are also well suited to tackling projects that require integrated
problem solving (for example, diagnosing and fixing bugs in an existing complex system).
However, success depends on a true collaborative process, which is sometimes difficult to
achieve among members with wide variation in skill and experience.

Member skills must be appropriately matched to the tasks at hand. Skill matching is a
fairly obvious requirement with respect to technical skills such as database management, user
interfaces, and numeric algorithms. Skill matching is less obvious but no less important for
nontechnical skills. Teams need a mix of nontechnical skills and traits, including the ability
to generate new ideas, build consensus, manage details, and communicate with external con-
stituencies. The project manager should perform a skills inventory early in the project so that
gaps can be filled to avoid project delays and inappropriate personnel assignments.

SOURCE CODE CONTROL

Development teams need tools to help coordinate their programming tasks. A source code
control system (SCCS) is an automated tool for tracking source code files and controlling
changes to those files. An SCCS stores project source code files in a repository. The SCCS acts
the way a librarian would—it implements check-in and checkout procedures, tracks which pro-
grammer has which files, and ensures that only authorized users have access to the repository.

Programmers can manipulate files in the repository as follows:

• Check out a file in read-only mode
• Check out a file in read/write mode
• Check in a modified file

A programmer checks out a file in read-only mode when he or she wants to examine the code
without making changes (for example, to examine a module’s interfaces to other modules).
When a programmer needs to make changes to a file, he or she checks out the file in
read/write mode. The SCCS allows only one programmer to check out a file in read/write
mode. The file must be checked back in before another programmer can check it out in
read/write mode.

Figure 16-8 shows the main display of Microsoft Visual SourceSafe. Various source code
files from the RMO customer support system are shown in the display. Some files are currently
checked out by programmers. For each file checked out in read/write mode, the program lists
the programmer who checked it out, the date and time of checkout, and the current location
of the file. The icon for each checked-out file is displayed with a red border and check mark.

An SCCS prevents multiple programmers from updating the same file at the same time,
thus preventing inconsistent changes to the source code. Source code control is an absolute
necessity when programs are developed by multiple programmers. It prevents inconsistent
changes and automates coordination among programmers and teams. The repository also
serves as a common facility for backup and recovery operations.

VERSIONING

Medium- and large-scale systems are complex and constantly changing. Changes occur
rapidly during implementation and more slowly afterward. System complexity and rapid
change create a host of management problems—particularly for testing and support. Testing

source code

control system

(SCCS)

an automated tool for
tracking source code
files and controlling
changes to those files

C6696_16_CTP.4c 2/6/08 1:29 PM Page 627

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

is problematic in such an environment because the system is a moving target. By the time an error
is discovered, the code that caused the error might already have been moved, altered, or deleted.
Support is complex for similar reasons. Support personnel need to know the state of the system as
it is installed on a user’s computer system to respond properly to a bug report or request for help.

Complex systems are developed, installed, and maintained in a series of versions to sim-
plify testing and support. It is not unusual to have multiple versions of a system deployed to
end users and more versions in different stages of development. A system version created dur-
ing development is called a test version. A test version contains a well-defined set of features
and represents a concrete step toward final completion of the system. Test versions provide a
static system snapshot and a checkpoint to evaluate the project’s progress.

An alpha version is a test version that is incomplete but ready for some level of rigorous
testing. Multiple alpha versions might be built depending on the size and complexity of the
system. The lifetime of an alpha version is typically short—days or weeks.

A beta version is a test version that is stable enough to be tested by end users. A beta version
is produced after one or more alpha versions have been tested and known problems have
been corrected. End users test beta versions by using them to do real work. Thus, beta versions
must be more complete and less prone to disastrous failures than alpha versions. Beta ver-
sions are typically tested over a period of weeks or months.

A system version created for long-term release to users is called a production version,
release version, or production release. A production version is considered a final product,
although software systems are rarely “finished” in the usual sense of that term. Minor produc-
tion releases (sometimes called maintenance releases) provide bug fixes and minor changes
to existing features. Major production releases add significant new functionality and might be
the result of rewriting an older release from the ground up.

628 ♦ PART 4 IMPLEMENTATION AND SUPPORT

Figure 16-8

Project files managed by

a source code control

system

alpha version
a system that is
incomplete but ready for
some level of rigorous
testing

beta version
a system that is stable
enough to be tested by
end users

production

version, release

version, or

production

release
a system that is formally
distributed to users or
made operational

maintenance

release
a system update that
provides bug fixes and
minor changes to
existing features

C6696_16_CTP.4c 2/6/08 1:29 PM Page 628

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 16 Making the System Operational ♦ 629

Figure 16-9 shows a series of possible test and production versions for the RMO customer
support system. Each version is described in Figure 16-10. The system is delivered in two
major production releases—versions 1.0 and 2.0. Each initial production release is preceded
by one or more alpha and beta test versions. Each version adds or updates functionality and
includes bug fixes for the previous version. Version 1.1 is a maintenance, or minor produc-
tion, release of version 1.0. Note that the time line for developing version 2.0 overlaps main-
tenance changes to version 1.0. Overlapping older production versions with test versions of
future production releases is typical.

September 2010

October 2010

November 2010

September 2011

January 2012

April 2012

September 2012

April 2011

Alpha version 0.1

Alpha version 0.2

Beta version 0.3

Beta version 0.4

Production version 1.0

Production version 1.1

Plan version 2.0

Alpha version 1.9.1

Beta version 1.9.2

Production version 2.0

July 2010

August 2010

Figure 16-9

A time line of test and

production versions for

the RMO customer

support system

Keeping track of versions is complex. Each version needs to be uniquely identified for users
and testers. In applications designed to run under Windows, users typically view the version
information by choosing the About item of the standard Help menu, as shown in Figure 16-11.
Users seeking support or reporting errors use this feature to report the system version to testers
or support personnel.

C6696_16_CTP.4c 2/6/08 1:29 PM Page 629

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Controlling multiple versions of the same system requires sophisticated version control
software. Version control capabilities are normally built into an SCCS. Programmers and sup-
port personnel can extract the current version or any previous version for execution, testing,
or modification. Modifications are saved under a new version number to protect the accuracy
of the historical snapshot.

Beta and production versions must be stored as long as they are installed on any user
machines. Stored versions are used to evaluate future bug reports. For example, when a user
reports a bug in version 1.0, support personnel extract that release from the archive, install it,
and attempt to replicate the user’s error. Feedback provided to the user will be specific to ver-
sion 1.0 even if the most recent production release is a higher-numbered version.

630 ♦ PART 4 IMPLEMENTATION AND SUPPORT

Alpha 0.1—Basic database functionality with simple CRUD capabilities. Handles regular
transactions only, no reports or printing capability.

Alpha 0.2—Full CRUD for all transaction types with screens in near final form, no reports or
printing capability. Includes bug fixes for version 0.1.

Beta 0.3—Screens in final form with simple online help, simple printing of screen contents.
Includes bug fixes for version 0.2.

Beta 0.4—Adds reports and formatted printing. Includes bug fixes for version 0.3.

Production 1.0—Includes all bug fixes for version 0.4.

Production 1.1—Adds keystroke shortcuts for experienced users. Includes all bug fixes for
version 1.0.

Alpha 1.9.1—Adds simple database extraction into a DSS tool for version 1.0.

Beta 1.9.2—Adds user-friendly database navigation and downloads into a DSS tool to
version 1.1. Includes all bug fixes for version 1.9.1.

Production 2.0—Includes all bug fixes for version 1.9.2.

Figure 16-10

Description of versions in

Figure 16-9 for the RMO

customer support system

Figure 16-11

The About box of a typical

Windows application

To help programmers and support personnel, assign version numbers and
enable users to display them.

BEST PRACTICE

C6696_16_CTP.4c 2/6/08 1:29 PM Page 630

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 16 Making the System Operational ♦ 631

QUALITY ASSURANCE

As with any business procedure or system, quality is a major concern with information systems.
Quality assurance (QA) is the process of ensuring that an information system meets minimal
quality standards as determined by users, implementation staff, and management. QA is some-
times equated with finding bugs in program code, but this view is narrow and incomplete. QA
is a set of activities that are performed throughout the SDLC to build systems correctly from the
start and to detect and fix errors as soon as possible. Integrating quality assurance into early proj-
ect activities allows many programming errors to be completely avoided. It also ensures that the
system that is actually developed meets the needs of the users and the organization.

QA activities during analysis concentrate on identifying gaps or inconsistencies in system
requirements. QA activities during design concentrate on satisfying stated requirements and
on making design decisions that will lead to easily implemented, bug-free programs. QA
activities during implementation consist primarily of testing. However, design and imple-
mentation overlap in many projects. Thus, quality assurance activities for design are typically
integrated with testing activities.

QA activities are often shortchanged during design and especially during implementation.
This lapse occurs for several reasons, including the following:

• Schedule pressures can build as the project progresses. QA and testing activities might be
bypassed in an ill-fated attempt to speed up the project.

• QA activities require development personnel to open their work to thorough examination
and criticism by others. Many people are reluctant to do this.

• Many people view testing and test personnel as the bearers of bad news. They mistakenly
believe that no news is good news and that bypassing testing is a way of avoiding bad news.

There is a simple way to prevent human nature and schedule pressure from derailing QA
activities: Formally integrate QA into the project and schedule from the beginning and never
abandon it. Quality standards should be clearly stated, be measurable, and require a product
that doesn’t meet those standards to be fixed no matter what the effect on the schedule or
budget. This approach to QA requires an organizational commitment from top management
to the lowest levels. Unfortunately, top management is often the source of pressure to short-
change QA activities to speed up a project.

Another key factor in firmly establishing QA in the development process is to build an
environment of openness, collegiality, and mutual respect among project participants.
Personnel must be receptive to suggestions and constructive criticism and be willing to provide
suggestions and criticisms to others. QA cannot be effective if it is allowed to devolve into an
exercise in destructive criticism, finger-pointing, and blame assignment.

The cost of fixing an error grows as development proceeds. Errors are best detected during
analysis or design and, thus, never committed to program code. Errors in programs are much
easier to fix in the early stages of implementation than during later acceptance testing or, in
the worst case, after the system is operational. This economic reality makes QA efforts
throughout the SDLC well worth their cost.

TECHNICAL REVIEWS

Most programmers have had many experiences in which they were unable to correct an error
because they “couldn’t see it.” But when the source code containing the error is shown to
another programmer, the other programmer spots it immediately. Common examples include
misspelled keywords, malformed if statement conditions, and illegal or spurious characters in
source code. Such errors happen to programmers at all skill and experience levels.

quality assurance

(QA)
the process of ensuring
that an information
system meets minimal
quality standards

C6696_16_CTP.4c 2/6/08 1:29 PM Page 631

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

A technical review opens the design and implementation process to input from other
people. Technical reviews provide an opportunity for other people to find problems and offer
constructive criticism. Technical reviews vary widely from one organization to another and
sometimes among projects within an organization. Some organizations use informal
processes, while others adopt formal procedures.

A walkthrough is a review by two or more people of the accuracy and completeness of a
model or program. Walkthroughs are most often used during analysis and design, although
they can be used during implementation. During design and implementation, a walkthrough
is a technical review in which two or more developers review work to assess and improve its
quality. Typically, one of the participants has already created a model or module before the
walkthrough. The developer describes its underlying assumptions and operation, and the
other participants provide comments and suggestions.

An inspection is a more formal version of a walkthrough. Participants review and analyze
materials before they meet as a group. Review materials include the model or code to be
inspected, related models (for example, a structure chart or class diagram), and notes on spe-
cific types of errors that could occur. Group meetings usually follow a standard format.

When the group meets, participants play specific roles, including presenter, critic, and secre-
tary. The presenter (usually the developer of the model or code) summarizes the material being
inspected. The critics describe errors or concerns they found before the meeting, and the errors
are discussed by all members of the group. Additional errors or problems might be uncovered
during the discussion. The participants discuss possible solution strategies and agree on a spe-
cific approach. The secretary records all of the errors and the agreed-upon solution strategies.

Walkthroughs and inspections are important QA processes because they can detect errors before
code has been written. Studies have shown that technical reviews accomplish the following:

• Reduce the number of errors that reach testing by a factor of 5 to 10
• Reduce testing costs by approximately 50 percent

Technical reviews reduce development costs and shorten the development schedule because a
large number of errors never are passed along to be coded, tested, diagnosed, or fixed.

Testing and technical reviews each find between 50 and 75 percent of errors. But some
errors are more easily detected by one method or the other. Some errors are rarely found by
one technique but are easily found by the other. Thus, the two techniques are more effective
jointly than individually.

632 ♦ PART 4 IMPLEMENTATION AND SUPPORT

Combine technical reviews and testing to maximize their effectiveness.

BEST PRACTICE

TESTING

Testing is the process of examining a product to determine what defects it contains. To conduct
a test, programmers must have already constructed the software and have well-defined stan-
dards for what constitutes a defect. The developers can test products by reviewing their con-
struction and composition or by exercising their function and examining the results. This
section concentrates on the latter type of testing. This process is shown in Figure 16-12.

Software Testing

An information system is an integrated collection of software components. Components can
be tested individually or in groups, or the entire system can be tested as a whole. Testing com-
ponents individually is called unit testing. Testing components in groups is called integration
testing. Testing entire systems is called system testing. Each type of testing is described in detail
later in this section.

technical review
a formal or informal
review of design or
construction details by a
group of developers

inspection
a formal review of design
or construction details by
a group of developers,
where each person plays
a specific role

C6696_16_CTP.4c 2/6/08 1:29 PM Page 632

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 16 Making the System Operational ♦ 633

The three testing types are each correlated to specific SDLC activities, as shown in
Figure 16-13. A system test examines the behavior of an entire system with respect to techni-
cal and user requirements. These requirements are determined during analysis activities.
During high-level design, the division of the system into high-level components and the
structural design of those components are determined. Integration testing tests the behavior
of related groups of software components. Low-level design is concerned with the internal
construction of individual components. Unit testing tests each individual software compo-
nent in isolation.

Construct
Success Analysis

and Design Exercise
Examine

results

Failure

Figure 16-12

A generic model of

software testing

Analysis

High-level

(architectural)

design

Low-level

(implementation)

design
Construction

Unit

testing

Integration

testing
System

testing

Figure 16-13

The correspondence

between SDLC activities

and various types of

testing

Analysis

High-level

(architectural)

design

Low-level

(implementation)

design

Implementation

Implement

system

tests

Implement

integration

tests

Implement

unit

tests

Develop

integration

tests

Plan

unit

tests

Develop

system

tests

Plan

integration

tests

Plan

system

tests

Figure 16-14

SDLC activities and

related testing activities

Because each testing level is related to a specific SDLC activity, testing can be spread
throughout the life cycle, as illustrated in Figure 16-14. Planning for each type of testing can
occur during its related SDLC activity, and development of specific tests can occur after the
planning is complete. Tests cannot be conducted until relevant portions of the system have
been constructed, however.

An important part of developing tests is specifying test cases and data. A test case is a formal
description of the following:

• A starting state
• One or more events to which the software must respond
• The expected response or ending state

Both starting state and events are represented by a set of test data.
For example, the starting state of a system might represent a particular set of database con-

tents (such as the existence of a particular customer and an order placed by that customer).
The event might be represented by a set of input data items (such as a customer account num-
ber and order number used to query order status). The expected response might be a
described behavior (such as the display of certain information) or a specific state of stored
data (such as a canceled order).

test case
a formal description of a
starting state, one or
more events to which the
software must respond,
and the expected
response or ending state

test data
a set of starting states
and events used to test a
module, a group of
modules, or an entire
system

C6696_16_CTP.4c 2/6/08 1:29 PM Page 633

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Preparing test cases and data is a tedious and time-consuming process. At the program or
module level, every instruction must be executed at least once. Ensuring that all instructions are
executed during testing is a complex problem. Fortunately, automated tools based on proven
mathematical techniques are available to generate a complete set of test cases. See the Watson
and McCabe article in the “Further Resources” section for a thorough discussion of this topic.

Analysis documentation is useful when preparing test cases. If the system was analyzed
and designed with OO techniques, developers prepare test cases for each use case and sce-
nario. Many test cases representing both normal and exceptional processing situations should
be prepared for each scenario.

The correspondence between traditional analysis models and test cases is less clear-cut.
Developers can use the data flow diagrams and event table as the primary guide to prepare
test cases. Developers should prepare multiple test cases for each event, and every process on
every detailed data flow diagram should be exercised by at least one test case.

Unit Testing

Unit testing is the process of testing individual code modules before they are integrated with
other modules. Unit testing is sometimes called module testing, although that term implies
that software units are structured programming modules. In fact, unit testing can be applied to
structured or OO software, and the unit being tested can be a function, subroutine, procedure,
or method (for the remainder of this section, we will use the term module to refer to any of these
programming constructs). Units can also be relatively small groups of interrelated modules that
are always executed as a group. The goal of unit testing is to identify and fix as many errors as
possible before modules are combined into larger software units (such as programs, classes, and
subsystems). Errors become much more difficult and expensive to locate and fix when many
modules are combined.

634 ♦ PART 4 IMPLEMENTATION AND SUPPORT

Calculate pa y
amount

Calculate
base pa y

Calculate
tax es

Calculate
amounts

Calculate
ov er time pa y

Get empl oy ee
pa y data

State tax

C urrent pa y
record

Empl oy ee
pa y data

Ex emptions

State
G ross
pa y

Filing status

F ederal tax Ov er time pa y

H ours
wo rk ed

H ours
wo rk ed

Base pa y

Empl oy ee
pa y data

Emplo y ee ID
number

C urrent
pa y

record

Va lidated
time cards

Time card

Figure 16-15

A portion of a structure

chart for a program to

calculate payroll

unit testing, or

module testing

testing of individual code
modules or methods
before they are
integrated with other
modules

C6696_16_CTP.4c 2/6/08 1:29 PM Page 634

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 16 Making the System Operational ♦ 635

Few modules are designed to operate in isolation. Instead, groups of modules are
designed to execute as an integrated whole. Modules can call other software units to perform
tasks or can be called by other modules. This relationship is easily seen in a structure chart
(see Figure 16-15), although it also exists among methods in OO software. For example, the
module Calculate pay amount is called by the module Calculate amounts, which, in turn, calls
the three modules below it in the structure chart.

If Calculate pay amount is being tested in isolation, two types of testing modules are
required. The first module type is called a driver. A driver simulates the calling behavior of a
module. A driver module implements the following functions:

• Sets the value of input parameters
• Calls the tested module, passing it the input parameters
• Accepts return parameters from the tested module and prints or displays them

Figure 16-16 shows a simple driver module for testing Calculate pay amount. A more complex
driver module might use test data consisting of hundreds or thousands of module inputs and

module main()

// Driver Module to Test CalculatePayAmount()
{

// Declare Module Parameters

record EmployeePayData {
integer EmployeeIDNumber;
boolean SalariedEmployee;
real PayRate;
char[2] State;
integer FilingStatus;
integer Exemptions;

}
record TimeCard {

integer EmployeeIDNumber;
date StartDate;
array[7] of real HoursWorked;

}
record CurrentPayRecord {

real BasePay;
real OvertimePay;
real FederalTax;
real StateTax;

}

// Set Input Parameter Values

EmployeeData.EmployeeNumber=123456789;
EmployeeData.SalariedEmployee=false;
EmployeeData.PayRate=32.50;
EmployeeData.State="AZ";
EmployeeData.FillingStatus=1;
EmployeeData.Exemptions=5;
TimeCard.EmployeeIDNumber=123456789;
TimeCard.StartDate=05/21/2005;
TimeCard.HoursWorked[0]=0.0;
TimeCard.HoursWorked[1]=0.0;
TimeCard.HoursWorked[2]=8.5;
TimeCard.HoursWorked[3]=7.5;
TimeCard.HoursWorked[4]=8.0;
TimeCard.HoursWorked[5]=8.0;
TimeCard.HoursWorked[6]=9.0;

// Call Tested Module

call CalculatePayAmount (EmployeeData, TimeCard, CurrentPayRecord);

// Print Results

print(EmployeeData, TimeCard, CurrentPayRecord);
}

Figure 16-16

A driver module for

testing Calculate pay
amount

driver
a module, developed for
unit testing, that simulates
the calling behavior of a
module that hasn’t yet
been developed

C6696_16_CTP.4c 2/6/08 1:29 PM Page 635

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

correct outputs stored in a file or database. The driver would loop through the test data and
repeatedly call Calculate pay amount, check the return parameter against the expected value,
and print or display warnings of any discrepancy.

Using a driver enables testing of a subordinate module before modules that call it have
been written. Drivers are used extensively in bottom-up development because child modules
(or methods) are developed and unit-tested before their parents are developed.

The second type of testing module used to perform unit tests is called a stub. A stub simu-
lates the behavior of a called module that hasn’t yet been written. A unit test of Calculate pay
amount would require three stub modules, one for each of the modules that appear below it in
Figure 16-15. Stubs are relatively simple modules that usually have only one or two lines of exe-
cutable code. Each of the stubs used to test Calculate pay amount can be implemented as a state-
ment that simply returns a constant regardless of the parameters passed as input. Figure 16-17
shows sample code for each of the three stub modules.

636 ♦ PART 4 IMPLEMENTATION AND SUPPORT

Module CalculateBasePay(HoursWorked,BasePay)

// Stub Module

array[7] of real HoursWorked;
real BasePay;
{

BasePay=1000.00;
return;

}

Module CalculateOvertimePay(HoursWorked,OvertimePay)

// Stub Module

array[7] of real HoursWorked;
real OvertimePay;
{

OvertimePay=125.00;
return;

}

Module CalculateTaxes(GrossPay,FilingStatus,State,Exemptions,FederalTax,StateTax)

// Stub Module

real GrossPay;
integer FilingStatus;
char[2] State;
integer Exemptions;
real FederalTax;
real StateTax;
{

FederalTax=275.00;
StateTax=75.00;
return;

}

Figure 16-17

Stub modules used for

testing Calculate pay
amount

Stubs are needed for top-down development. In fact, top-down development often begins by
writing a stub for every module or method in a program or class. Individual stub modules and
methods are then replaced with fully implemented code as it is developed.

Integration Testing

An integration test tests the behavior of a group of modules or methods. The purpose of an
integration test is to identify errors that were not or could not be detected by unit-testing indi-
vidual modules or methods. Such errors might result from a number of problems, including
the following:

• Interface incompatibility. For example, a caller module passes a variable of the wrong
data type to a subordinate module.

stub
a module, developed for
testing, that simulates
the execution or behavior
of a module that hasn’t
yet been developed

integration test
a test of the behavior of a
group of modules or
methods

C6696_16_CTP.4c 2/6/08 1:29 PM Page 636

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 16 Making the System Operational ♦ 637

• Parameter values. A module is passed or returns a value that was unexpected (such as a
negative number for a price).

• Run-time exceptions. A module generates an error such as “out of memory” or “file
already in use” due to conflicting resource needs.

• Unexpected state interactions. The states of two or more modules interact to cause com-
plex failures (such as an order class method that operates correctly for all possible cus-
tomer object states except one).

These are some of the most common integration testing errors, but there are many other pos-
sible errors and causes.

After an integration error has been detected, the responsibility for incorrect behavior must
be traced to a specific module or modules. The person responsible for performing the inte-
gration test is generally also responsible for identifying the cause of the error. After the error
has been traced to a particular module, the programmer who wrote the module is asked to
rewrite it to correct the error.

Integration testing of structured software is straightforward but not necessarily easy to
implement. Most structured modules are called by only a single parent module. In addition,
most structured modules do not store a permanent state within themselves. Internal variables
are always reinitialized to the same values each time the module is called. The combination
of these characteristics allows test personnel (often with the assistance of automated testing
tools) to generate test cases and data that exercise all possible control paths through the soft-
ware being tested. Confidence that testing has revealed important errors increases with the
number of control paths that are tested.

In contrast, integration testing of OO software is much more complex and not as well
understood. There is no clear hierarchical structure to an OO program. An OO program con-
sists of a set of interacting objects that can be created or destroyed during execution. Object
interactions and control flow are dynamic and complex.

Additional factors that complicate OO integration testing include the following:

• Methods can be (and usually are) called by many other methods, and the calling meth-
ods can be distributed across many classes.

• Classes can inherit methods and state variables from other classes.
• The specific method to be called is dynamically determined at run time based on the

number and type of message parameters.
• Objects can retain internal variable values (that is, the object state) between calls. The

response to two identical calls can be different due to state changes that result from the
first call or occur between calls.

The combination of these factors makes it difficult to determine an optimal testing order.
The factors also make it difficult to predict the behavior of a group of interacting methods
and objects. Thus, developing and executing an integration test plan for OO software are
much more complex than for structured software. Specific methods and techniques for deal-
ing with that complexity are well beyond the scope of this book. See the “Further Resources”
for OO software testing references.

A system test is an integration test of an entire system or independent subsystem. System
testing is normally first performed by developers or test personnel to ensure that the system
does not malfunction in obvious ways and that the system fulfills the developers’ understand-
ing of user requirements. Later testing by users confirms whether the system does indeed ful-
fill their requirements. If a system is developed in many iterations, system testing is usually
performed at the end of each iteration to identify significant issues such as performance prob-
lems that must be addressed in the next iteration.

A build and smoke test is a system test that is typically performed daily. The system is
completely compiled and linked (built), and a battery of tests is performed to see whether

system test
a test of the behavior of
an entire system or
independent subsystem

build and

smoke test
a system test that is
performed daily

C6696_16_CTP.4c 2/6/08 1:29 PM Page 637

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

anything malfunctions in an obvious way (“smokes”). Build and smoke tests are commonly
associated with iterative or rapid development. However, build and smoke tests can also be
used in more traditional projects if top-down development is employed.

Build and smoke tests are valuable because they provide rapid feedback regarding signifi-
cant problems. Any problem that occurs during a build and smoke test must be the result of
code modified or added since the previous test. Daily testing ensures that errors are found
quickly and that they can be easily tracked to their source. Less frequent testing provides
rapidly diminishing benefits because more code has changed and errors are more difficult to
track to their source.

Usability Testing

A usability test is a test to determine whether a module, method, class, subsystem, or system
meets user requirements. Because there are many types of requirements, both functional and
nonfunctional, many types of usability tests are performed at many different times.

The most common type of usability test evaluates functional requirements and the qual-
ity of a user interface. Users interact with a portion of the system to determine whether it
functions as expected and whether the user interface is easy to use. Such tests are conducted
frequently as user interfaces are developed to provide rapid feedback to developers for
improving the interface and correcting any errors in the underlying software components.

A performance test is a system test that determines whether a system can meet time-based
performance criteria such as response time or throughput. Response time requirements spec-
ify desired or maximum allowable time limits for software responses to queries and updates.
Throughput requirements specify the desired or minimum number of queries and transac-
tions that must be processed per minute or hour.

Performance testing can be conducted with unit or integration testing, but it is more com-
monly integrated with system testing. Performance tests are complex because they can involve
multiple programs, subsystems, computer systems, and network infrastructure. They require a
large suite of test data to simulate system operation under normal or maximum load.
Diagnosing and correcting performance test failures are also complex. Bottlenecks and underper-
forming components must first be identified. Corrective actions can include application soft-
ware tuning or reimplementation, hardware or system software reconfiguration, and upgrade or
replacement of underperforming components.

An acceptance test is a system test that determines whether the system fulfills user
requirements. Acceptance testing is typically the last round of testing before a system is
handed over to its users. Acceptance testing is a very formal activity in most development
projects. Details of acceptance tests are sometimes included in the request for proposal (RFP)
and procurement contract when a new system is built by or purchased from an external party.

Who Tests Software?

There are many participants in the testing process. Their exact number and role depend on the
size of the project and other project characteristics. Specific participants include these people:

• Programmers
• Users
• Quality assurance personnel

Programmers are generally responsible for unit-testing their own code prior to integrating
it with modules written by other programmers. In some organizations, programmers are
assigned a testing buddy to help them test their own code. The name derives from program-
mers who are assigned the specific responsibility for testing their buddy’s code prior to inte-
gration testing. Having a different programmer test the code usually results in more errors
being found.

Users are primarily responsible for beta testing and acceptance testing. When beta ver-
sions are developed, they are distributed to a group of users for testing over a period of days,
weeks, or months. Volunteers are frequently used, although they are not always desirable

638 ♦ PART 4 IMPLEMENTATION AND SUPPORT

usability test
a test to determine
whether a module,
method, class,
subsystem, or system
meets user requirements

performance test
a system test that
determines whether a
system can meet time-
based performance
criteria

response time
the desired or maximum
allowable time limit for
software response to a
query or update

throughput
the desired or minimum
number of queries and
transactions that must
be processed per minute
or hour

acceptance test
a system test that
determines whether the
system fulfills user
requirements

testing buddy
a programmer assigned
to test code written by
another programmer

C6696_16_CTP.4c 2/6/08 1:29 PM Page 638

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 16 Making the System Operational ♦ 639

because they tend to be more computer literate and have a higher tolerance for malfunctions
than ordinary users. These characteristics might result in higher-quality feedback for some
problems but a lack of feedback for other problems.

Acceptance testing is normally conducted by users with assistance from IS development or
operations personnel. The rigor and importance of acceptance tests require participation by a
large number of users across a wide range of user levels (for example, data-entry clerks and the
managers who will “own” the system). Although IS personnel can perform system setup and
troubleshooting functions, it is ultimately up to the users to accept or reject the system.

In a large system development project, a separate quality assurance group or organization is
usually formed. The QA group is responsible for all aspects of testing except unit testing and
acceptance testing. The QA group’s responsibilities and activities typically include the following:

• Developing a testing plan
• Performing integration and system testing
• Gathering and organizing user feedback on alpha and beta software versions and identifying

needed changes to the system design or implementation

To maintain objectivity and independence, the QA group normally reports directly to the project
manager or to a permanent IS manager.

DATA CONVERSION

An operational system requires a fully populated database to support ongoing processing. For
example, the RMO order-entry subsystem relies on stored information about catalogs, prod-
ucts, customers, and previous orders. Implementation staff must ensure that such informa-
tion is present in the database at the moment the subsystem becomes operational.

Data needed at system startup can be obtained from the following sources:

• Files or databases of a system being replaced
• Manual records
• Files or databases of other systems in the organization
• User feedback during normal system operation

REUSING EXISTING DATABASES

Most new information systems replace or augment an existing manual or automated system.
In the simplest form of data conversion, the old system database is used directly by the new
system with little or no change to the database structure. Reusing an existing database is fairly
common because of the difficulty and expense of creating new databases from scratch, espe-
cially when a single database often supports multiple information systems as in today’s enter-
prise application systems.

Although old databases are commonly reused in new or upgraded systems, some changes
to database content are usually required. Typical changes include adding new classes or enti-
ties, adding new attributes or relationships, and modifying existing attributes or relationships.
Modern database management systems (DBMSs) usually allow database administrators to
modify the structure of a fully populated database. Simple changes such as adding new attri-
butes or changing attribute types can be performed entirely by the DBMS.

RELOADING DATABASE CONTENTS

More complex changes to database structure might require reloading data after the change. In that
case, implementation staff must develop programs to alter data after the database has been modi-
fied. Figure 16-18 shows two possible approaches to reloading data. The first approach initializes a
new database and copies the contents of the old database to it. The conversion program translates
data stored within the former database structure into the newly modified database structure.

C6696_16_CTP.4c 2/6/08 1:29 PM Page 639

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The second approach uses a program or DBMS utility to extract and delete data from an

existing database and store it in a temporary data store. The database structure is then modi-

fied, and a second DBMS utility or program is used to reload the modified database. The first

approach is simpler than the second, but it requires sufficient data storage to hold both data-

bases temporarily. The second approach is required if there is insufficient data storage to hold

two complete sets of data.

Many DBMSs provide a rich set of import utilities to extract and load data from existing

databases, files, or scanned documents. DBMS developers provide such utilities because sys-

tem developers are more likely to adopt a DBMS that eases the process of importing data

from other sources. If DBMS import and export utilities are inadequate for data conversion,

developers must construct conversion programs that will be used only once. Although con-

version programs are not part of the operational system, they must be constructed and tested

in the same manner as operational software.

CREATING NEW DATABASES

If the system being developed is entirely new or if it replaces a manual system, initial data must

be obtained from manual records or from other automated systems in the organization. Data

from manual records can be entered using the same programs being developed for the opera-

tional system. In that case, data-entry programs are usually developed and tested as early as possi-

ble. Initial data entry can be structured as a user training exercise. In addition, data from manual

records can also be scanned into an optical character recognition program and then entered into

the database using custom-developed conversion programs or a DBMS import utility.

Some data might already be stored in other automated systems within the organization.

For example, when implementing a new order-entry system, some product data might already

be present in a manufacturing planning and control system, and some customer data might

already be present in an existing billing system. Copying such data to a new database is simi-

lar to reloading a modified database from an old database or backup data store.

640 ♦ PART 4 IMPLEMENTATION AND SUPPORT

(1)
Create new
database

(2)
M odify database

structure

(2)
Copy and

convert data

Database

(1)
Extract and
delete data

(3)
Convert and
reload data

Unload, modify , and reload ex isting database

Cop y data content fr om old database to ne w database

Ne w
database

Ol d
database

Te mporary
data store

Figure 16-18

Two approaches to

reloading database

content after a structural

modification

C6696_16_CTP.4c 2/6/08 1:29 PM Page 640

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 16 Making the System Operational ♦ 641

Figure 16-19 shows a complex data conversion process that draws input from a variety
of sources. Data is input using a mix of manual data entry, optical character recognition,
conversion programs, and DBMS import and export utilities. Data conversion processes of
this complexity are common in large system development projects.

DBMS
export utilit y

Copy and
convert data

Optical character
recognition

Copy and
convert data

DBMS
import utilit y

Manual
data entry

P aper records

P aper records

Ne w
database

Te mporary
data store

Old database

Related
subsystem
database

Te mporary
data store

DBMS
import utilit y

In some cases, it might be possible to begin system operation with a partially or com-
pletely empty database. For example, a customer order-entry system need not have existing
customer information loaded into the database. Customer information could be added the
first time a customer places an order, based on a dialog between a telephone order-entry clerk
and the customer. Adding data as it is encountered reduces the complexity of data conversion
but at the expense of slower processing of initial transactions.

INSTALLATION

After a new system has been developed and tested, it must be installed and placed into opera-
tion. Installing a system and making it operational are complex because there are many
conflicting constraints, including cost, customer relations, employee relations, logistical

Figure 16-19

A complex data

conversion example

C6696_16_CTP.4c 2/6/08 1:29 PM Page 641

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

complexity, and overall exposure to risk. Some of the more important issues to consider when
planning installation include the following:

• Incurring costs of operating both systems in parallel
• Detecting and correcting errors in the new system
• Potentially disrupting the company and its IS operations
• Training personnel and familiarizing customers with new procedures

Different approaches to installation represent different trade-offs among cost, complexity,
and risk. The most commonly used installation approaches are as follows:

• Direct installation
• Parallel installation
• Phased installation

Each approach has different strengths and weaknesses, and no one approach is best for all
systems. Each approach is discussed in detail here.

DIRECT INSTALLATION

In a direct installation, the new system is installed and quickly made operational, and
any overlapping systems are then turned off. Direct installation is also sometimes called
immediate cutover. Both systems are concurrently operated for only a brief time (typi-
cally a few days or weeks) while the new system is being installed and tested. Figure 16-20
shows a time line for direct installation.

642 ♦ PART 4 IMPLEMENTATION AND SUPPORT

Ne w system
installed and
configured

Old system in operation

Ne w system in operation

O ld system
terminated

Tim e

Figure 16-20

Direct installation and

cutover

The primary advantage of direct installation is its simplicity. Because the old and new sys-
tems aren’t operated in parallel, there are fewer logistical issues to manage and fewer resources
required. The primary disadvantage of direct installation is its risk. Because older systems are
not operated in parallel, there is no backup in the event that the new system fails. The magni-
tude of the risk depends on the nature of the system, the cost of workarounds in the event of a
system failure, and the cost of system unavailability or less-than-optimal system function.

Direct installation is typically used under one or both of the following conditions:

• The new system is not replacing an older system (automated or manual).
• Downtime of days or weeks can be tolerated.

If neither condition applies, parallel or phased installation is usually preferable to minimize
the risk of system unavailability.

PARALLEL INSTALLATION

In a parallel installation, the old and new systems are both operated for an extended
period of time (typically weeks or months). Figure 16-21 illustrates the time line for parallel

direct installation,

or immediate

cutover

an installation method
that installs a new
system, quickly makes it
operational, and
immediately turns off any
overlapping systems

parallel

installation
an installation method
that operates both the
old and new systems for
an extended time period

C6696_16_CTP.4c 2/6/08 1:29 PM Page 642

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 16 Making the System Operational ♦ 643

installation. Ideally, the old system continues to operate until the new system has been thor-
oughly tested and determined to be error-free and ready to operate independently. As a prac-
tical matter, the time allocated for parallel operation is often determined in advance and
limited to minimize the cost of dual operation.

Installed and
configured

Old system in operation

Ne w system in operation

P arallel operation
and testing

Tim e

Figure 16-21

Parallel installation and

operation

The primary advantage of parallel installation is a relatively low risk of system failure and
the negative consequences that might result from that failure. If both systems are operated
completely (that is, using all data and exercising all functions), the old system functions as a
backup for the new system. Any failure in the new system can be mitigated by relying on the
old system.

The primary disadvantage of parallel installation is cost. During the period of parallel
operation, the organization pays to operate both systems. Extra costs associated with operat-
ing two systems in parallel include the following:

• Hiring temporary personnel or temporarily reassigning existing personnel
• Acquiring extra space for computer equipment and personnel
• Increasing managerial and logistical complexity

Unless the operational costs of the new system are substantially less than that of the old system,
the combined operating cost is typically 2.5 to 3 times the cost of operating the old system alone.

Parallel operation is generally best when the consequences of a system failure are
severe. Parallel operation substantially reduces the risk of a system failure through redundant
operation. The risk reduction is especially important for “mission-critical” applications such
as customer service, production control, basic accounting functions, and most forms of
online transaction processing. Few organizations can afford any significant downtime in such
important systems.

Full parallel operation might be impractical for any number of reasons, including the
following:

• Inputs to one system might be unusable by the other, and it might not be possible to use
both types of inputs.

• The new system might use the same equipment as the old system (for example, computers,
I/O devices, and networks), and there might not be sufficient capacity to operate both systems.

• Staffing levels might be insufficient to operate or manage both systems at the same time.

When full parallel operation is not possible or feasible, a partial parallel operation might
be employed instead. Possible modes of partial parallel operation include the following:

• Processing only a subset of input data in one of the two systems. The subset could
be determined by transaction type, geography, or sampling (for example, every 10th
input transaction).

C6696_16_CTP.4c 2/6/08 1:29 PM Page 643

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

• Performing only a subset of processing functions (such as updating account history but
not printing monthly bills).

• Performing a combination of data and processing function subsets.

Partial parallel operation always entails the risk that significant errors or problems will go
undetected. For example, parallel operation with partial input increases the risk that errors
associated with untested inputs will not be discovered.

PHASED INSTALLATION

In a phased installation, the system is installed and brought into operation in a series of
steps or phases. Each phase adds components or functions to the operational system. During
each phase, the system is tested to ensure that it is ready for the next phase. Phased installa-
tion can be combined with parallel installation, particularly when the new system will take
over the operation of multiple existing systems.

Figure 16-22 shows a phased installation with both direct and parallel installation of individ-
ual phases. The new system replaces two existing systems. The installation is divided into three
phases. The first phase is a direct replacement of one of the existing systems. The second and third
phases are different parts of a parallel installation that replace the other existing system.

644 ♦ PART 4 IMPLEMENTATION AND SUPPORT

Old system A
in operatio n

Phase 2
installed

Old system B in operatio n

Ne w system phase 2 in operatio n

Ne w system phase 1 in operatio n Phase 1
installed

Ne w system phase 3
in operatio n

Phase 3
installed

Phase 1
begins

operation

Phase 3 parallel
operation and testing

Phase 2 parallel
operation and testing

Figure 16-22

Phased installation with

direct cutover and

parallel operation

There is no single method for performing phased installation. Installation details such as
the composition of specific phases and their order of installation vary widely from one system
to another. These specifics determine the number of installation phases, the order of installa-
tion, and the parts of the new system that are operated in parallel with existing systems.

phased

installation
an installation method
that installs a new
system and makes it
operational in a series of
steps or phases

C6696_16_CTP.4c 2/6/08 1:29 PM Page 644

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 16 Making the System Operational ♦ 645

To reduce risk, combine phased and parallel installation whenever
possible.

BEST PRACTICE

The primary advantage of phased installation is reduced risk. Risk is reduced because failure
of a single phase is less problematic than failure of an entire system. The primary disadvantage
of phased installation is increased complexity. Dividing the installation into phases creates more
activities and milestones, thus making the entire process more complex. However, each individ-
ual phase contains a smaller and more manageable set of activities. If the entire system is simply
too big or complex to install at one time, the reduced risks of phased installation outweigh the
increased complexity inherent in managing and coordinating multiple phases.

Phased installation is most useful when a system is large, complex, and composed of rela-
tively independent subsystems. If the subsystems are not substantially independent, it is diffi-
cult or impossible to define separate installation phases. System size and complexity might
also be too great for an “all at once” installation to be feasible. In that case, there is really no
choice but to use phased installation.

PERSONNEL ISSUES

Installing a new system places significant demands on personnel throughout an organization.
Installation typically involves demanding schedules, rapid learning and adaptation, and high
stress. Planning should anticipate these problems and take appropriate measures to mitigate
their effects.

New system installation usually stretches IS personnel to their limits. Many tasks must be
performed in little time. The problem is most acute in parallel installation, in which person-
nel must operate both the old and new systems. Often, development and customer support
personnel must be temporarily reassigned to provide sufficient manpower to operate both
systems. Reassignment may reduce progress on other ongoing projects and reduce support
and maintenance activities for other systems.

Temporary and contract personnel can be hired to increase available manpower during an
installation. Two types are particularly useful:

• Personnel with experience in hardware and software installation and configuration
• Personnel with experience (or who can be trained) to operate the old system

Installation may require technical skills that are in short supply within the organiza-
tion. In that case, hiring contractors to assist in hardware and software installation is a
necessity. Hardware and software specialists can be contracted directly from vendors or
from IS consulting firms.

Hiring temporary employees to operate the old system during a parallel installation has
several benefits. First, it provides the extra manpower needed to operate both systems.
Second, it frees permanent employees for training and new system operations. Temporary
personnel are often hired several months in advance, trained to operate the old system, and
employed for the duration of parallel operation. If problems occur with the new system,
employment contracts can be extended until the old system can be safely phased out.

Another personnel issue that must be considered is employee productivity. All new sys-
tems have a learning curve for users and system operators. Both require training before the
installation begins, but no matter how good the training, users and operators require some
time (typically a few months) to reach their peak efficiency with a new system. Manpower
requirements are higher during that time, as is the general level of employee stress.

C6696_16_CTP.4c 2/6/08 1:29 PM Page 645

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

DOCUMENTATION

Preparing documentation is an important but frequently overlooked activity during imple-
mentation. Documentation provides information to users on how to operate and maintain
a system. Documentation also provides information needed for future modifications or
reimplementation.

Rapid technology changes over the last two decades have altered the nature of documenta-
tion. Prior to the 1980s, most documentation was printed on paper and organized into bound or
looseleaf books. Automated documentation is now the norm, and formats include the following:

• Electronic documents, such as documents stored in Microsoft Word or Adobe Acrobat files
• Hyperlinked documents, such as documents formatted for Web browser viewing with

embedded links among documentation components
• Online documentation stored on a vendor Web site that can be viewed with a Web

browser or downloaded and installed on a local computer system
• Embedded documentation, such as manuals, tutorials, and multimedia presentations

included on a CD or DVD and installed as an integral part of an application
• Electronic system models, such as text and graphics formatted and stored in graphics file

formats such as GIF, JPEG, and Visio
• Tool-specific system models, such as those developed with integrated programming envi-

ronments and DBMS tools

Electronic documents can be distributed in a number of standard formats, including
Adobe Acrobat, Windows help files, and standard Web pages. Choosing a standard format
ensures that users have or can easily obtain the software to view the documentation.
Hyperlinked documents enable users to navigate rapidly among related topics. Storing docu-
mentation on Web sites allows vendors to make updates easily and allows users to share a sin-
gle copy. Embedded documentation enables users to access information through the
application and provides features such as context-sensitive help.

Electronic and tool-specific system models are primarily intended for software developers’
use. Generic model formats (such as ordinary text and GIF images) can be formatted as any
type of electronic format. Tool-specific models must generally be accessed via specific soft-
ware tools (for example, viewing a model generated by a DBMS usually requires a viewer sup-
plied with the DBMS). However, most development tools allow models to be exported to
other formats (such as Acrobat or Microsoft Word).

Documentation can be loosely classified into two types:

• System documentation—descriptions of system functions, architecture, and con-
struction details

• User documentation—descriptions of how to interact with and maintain the system

System documentation is generated throughout the SDLC as outputs of each life cycle activ-
ity. User documentation is created during implementation. The development team cannot
create user documentation earlier because many details of the user interface and system oper-
ation either haven’t yet been determined or may change during development.

SYSTEM DOCUMENTATION

System documentation serves one primary purpose: providing information to designers and
developers who will maintain or reimplement the system. Most or all of the documentation
needed for this purpose is generated as a by-product of analysis, design, and implementation
activities. Figure 16-23 shows three SDLC activities and the system documentation produced
or modified in each. The documentation produced by each activity is useful for future main-
tenance or upgrades.

646 ♦ PART 4 IMPLEMENTATION AND SUPPORT

system

documentation
descriptions of system
functions, architecture,
and construction details,
as used by maintenance
personnel and future
developers

user

documentation
descriptions of how to
interact with and
maintain the system, as
used by end users and
system operators

C6696_16_CTP.4c 2/6/08 1:29 PM Page 646

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 16 Making the System Operational ♦ 647

Source code is the most frequently used documentation because it is the most direct link
to the system’s executable software. Direct changes to binary code are complex and expensive,
so changing and recompiling source code is the only realistic method of altering a system’s
behavior. After a system is changed, test data is used to check the system. Rerunning old tests
with old test data helps determine whether a change in one part of the system has acciden-
tally “broken” some other part of the system.

Source code can be difficult (and, thus, inefficient) for human beings to use as documen-
tation because it is entirely textual and often poorly commented. Important types of system
information—such as how programs interact and what user needs a program satisfies—are
usually not documented within source code. Yet such information is needed when evaluating
significant changes in systems design or function and when tracing errors that flow from one
program to another via shared data. Information needed to perform these tasks is readily
available in analysis and design models.

Design models tend to be used more frequently than analysis models because design param-
eters change more often than system requirements. Examples of maintenance changes that
require design models but not analysis models include redeploying existing programs or data-
bases to new hardware, fixing bugs in individual programs, and optimizing the performance of
an existing distributed system. Such changes alter the corresponding design models (for exam-
ple, the system flowchart or package diagram) but do not change analysis models.

Analysis models do change when user requirements are altered. For example, adding a new
transaction type or an entirely new processing subsystem changes the data flow diagram or
domain class diagram. It also changes other analysis models such as the entity-relationship dia-
gram, event list, and use cases.

System documentation must be actively managed to remain effective. It must be stored in
an accessible location and form, retrieved when necessary for maintenance changes, and
updated after changes have been implemented. In large organizations with many informa-
tion systems, managing the documentation is a very formal process. Large organizations typi-
cally have one person responsible for archiving and retrieving documentation and for
enforcing documentation standards.

System documentation

Event list

Analysis

Design

Implementation

Life cycle
activity Traditional approach Object-oriented approach

Entity-relationship diagram
Data flow diagram
Process description
Data flow and element definition

Domain class diagram
Use case
Activity diagram
System sequence diagram

System flowchart
Structure chart

Design class diagram
Interaction diagram
Communication diagram
Package diagram
State machine diagram

Module or method pseudocode
Database schema diagram

Program source code
Database schema source code
Test data

Figure 16-23

Life cycle activities and

related system

documentation

C6696_16_CTP.4c 2/6/08 1:29 PM Page 647

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Failure to adequately maintain system documentation compromises the value of a sys-
tem. Systems with inadequate documentation are difficult or impossible to maintain, thus
increasing the likelihood that a system will be prematurely scrapped or reimplemented.
Maintaining documentation extends the useful life of a productive asset.

System documentation mirrors the system itself. That is, any information contained within
system documentation can also be obtained by directly examining the system. For example,
programmers can determine the entities and relationships of a relational database by examin-
ing the SQL statements that describe the database schema. Programmers can also determine
the modular structure of a traditional program or the classes within an OO program by directly
examining the program source code. If the source code is unavailable, the program structure
can also be determined from executable code, although the process is much more difficult.

As changes are made to the system, its documentation must also be updated, however. If
documentation is not updated, it is inconsistent with the system and useless to future design-
ers and maintenance programmers. Making documentation an integral part of the installed
system minimizes or eliminates inconsistency because updates to the system automatically
update the documentation. Some tools—in particular, visual modeling tools and reverse-
engineering tools—can simplify documentation and help ensure its accuracy.

With a visual modeling tool, the system is built automatically from design models and
stored by the visual modeling tool. Design models, in turn, are built automatically (or nearly
so) based on analysis models. To implement a system change, a programmer modifies an
analysis or design model and then regenerates the installed system. The visual modeling tool
automatically maintains consistency among the installed system and the models. As long as
only the models are changed (instead of the source or executable code), the models and sys-
tem will always be consistent.

A reverse-engineering tool can generate system models by examining source code. For
example, such a tool can generate a class diagram by examining OO programs, and it can gen-
erate a structure chart by examining a program written in a procedural programming lan-
guage. If a reverse-engineering tool is powerful and reliable enough to generate all types of
system documentation, there is no need to maintain a separate store of documentation. The
source code itself is the documentation, and the reverse-engineering tool generates other
forms of documentation on demand.

Both visual modeling and reverse-engineering tools are highly specialized to specific oper-
ating environments (such as programming languages, database management systems, and
operating systems). They also tend to be expensive and to have steep learning curves. As a
result, they aren’t used as often as you might think. Thus, for many systems, system documen-
tation must still be maintained separately and manually.

USER DOCUMENTATION

User documentation provides ongoing support for end users of the system. It primarily
describes routine operation of the system, including functions such as data entry, output gen-
eration, and periodic maintenance. Topics typically covered include the following:

• Software startup and shutdown
• Keystroke, mouse, or command sequences required to perform specific functions
• Program functions required to implement specific business procedures (for example, the

steps followed to enter a new customer order)
• Common errors and ways to correct them

For ease of use, user documentation includes a table of contents, a general description of the
purpose and function of the program or system, a glossary, and an index.

User documentation for modern systems is almost always electronic and is usually an
integral part of the application. Most modern operating systems provide standard facilities
to support embedded documentation. Figure 16-24 shows electronic user documentation of

648 ♦ PART 4 IMPLEMENTATION AND SUPPORT

C6696_16_CTP.4c 2/6/08 1:29 PM Page 648

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 16 Making the System Operational ♦ 649

a typical Windows application. The left pane displays the table of contents, and the user can
access an index or search engine by clicking the appropriate tab at the top. The right pane
displays individual pages of user documentation. The sample page shows an embedded glos-
sary definition (in green) and two hyperlinks (in blue).

User documentation is an important organizational asset. Unfortunately, many organiza-
tions fail to prepare comprehensive high-quality user documentation for internally developed
systems. Some of the reasons for this problem include the following:

• The assumption that trained programmers can examine source code, figure out how the
system works, and train users as needed

• The assumption that the users trained during system implementation will informally pass
on their knowledge to future users

• The lack of resources and special skills required to develop documentation and keep it up
to date

As discussed in the previous section, source code is a poor form of system documentation.
But it is an even worse form of indirect user documentation. Although source code provides a
detailed instruction-by-instruction view of how pieces of a system work, it provides little or
no information about how those pieces interact and how the entire system functions within a
specific context. Supplementing source code with other forms of system documentation does
provide other critical information. But even then, figuring out how a system works based only
on system documentation is slow and error-prone.

Knowledge of how to use a system is as important an asset as the system itself. After
initial training is completed, that practical knowledge is stored in the minds of end users.
But experience such as that is difficult to maintain or effectively transfer to other users.
Employee turnover, reassignment, and other factors make direct person-to-person transfer

Figure 16-24

Sample Windows Help

display

C6696_16_CTP.4c 2/6/08 1:30 PM Page 649

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

of operational knowledge difficult and uncertain. In contrast, written or electronic documentation
is easier to access and far more permanent.

Developing good user documentation requires special skills and considerable time and
resources. Writing clearly and concisely, developing effective presentation graphics, organizing
information for easy learning and access, and communicating effectively with a nontechnical
audience are skills for which there is high demand and limited supply. Development takes time,
and high-quality results are achieved only with thorough review and testing. Unfortunately,
preparing user documentation is often left to technicians lacking in one or more necessary skills.
Also, preparation time, review, and testing are often shortchanged because of schedule overruns
and the last-minute rush to tie up all the loose ends of implementation.

TRAINING AND USER SUPPORT

Good documentation can reduce training needs as well as the frequency of support requests.
But some training before and support after installation is almost always required. Remember,
users are part of the system, too! Without training, users would slowly work their own way up
the learning curve, error rates would be high, and the system would operate well below peak
efficiency. Training allows users to be productive as soon as the system becomes operational.
Support activities ensure continuing user productivity long after installation.

There are two classes of users—end users and system operators—who must be considered
for documentation, training, and support. End users are people who use the system from day to
day to achieve the system’s business purpose. System operators are people who perform admin-
istrative functions and routine maintenance to keep the system operating. Figure 16-25 shows
representative activities for each role. In smaller systems, a single person might fill both roles.

650 ♦ PART 4 IMPLEMENTATION AND SUPPORT

End user activities System operator activities

Creating records or transactions Starting or stopping the system

Modifying database contents Querying system status

Generating reports Backing up data to archive

Querying database Recovering data from archive

Importing or exporting data Installing or upgrading software

Figure 16-25

Typical activities of end

users and system

operators

Training and support activities vary with the target audience. Audience characteristics that
affect training include the following:

• Frequency and duration of system use
• Need to understand the system’s business context
• Existing computer skills and general proficiency
• Number of users

In general, end users use the system frequently and for extended periods of time, and sys-
tem operators interact with the system infrequently and usually for short periods. End users
solve a particular business problem with the system or implement specific business proce-
dures. System operators are usually computer professionals with limited knowledge of the
business processes that the system supports. End-user computer skill levels vary widely,
whereas system operators typically have higher and more uniform skill levels. Also, the num-
ber of end users is generally much larger than the number of system operators.

Training for end users must emphasize hands-on use and application of the system for a
specific business process or function, such as order entry, inventory control, or accounting.
If the users are not already familiar with those procedures, training must also include them.
Widely varying skill and experience levels call for at least some hands-on training, including

C6696_16_CTP.4c 2/6/08 1:30 PM Page 650

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 16 Making the System Operational ♦ 651

practice exercises, questions and answers, and one-on-one tutorials. Self-paced training
materials can fill some of this need, but complex systems usually require some face-to-face
training also. The relatively large number of end users makes group training sessions feas-
ible, and a subset of well-qualified end users can be trained and then pass on their knowl-
edge to other users.

System operator training can be much less formal when the operators are not end users.
Experienced computer operators and administrators can learn most or all they need to know
by self-study. Thus, formal training sessions might not be required. Also, the relatively small
number of system operators makes one-on-one training feasible, if it is necessary.

Determining the best time to begin formal training can be difficult. On one hand, early
training provides plenty of time for learning and can ensure that users “hit the ground run-
ning.” On the other hand, starting early can be frustrating to both users and trainers because
the system might not be stable or complete. End users can quickly become upset when try-
ing to learn on a buggy, crash-prone system with features and interfaces that are constantly
changing.

In an ideal world, training doesn’t begin until the interfaces are finalized and a test version
has been installed and fully debugged. But the typical end-of-project crunch makes that
approach a luxury that is often sacrificed. Instead, training materials are normally developed as
soon as the interfaces are reasonably stable, and end-user training begins as soon as possible
thereafter. It is much easier to provide training if system interfaces are developed early and if
the top-down modular development approach is employed.

ONGOING TRAINING AND USER SUPPORT

The term user support covers training and user assistance that occur after the system is up and
running. Some of the activities are the same as preinstallation training activities. For example,
new users must be trained periodically due to employee turnover. Other activities such as
refresher training and help desk operation are unique to support.

User support can be provided by a number of methods, including the following:

• Online documentation and troubleshooting
• Resident experts
• A help desk
• Technical support

Online documentation and troubleshooting have surged as a support method in recent
years. Much of this support is built into the application, although Web sites are also commonly
employed. The goal of online support is to minimize the need for human support by putting
useful information into the hands of end users when they need it. Achieving that goal, however,
requires well-designed support materials that are comprehensive and easy to use.

Resident experts are the most common form of user support, and their help is usually pro-
vided informally. A resident expert can be an on-site IS staff member or (more frequently) a
business area staff member or user who assists other users. The position of resident expert is
often informal. A person frequently grows into that position simply by displaying exceptional
computer literacy or knowledge of software. Over time, all other users begin to approach that
person first with questions or problems.

A help desk is a permanent IS department that provides end-user support for a wide range
of systems and software. Help desks are staffed by personnel trained to install, operate, and
troubleshoot application software, including off-the-shelf products (such as word processors).
A help desk serves as a central contact point for users. Help desk staff are trained to handle the
majority of user problems and questions. Those who require further assistance are forwarded
to technical support.

Technical support is typically a specific function or department within IS maintenance
because of the close relationship between user support, change requests, and system error
reporting. If help desk personnel can’t solve a user’s problem, there’s a good chance that an

C6696_16_CTP.4c 2/6/08 1:30 PM Page 651

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

error has been discovered or that there is a gap between system capability and user needs. If
the problem is a system error, maintenance needs to be notified quickly to investigate the
cause and correct it if it is critical. Noncritical errors and unmet user needs must also be
brought to the attention of maintenance, but timeliness is less critical. In either case, techni-
cal support is the bridge between users and maintenance activities.

MAINTENANCE AND SYSTEM ENHANCEMENT

The Institute of Electrical and Electronics Engineers (IEEE) and the American National
Standards Institute (ANSI) have defined software maintenance as modification of a software
product after delivery to accomplish at least one of the following objectives:

• Correct faults
• Improve performance or other attributes
• Adapt the product to a changed environment

The term maintenance covers virtually everything that happens to a system after delivery except
total replacement or abandonment.

In most organizations, the cost of maintaining existing systems is at least as great as the
cost of developing new ones. Existing systems are an organizational asset and must be actively
managed to preserve their value and utility. In that sense, maintaining software is similar to
maintaining other types of capital assets such as buildings and equipment.

Maintenance involves change—to adapt to a new environment, to adapt to changing user
requirements, and to fix problems as they occur or are discovered. But change is risky. Making
changes to an operational system is much more difficult than making changes to a system under
development. When a change causes a developmental system to crash, there are no frantic calls
to the support desk and no immediate financial impact. But changes to operational systems
have an immediate impact on users, customers, and the organization as a whole.

Failure of an operational system can be disastrous. Thus, software maintenance differs
greatly from new system development. New system development generally occurs in a rela-
tively open environment where change is expected, new ideas are tried out, and risk taking is
tolerated, if not encouraged. In contrast, maintenance is very conservative—change is tolerated
as a necessary evil, and risk taking is strongly discouraged.

Maintenance activities include the following:

• Tracking modification requests and error reports
• Implementing changes
• Monitoring system performance and improving performance or increasing capacity
• Upgrading hardware and system software
• Updating documentation to reflect maintenance changes

Maintenance and new system development do have many activities in common, including
analysis, design, construction, testing, and documentation. However, implementation of those
activities differs in many ways, including scope and detail, triggering events, and implementation
constraints. Each maintenance activity is described in detail in the following sections.

SUBMITTING CHANGE REQUESTS AND ERROR REPORTS

To manage the risks associated with change, most organizations adopt formal control proce-
dures for all operational systems. Formal controls are designed to ensure that potential
changes are adequately described, considered, and planned before being implemented.
Typical change control procedures include the following:

• Standard change request forms
• Review of requests by a change control committee
• Extensive planning for design and implementation

652 ♦ PART 4 IMPLEMENTATION AND SUPPORT

software

maintenance
modification of a
software product after
delivery to correct faults,
improve performance or
other attributes, or adapt
the product to a changed
environment

C6696_16_CTP.4c 2/6/08 1:30 PM Page 652

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 16 Making the System Operational ♦ 653

Figure 16-26 shows a sample change request form that has been completed by a user or
system owner and submitted to the change control committee for consideration. The change
control committee reviews the change request to assess the impact on existing computer hard-
ware and software, system performance and availability, security, and operating budget. The
recommendation of the change control committee is formally recorded in a format such as
the sample shown in Figure 16-27. Approved changes are added to the list of pending changes
for budgeting, scheduling, planning, and implementation.

Figure 16-26

A sample change

request form

Change Request

Change Request ID 2010-11
Date Received 2/2/2010
Re vi ew Pa rt icipants W. Chang (Comptroller), R. Brooks (IS Operations), J. Hernandez (IS Security),

G. W eeks (IS Change Coordinator)

Re vi ew Date 2/7/2010, 0930-1100

Request Date 2/1/2010
Requested By W en-Hsu Chang, Comptrolle r
T arget System Customer Accounts - Refunds

Change (or Error) Description

U.S. check formats will soon change due to a recently enacted federal la w. The new format reserves an area to
the right of the current routing number to be used for a security bar code checksum.

The law requires the new checksum to be printed on checks dated on or after January 1, 2011.

We currently use a portion of the area in question to print a multicolored security symbol. The security symbol
will need to be moved or eliminated, and the security bar code checksum will have to be added.

Chang e
T ype

Err or Correction
Modification
Ne w Function

Bugs can be reported using a standard change request form, but many computing
organizations use a different form and procedure because they need to fix such bugs immedi-
ately. Bug reports can come from many sources, including end users, computer operators, or
IS support staff. Bug reports are typically routed to a single person or organization for logging
and follow-up.

IMPLEMENTING A CHANGE

Change implementation follows a miniature version of the system development life cycle.
Most of the same activities are performed, although they might be reduced in scope or some-
times completely eliminated. In essence, a maintenance change is an incremental development

C6696_16_CTP.4c 2/6/08 1:30 PM Page 653

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

project in which the user and technical requirements are fully known in advance. Thus, analy-
sis activities are typically skimmed or skipped.

Planning for a change includes the following activities:

• Identify what parts of the system must be changed.
• Secure resources (such as personnel) to implement the change.
• Schedule design and implementation activities.
• Develop test criteria and a testing plan for the changed system.

System documentation is reviewed by design, development, and operations staff to deter-
mine the scope of the change. Test criteria and plans for the existing system are the starting point
for testing the new system. The testing plan is simply updated to account for changed or added
functions, then the modified plan and test data is archived for use in future change projects.

Design can be combined with planning if the change is relatively simple. For more com-
plex changes, separate design activities are used. The existing system design is evaluated and
modified as necessary to implement the proposed changes. As with test plans and data, the
revised design is archived for use in future change projects.

Implementation activities are normally performed on a copy of the operational system.
The production system is the version of the system used day to day. The test system is a copy
of the production system that is modified to test changes. The test system can be developed
and tested on separate hardware or on a redundant system. The test system becomes the oper-
ational system only after complete and successful testing.

654 ♦ PART 4 IMPLEMENTATION AND SUPPORT

Change Request ID 2010-11 Date Reviewed 2/7/2010
Priority

Har d ware Implications
need to verify ability of current printers to write a security bar code in mandated area

Software Implications
database will need to be modified to store the security bar code with other check informatio n
check writing program must be modified to generate and print the security bar code

P erf ormance Implications
none

Operating Budget Implications
none

Other Implications
none

Change Re vi ew

Critical Necessary Optional

Disposition
Reason

Latest Implementation Date 12/31/2010
Reevaluation Date n/ a Signature

App ro ved Rejected Suspended

Figure 16-27

A sample change

review form

production

system
the version of the system
used from day to day

test system
a copy of the production
system that is modified
to test changes

C6696_16_CTP.4c 2/6/08 1:30 PM Page 654

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 16 Making the System Operational ♦ 655

UPGRADING COMPUTING INFRASTRUCTURE

Computer hardware, system software, and networks must be periodically upgraded for many
reasons, including the following:

• Software maintenance releases
• Software version upgrades
• Declining system performance

Like application software, system software such as operating and database management sys-
tems must periodically be changed to correct errors and add new functions. System software
developers typically distribute maintenance releases several times per year. The frequency of
maintenance update distribution has increased in recent years in part because of the conve-
nience of Internet-based software distribution. In some cases (such as virus checkers and operat-
ing system security subsystems), updates might be released weekly or even more frequently.

As with internally generated changes, system software updates are risky. Application soft-
ware that worked well with an older software version might fail when that software is updated.
For this reason, system software updates are extensively tested before they are applied to opera-
tional systems. In many cases, maintenance and version updates are simply ignored to reduce
risk. Unless errors related to system software have already been encountered, there is little
immediate benefit to an upgrade. Operational system maintenance usually follows the old
engineering maxim, “If it isn’t broken, don’t fix it!”

Test all changes on a test system before deploying them to a
production system.

BEST PRACTICE

If an operational system isn’t broken, don’t fix it!

BEST PRACTICE

Increases in transaction volume or support of new systems on existing hardware and net-
works sometimes reduce performance to unacceptable levels. So, an infrastructure upgrade
might be required to add capacity or address a performance-related problem. Infrastructure
upgrades are implemented like any other change. The primary difference is how a perfor-
mance upgrade is initiated.

Input from users or IS staff might indicate the need for a performance upgrade. But a final
determination of whether an upgrade is needed and what exactly should be upgraded requires
thorough investigation and research. Computer and network performance is complex and
highly technical, so what appears to be a performance problem might have little to do with
hardware or network capacity. If the problem is ultimately traced to hardware or networks, the
specific cause must be identified and a suitable upgrade chosen.

Performance problems require careful diagnosis to determine the best approach to address
the problem. Staff with solid technical backgrounds who can understand all of the relevant
trade-offs should diagnose the problem. Larger IS organizations may have permanent staff with
such skills, but many organizations must rely on contract personnel or consultants to diagnose
performance problems, recommend corrective measures, and install or configure those measures.
The skills come at a high price, but they can prevent an organization from wasting larger amounts
of money buying hardware or network capacity that isn’t really needed.

C6696_16_CTP.4c 2/6/08 1:30 PM Page 655

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

656 ♦ PART 4 IMPLEMENTATION AND SUPPORT

SUMMARY
System development activities that occur after design and before system delivery are collectively called implementation.
Implementation is complex because it consists of many interdependent activities, including programming, quality assur-
ance, hardware and software installation, documentation, and training. Implementation is difficult to manage because
activities must be properly sequenced and progress must be continually monitored. Implementation is risky because it
requires significant time and resources and because it often affects systems vital to the daily operation of an organization.

Programming and testing are two of the most interdependent implementation activities. Software compo-
nents must be constructed in an order that minimizes the use of development resources and maximizes the ability
to test the system and correct errors. Unfortunately, those two goals often conflict. Thus, a program development
plan is a trade-off among available resources, available time, and the desire to detect and correct errors prior to
system installation.

Data conversion, installation, documentation, and training are activities that normally follow program develop-
ment. They are highly interdependent because an installed and documented system is a prerequisite for complete
training, and a fully populated database is needed to begin operation. Manpower utilization and the number of
directly affected personnel generally peak during these activities.

Support activities occur after a system is made operational. User support activities ensure that an organization
realizes the full benefit of the system. Maintenance and system enhancement activities ensure that the system func-
tions at peak efficiency and that needed changes are implemented with minimal disruption to the organization. For
most systems, the resources required for support are greater than the resources required to develop the system.
Because of high resource requirements and greater operational risk, support activities are normally implemented in a
formal and carefully managed fashion.

KEY TERMS

acceptance test, p. 638

alpha version, p. 628

beta version, p. 628

bottom-up development, p. 622

build and smoke test, p. 637

chief developer team, p. 626

collaborative specialist team, p. 626

cooperating peer team, p. 626

direct installation, or immediate cutover, p. 642

driver, p. 635

input, process, output (IPO) development, p. 620

inspection, p. 632

integration test, p. 636

maintenance release, p. 628

parallel installation, p. 642

performance test, p. 638

phased installation, p. 644

production system, p. 654

production version, release version, or production

release, p. 628

quality assurance (QA), p. 631

response time, p. 638

software maintenance, p. 652

source code control system (SCCS), p. 627

stub, p. 636

system documentation, p. 646

system test, p. 637

technical review, p. 632

test case, p. 633

test data, p. 633

test system, p. 654

testing buddy, p. 638

throughput, p. 638

top-down development, p. 622

unit testing, or module testing, p. 634

usability test, p. 638

user documentation, p. 646

REVIEW QUESTIONS

1. List and briefly describe the three basic approaches to

program development order. What are the advantages and

disadvantages of each?

2. How can the concepts of top-down and bottom-up devel-

opment order be applied to object-oriented software?

C6696_16_CTP.4c 2/6/08 1:30 PM Page 656

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 16 Making the System Operational ♦ 657

3. Describe three approaches to organizing programming

teams. For what types of projects or development activities

is each approach best suited?

4. What is a source code control system? Why is such a sys-

tem necessary when multiple programmers build a pro-

gram or system?

5. Define the terms alpha version, beta version, and production

version. Are there well-defined criteria for deciding when

an alpha version becomes a beta version or a beta version

becomes a production version?

6. List and briefly describe QA activities during implementa-

tion other than software testing. What is the effect of not

performing such QA activities?

7. What are the characteristics of good test cases?

8. Define the terms acceptance test, integration test, system

test, and unit test. In what order are these tests normally

performed? Who performs (or evaluates the results of)

each type of test?

9. What is a driver? What is a stub? With what type of test is

each most closely associated? With what development

order is each most likely to be used?

10. What factors make testing object-oriented programs more

complex than testing structured programs?

11. List possible sources of data used to initialize a new system

database. Briefly describe the tools and methods used to

load initial data into the database.

12. Briefly describe direct, parallel, and phased installation.

What are the advantages and disadvantages of each instal-

lation approach?

13. Why are additional personnel generally required during the

later stages of system implementation?

14. What are the differences between documentation for end

users and system operators?

15. How or why is system documentation redundant with the

system itself? What are the practical implications of this

redundancy?

16. List the types of documentation needed to support main-

tenance activities. Which documentation types are needed

most frequently? Which are needed least frequently?

17. How do training activities differ between end users and

system operators?

18. How does implementing a maintenance change differ from

developing a new system? How are they similar?

19. Why might system software upgrades not be installed?

What are the costs of not installing them?

THINKING CRITICALLY

1. Examine the system flowchart for Rocky Mountain

Outfitters in Figure 10-5. Develop a preliminary develop-

ment plan based on IPO development order. Which pro-

grams are difficult to classify as input, process, or output?

Is a straightforward application of IPO development order

appropriate for this system? If not, what changes should

be made to the preliminary development plan?

2. This chapter discussed top-down and bottom-up develop-

ment order for transform-oriented structure charts.

Can these development orders also be applied to transaction-

oriented structure charts such as the one shown in

Figure 10-10? If so, how?

3. Describe the process of testing software developed using

both top-down and bottom-up development order. Which

method results in the fewest resources required for test-

ing? What types of errors are likely to be discovered earli-

est under each development order? Which development

order is best as measured by the combination of required

testing resources and the ability to capture important

errors early in the testing process?

4. Assume that the Rocky Mountain Outfitters’ customer sup-

port system will be developed as described in your answer

to question 1. Assume that 14 people are available for pro-

gramming and testing. What sizes and types of teams are

best suited to the project?

5. Consider the issue of documenting a system using only

electronic models developed with a full life-cycle develop-

ment tool. The advantages are obvious (for example, the

analyst modifies the models to reflect new requirements

and automatically generates an updated system). Are there

any disadvantages? Hint: The system might be maintained

for a decade or more.

6. Some types of system documentation (such as models

developed during analysis activities) are seldom looked at

after the system is made operational. What are the advan-

tages and disadvantages of not keeping such documenta-

tion types?

C6696_16_CTP.4c 2/6/08 1:30 PM Page 657

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

658 ♦ PART 4 IMPLEMENTATION AND SUPPORT

CASE STUDIES

EXPERIENTIAL EXERCISES

1. Assume that you and five of your classmates are charged

with developing the Customer order program shown in

Figure 10-16. Create a development and testing plan to

write and test the required modules. Assume that you have

three weeks to complete all tasks.

2. Implement a formal QA process in one of your program-

ming or system development classes (be sure to obtain per-

mission from your instructor first). Form a group of

students to implement an inspection process. Have one or

all members prepare presentation materials for code that

they’ve written and distribute them prior to a group meet-

ing. If possible, create a buddy system for testing each

other’s code. Evaluate the results in terms of time required

for code development and quality of the final product.

3. Examine the end-user documentation supplied with a

typical personal or office productivity package such as

Microsoft Office. Compare the documentation to the cate-

gories described in this chapter. Which categories of docu-

mentation are supplied? How might documentation for a

business application differ in content or format?

4. Talk with a computer center or IS manager about the test-

ing process used with a recently installed system or subsys-

tem. What types of tests were performed? How were test

cases and test data generated? What types of teams devel-

oped and implemented the tests?

5. Talk with an end user at your school or work about the

documentation and training provided with a recently

installed or distributed business application. What types of

training and documentation were provided? Did the user

consider the training to be sufficient? Does the user con-

sider the documentation to be useful and complete?

HUDSONBANC BILLING SYSTEM UPGRADE

Two regional banks with similar geographic territories merged to

form HudsonBanc. Both banks had credit-card operations and oper-

ated billing systems that had been internally developed and

upgraded over three decades. The systems performed similar func-

tions, and both operated primarily in batch mode on IBM main-

frames. Merging the two billing systems was identified as a

high-priority, cost-saving measure.
HudsonBanc initiated a project to investigate how to merge the

two billing systems. Upgrading either system was quickly ruled out
because the existing technology was considered old, and the costs
of upgrading the system were estimated to be too high.
HudsonBanc decided that a new system should be built or pur-
chased. Management preferred the purchase option because it was
assumed that a purchased system could be brought online more
quickly and cheaply. An RFP was prepared, many responses were
received, and after months of analysis and investigation, a vendor
was chosen.

Hardware for the new system was installed in early January.
Software was installed the following week, and a random sample
of 10 percent of the customer accounts was copied to the new sys-
tem. The new system was operated in parallel with the old system
for two months. To save costs involved with complete duplication,
the new system computed but did not actually print billing state-
ments. Payments were entered into both systems and used to
update parallel customer account databases. Duplicate account
records were checked manually to ensure that they were the same.

After the second test billing cycle, the new system was declared
ready for operation. All customer accounts were migrated to the

new system in mid-April. The old system was turned off on May 1,
and the new system took over operation. Problems occurred almost
immediately. The system was unable to handle the greatly increased
volume of transactions. Data entry slowed to a crawl, and payments
were soon backed up by several weeks. The system was not han-
dling certain types of transactions correctly (for example, charge
corrections and credits for overpayment). Manual inspection of the
recently migrated account records showed errors in approximately
50,000 accounts.

It took almost six weeks to manually adjust the incorrect
accounts and to update functions to correctly handle all transaction
types. On June 20, the company attempted to print billing state-
ments for the 50,000 corrected customer accounts. The system
refused to print any information for transactions more than 30 days
old. A panicked consultation with the vendor concluded that fixing
the 30-day restriction would require more than a month of work
and testing. It was also concluded that manual entry of account
adjustments followed by billing within 30 days was the fastest and
least risky way to solve the immediate problem.

Clearing the backlog took two months. During that time,
many incorrect bills were mailed. Customer support telephone lines
were continually overloaded. Twenty-five people were reassigned
from other operational areas, and additional phone lines were
added to provide sufficient customer support capacity. System
development personnel were reassigned to IS operations for up to
three months to assist in clearing the billing backlog. Federal and
state regulatory authorities stepped in to investigate the problems.
HudsonBanc agreed to allow customers to spread payments for
late bills over three months without interest charges. Setting up
the payment arrangements further aggravated the backlog and
staffing problems.

C6696_16_CTP.4c 2/6/08 1:30 PM Page 658

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 16 Making the System Operational ♦ 659

1. What type of installation did HudsonBanc use for its new

system? Was it an appropriate choice?

2. How could the operational problems have been avoided?

THE DOWNTOWN VIDEOS RENTAL SYSTEM

Using the design class diagram you developed in Chapter 12 for the

DownTown Videos rental system, develop an implementation and

testing plan. Specify the order in which classes and their methods

will be implemented and the groups of methods and classes that

will be tested during integration testing.

RETHINKING ROCKY MOUNTAIN OUTFITTERS

Assume that it is late April 2010 and that customer

support system (CSS) analysis activities are nearly

completed. Design is scheduled to finish by June 15

and implementation is scheduled to finish by

November 1. RMO wants to use the new CSS during the holiday

sales peak—roughly between Thanksgiving and Christmas—during

which 40 percent of annual sales normally occur. RMO wants to

announce the new Web ordering system in an upcoming catalog.

New catalog mailings are scheduled for June 15, September 1,

October 31, and December 10.

1. Describe the risks associated with planning the new CSS

implementation and announcing the new Web ordering

system to customers. Remember that the new CSS will

replace the current telephone, mail-order, and Web order

systems. How conservative should RMO be with respect to

testing, installation, and customer announcements? What

is the cost of being too conservative?

2. What fallback strategies should be developed, if any?

What should the “drop dead” date be for deciding

whether to use the new CSS to process holiday orders?

3. Develop an installation plan and schedule. Justify your

approach(es) and your timetable based on your previous

risk analysis.

4. Analyze the training requirements and develop a training

plan and schedule. How can training, data conversion,

and testing activities be overlapped or combined? What

about training and support for customers using the Web

ordering system?

FOCUSING ON RELIABLE PHARMACEUTICAL SERVICE

Using the structure chart you developed in

Chapter 10 for Reliable Pharmaceutical Service,

develop an implementation and testing plan.

Specify the order in which modules will be implemented and the

groups of modules that will be tested during integration testing.

FURTHER RESOURCES

Robert V. Binder, Testing Object-Oriented Systems: Models,

Patterns, and Tools. Addison-Wesley, 2000.

Barry Boehm, Software Engineering Economics. Prentice

Hall, 1981.

Robert G. Ebenau and Susan H. Strauss, Software Inspection

Process. McGraw-Hill, 1994.

William Horton, E-Learning Tools and Technologies: A Consumer’s

Guide for Trainers, Teachers, Educators, and Instructional Designers.

John Wiley & Sons, 2003.

William Horton, Designing Web-Based Training: How to Teach

Anyone Anything Anywhere Anytime. John Wiley & Sons, 2000.

William Horton, Illustrating Computer Documentation: The Art

of Presenting Information Graphically on Paper and Online. John

Wiley & Sons, 1991.

International Association of Information Technology Trainers

(ITrain) Web site—http://itrain.org/.

Edward Kit, Software Testing in the Real World: Improving the

Process. ACM Press, 1996.

David Kung, Jerry Gao, Pei Hsia, Yasufumi Toyoshima, Chris

Chen, Young-Si Kim, and Young-Kee Song, “Developing an

Object-Oriented Software Testing and Maintenance Environment,”

Communications of the ACM, volume 38:10, October, 1995,

pp. 75–87.

Steve McConnell, Code Complete. Microsoft Press, 1995.

Arthur H. Watson and Thomas J. McCabe, “Structured Testing:

A Testing Methodology Using the Cyclomatic Complexity Metric,”

NIST Special Publication 500-235, National Institute of Standards

and Technology, September, 1996, http://hissa.ncsl.nist.gov/

HHRFdata/Artifacts/ITLdoc/235/mccabe.html.

C6696_16_CTP.4c 2/6/08 1:30 PM Page 659

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

http://itrain.org/
http://hissa.ncsl.nist.gov/

660

CURRENT TRENDS IN SYSTEM
DEVELOPMENT17
L E A R N I N G O B J E C T I V E S

After reading this chapter, you should be able to:

■ Explain the foundations for the adaptive development methodologies

■ List and describe the features of the Unified Process system development

methodology

■ List and describe the features of Agile Modeling

■ Compare and contrast the features of Extreme Programming and Scrum

development

■ Explain the importance of Model-Driven Architecture on enterprise-level

development

■ Describe frameworks and components, the process by which they are

developed, and their impact on system development

CHAPTER

C H A P T E R O U T L I N E

Software Principles and Practices

Adaptive Methodologies to Development

Model-Driven Architecture—Generalizing Solutions

Frameworks, Components, and Services

C6696_17_CTP.4c 2/6/08 8:29 AM Page 660

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 17 Current Trends in System Development ♦ 661

VALLEY REGIONAL HOSPITAL: MEASURING A PROJECT’S PROGRESS

Claire Haskell, the vice president of technology at Valley Regional Hospital (VRH), listened
quietly to Henry Williams’s progress report on the new patient records system. Henry was the
project leader for a team that was developing the patient records system for VRH. Also in the
meeting were the project’s sponsor, Charlie Montgomery, who was the director of patient
information and records, and Jason Smith, the director of software development. Months
before, Jason and Henry had approached Claire and asked her to try a new development
approach called Agile Development for this recently approved project. They had already spoken
with Charlie, and he had agreed to try Agile Development. Claire had approved the project
and their request to try the new approach, even though she knew very little about it.

During his presentation, Henry kept talking about how wonderfully the team worked together
and how much fun they were having. Although she was glad that the team was functioning well,
Claire wanted more specifics. She wanted to know whether the new system was on schedule and
within budget. After about 20 minutes of patient listening, she couldn’t wait any longer; she asked
Henry directly to show her the schedule and to report on the team’s progress. He flipped up a
schedule, but that did little to help—the schedule had no familiar milestones such as analysis,
design, and programming. Instead, she saw other terms: iteration, user stories, and refactoring.

At this point, Claire really became worried. So she turned to Charlie and said pointedly,
“Exactly how is the project progressing from your viewpoint?” His answer surprised her.

Charlie said, “The records administrators and I are extremely pleased with the demos we
are seeing. We are also satisfied with the quality of the system we saw during our acceptance
testing. From what we have seen so far, the system seems to be exactly what we need. But as
far as the schedule is concerned, I’m not certain whether the entire system will be delivered
on time. I think so, but I’m not involved in the day-to-day development.”

Claire felt a little better. At least the system was doing what it needed to do so far. But she
still wanted reassurance from the project leader. “Henry, are we going to hit the completion
date? The system needs to be ready on time.”

Henry responded, “We are progressing on schedule so far and everything looks fine. But
no, I can’t show you a traditional schedule—one with major milestones. But here is a short-
term schedule for the next two months of work.”

Claire wasn’t satisfied. She asked Henry to stay and talk with her privately after the meet-
ing ended. She became agitated and said, “Henry, we need more accountability for this proj-
ect. The only solution I can see is to meet with you frequently to monitor its progress. I want
a rough schedule for the rest of the project on my desk on Monday morning. That gives you
three days to develop one. Then I want you to meet with me every Monday from here out so
that we can be sure we are on track and hit the delivery date.”

Although he was not pleased with Claire’s suggestion, Henry reluctantly agreed.

OVERVIEW

In previous chapters, you have been introduced to many concepts and skills that are neces-
sary to develop robust information systems to solve real business needs. You have learned
so-called “soft” skills associated with managing projects, interacting in teams, gathering infor-
mation, and making presentations. You have also learned “hard” skills—those associated
with problem solving, building requirements models, and designing new systems. You might
have covered the traditional approach or the object-oriented approach, or both. And you have
learned many important concepts about projects, iterative development, and implementation
alternatives. In short, you have developed a solid working knowledge of system development
and obtained a bag of tools to get you started developing information systems for businesses
and other organizations.

C6696_17_CTP.4c 2/6/08 8:29 AM Page 661

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

As you have learned through your exposure to information systems, the IS discipline is
dynamic and ever changing. Many of the tools and techniques that were commonly used just
a few years ago have disappeared, replaced by newer approaches. In addition, the reach of
today’s systems has broadened, encompassing systems that are enterprisewide, distributed,
interactive, and interconnected; that support both desktop and Internet-based computing;
and that run on all types of computers and mobile devices. These more complex system
requirements have necessitated a whole new set of programming languages and tools. As part
of the continual reinvention of the discipline, IS professionals are also creating and develop-
ing new techniques for building systems; that is, new methodologies to support system
development.

In Chapter 2, you were introduced to predictive and adaptive development methodolo-
gies. Historically, predictive approaches have dominated the field. Today, however, many
developers are inventing different, more adaptive approaches to system development. In this
chapter, we introduce you to some of the newest approaches to organizing and running a sys-
tem development project, both predictive and adaptive:

• We explain three methodologies introduced in Chapter 2 that are adaptive in nature,
including the Unified Process, Extreme Programming, and Scrum. These three method-
ologies share many ideas but also have some distinct features.

• We introduce Model-Driven Architecture (MDA), which consists of ideas for enterprise-
level integration of systems. MDA is applicable to predictive approaches and to the
Unified Process, Extreme Programming, and Scrum.

• We present basic ideas associated with object frameworks and components. These two
technologies provide additional support to increase developer productivity, speed the rate
of development, and improve the quality of the final system.

The material in this chapter is only introductory. Your interest might be piqued, and you
might want to investigate one or more of these approaches in more detail. If so, you will be
contributing both to your own professional development and to the advancement of the field
of system development.

SOFTWARE PRINCIPLES AND PRACTICES

The last 50 years have seen tremendous advances in all areas of computing. Moore’s law,
which states that hardware computing power doubles approximately every 18 months, has
yet to be disproved. Computing capability still continues to advance at an astounding rate. In
addition, all sorts of new uses and devices for computing have been created, including cell
phones with digital cameras, handheld PCs, Internet-enabled telephones, appliances with
embedded computer chips, and radio-frequency ID chips on products in retail stores. Large-
scale systems, although not as obvious to consumers, drive many of the basic activities on
which our society is based. Such activities as money transactions between banks and other
financial institutions support our banking and credit-card industries. Behind the scenes, sup-
ply chain management systems trigger instant production of new products based on sales and
inventory levels halfway around the world. Transportation scheduling and information shar-
ing between carriers and shippers enable people and goods to travel worldwide with minimal
disruptions. Today we speak of ubiquitous computing, meaning that computer technology is
everywhere and affects almost every aspect of our lives. Just as one set of computing and sys-
tem problems is solved, an entirely new need or desire is uncovered. The quest for improved
business and consumer computing solutions continues unabated. Because of these trends,
the long-term outlook for information systems specialists is incredibly positive. The down-
side for the industry is that the effort to keep current is extremely demanding.

662 ♦ PART 4 IMPLEMENTATION AND SUPPORT

ubiquitous

computing
the current trend of
using computer
technology in every
aspect of our lives

C6696_17_CTP.4c 2/6/08 8:29 AM Page 662

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 17 Current Trends in System Development ♦ 663

So how are we able to address the multifaceted computing needs of industry and society?
Obviously, no single solution or technology can satisfy all needs. Solutions come about
because thousands of people are working on and solving individual problems. However,
some principles and practices can advance the industry. Many come from the field of com-
puter science, which focuses on the theories and principles of computing. Others develop
from the discipline of information systems, which applies the principles of computing to
everyday business problems. Of course, there is substantial overlap between these two disci-
plines, which can be compared with the relationship between scientists and engineers—for
example, the chemists who do research and the chemical engineers who apply that research.
Collaboration between people in all of the disciplines of computer science, information sys-
tems, decision sciences, and mathematics provides the fuel to propel the technology of our
society forward.

Before we discuss the current trends, let’s look back at this textbook for a moment. If you
were asked to summarize the contents of this textbook in one or two sentences, what would
you say? What are the main ideas you learned from the previous chapters in this book? We
hope you would include these two points:

1. You learned how to build models—models to capture and explain needs, requirements,
and solutions. In a broad definition of a model, we would also include writing the code,
which is a model of a real-world process.

2. You learned the processes or steps necessary to build a solution—processes to both man-
age and conduct a system development project.

In this chapter, we also focus on those two primary areas, by describing current trends in
modeling and in development processes. In addition, we discuss some current tools and tech-
niques that support these trends.

To begin, we should review five important software principles and practices before dis-
cussing the details of current trends:

• Abstraction
• Models and modeling
• Patterns
• Reuse
• Methodologies

ABSTRACTION

Abstraction is the process by which we extract and distill core principles from a set of facts or
statements. You learned about this principle when you learned to identify an abstract class—
one that has no instances. An abstract class serves as a repository of generalized attributes and
methods from which other classes inherit. You also learned to think abstractly when you built
models to define user requirements. Thinking abstractly is a difficult skill to learn. Most peo-
ple learn new concepts by seeing examples—that is, concrete instances. However, as you
become more sophisticated in your thinking ability, you learn to think in abstract terms.

Abstraction is important in the field of computing. Many advances in computing have been
developed because computer scientists were able to think abstractly and in fact to raise the
level of abstraction. For example, in the early days of computing, developers wrote systems
using assembly language, which is essentially machine language. Then they thought more
abstractly and invented programming languages, such as Fortran, COBOL, C, Java, and Visual
Basic. To do so, they had to think in the abstract about the characteristics of computer lan-
guages and language compilers. Then, thinking about user requirements led to the invention
of models and diagrams to represent those requirements. Again, the process required thinking
in the abstract about the characteristics of a good model and inventing class diagrams and
sequence diagrams and their properties. Today, we think more abstractly by defining

C6696_17_CTP.4c 2/6/08 8:29 AM Page 663

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

metamodels. A metamodel is a model that describes another model. For example, could you
define a class diagram that would generalize and describe the components of any class dia-
gram? As you will see when we discuss Model-Driven Architecture, abstraction is an important
idea in advancing the body of knowledge for computing and system development.

MODELS AND MODELING

The second important software principle is models and modeling. You learned what a model
is early in the book, and you practiced building models throughout the course. A model is an
abstraction of something in the real world, representing a particular set of properties. There are
two primary reasons developers build models. First, we must understand a process or thing by
identifying and explaining its key characteristics. Modeling helps us crystallize our thinking so
that we are more precise. In many instances, we cannot truly understand something until we
try to model it. Second, we use models to document ideas that we need to remember and to
communicate those ideas to other people. You will see later in this chapter that some of the
current trends focus on how to better use models in software development—by doing either
more or less modeling.

PATTERNS

The third software principle—patterns—is closely associated with abstraction and modeling.
A pattern is a standard solution to a given problem or a template that can be applied to a
problem. As we begin to think more abstractly and build models, we recognize that problems
or issues that at first seemed very different in fact have similar characteristics when viewed at
a generalized level. Patterns begin to form, both in the problems and in the solutions. In
Chapter 12, we presented some ideas about design patterns. We noted that different indus-
tries have standard patterns to solve recurring problems. For example, banking systems serve
the fundamental purpose of recording and processing financial transactions. So, design pat-
terns exist not only for system structure, but also for entire systems. Standard design patterns
are becoming widely accepted as they are identified and refined to solve problems. We will
not revisit the discussion of patterns in this chapter, but you should recognize that they are a
driving force in improving the quality of systems and speeding system development.

REUSE

The fourth software principle—reuse—is an outgrowth of the previous principles. Because
developers have discovered patterns, they are building standard solutions and components
that can be used over and over again. Through the principle of reuse, today’s developers have
become more productive. For example, to develop a graphical user interface for the Windows
platform, nearly all developers use standard class libraries of forms, buttons, menus, drop-
down boxes, text boxes, and radio buttons. If we instead had to write the code to display a but-
ton every time we put one on a screen, it would take a very long time to create a graphical
system. Windows components are examples of reuse at the code level. Developers also like to
think more abstractly and invent higher-level components that can be reused. Industry experts
now indicate that many new systems are built primarily by integrating operating systems, com-
munication systems, and applications into a single system. So, system developers today often
work to integrate components into a complete solution. Reuse is a driving force in technolo-
gies such as Web services, .NET, and enterprise resource planning (ERP) systems. We will dis-
cuss the idea of reuse in more detail when we discuss component libraries and frameworks.

664 ♦ PART 4 IMPLEMENTATION AND SUPPORT

metamodel
a model that describes
the characteristics of
another model

C6696_17_CTP.4c 2/6/08 8:29 AM Page 664

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 17 Current Trends in System Development ♦ 665

METHODOLOGIES AND PROCESSES

The fifth and final principle, methodologies, was also introduced earlier in the book. By method-
ology, we mean a set of processes—including the rules, guidelines, and techniques—that defines
how systems are built and development projects are managed. By now you should be familiar
with the differences between predictive and adaptive projects. You should also be able to recog-
nize how the level of formality for a project will also dictate how a project is managed.

In most cases, the discussions throughout the textbook were designed to teach foundation
principles that could be applied to either predictive or adaptive development methodologies as
well as be used for formal projects or informally managed projects. In this chapter, as we discuss
current trends and future directions, we discover that there are two seemingly opposed trends
for project development. The agile philosophy of system development tends to have less for-
mality, less documentation, and even less use of models. The model-driven architecture philos-
ophy, of course, requires more formality, more documentation, and more use of models. We
will investigate both in the following sections.

In the next section, we discuss the various adaptive approaches to systems development.
First the Unified Process (UP) is explained in detail. Even though the UP is often considered an
adaptive approach, in reality it should be considered both an adaptive and formal approach. As
you will see, it contains specific processes and disciplines to ensure that a project is executed
successfully. Following that discussion, we provide more detail about agile concepts before
explaining two other approaches—Extreme Programming and Scrum—which are considered to
be completely within the camp of less formal agile methods.

In her routine report concerning Rocky Mountain Outfitters’ customer support system,
Barbara Halifax recapped her team’s basic approach to system development—one based on
the adaptive Unified Process—and its progress (see Barbara’s memo).

C6696_17_CTP.4c 2/6/08 8:29 AM Page 665

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

ADAPTIVE METHODOLOGIES TO DEVELOPMENT

Adaptive methodologies to system development allow for uncertainty. In development proj-
ects that focus on entirely new applications, many times the user’s requirements are not well
understood and cannot be described in detail. Because the scope of a new system might not
be well defined, it is difficult, if not impossible, for analysts to create a detailed project plan.
The best way to carry out a system development project in this situation is to identify core
objectives early and to develop detailed work plans as the project progresses.

Two forces drive the increased interest in adaptive development. First, as you learned in
Chapter 3, the low success rate of system development projects has always been troubling.
Developing software is difficult, and success has always been elusive. In Chapter 3 we dis-
cussed the importance of good project management skills to improve processes and increase
the chance of success. In addition, industry experts and developers have invented various
adaptive development approaches to improve success rates.

The other force behind adaptive approaches is the volatility of today’s business climate.
Yesterday’s more stable environment relied mainly on controlling costs and on tight manage-
ment of internal procedures. In contrast, business success today depends on flexibility and
rapid response to changes in the marketplace. As a result, a rigid system development process
that defines system requirements 12, 24, or more months in advance is not necessarily flexi-
ble enough to meet the accelerated pace of change. But the newer, adaptive approaches allow
for critical changes in business needs.

From a theoretical viewpoint, the development of any item, either a physical item or a
software item, is completed by following a process. Every process needs controls to ensure
that it stays on track. Process controls can be categorized into two types: predictive and empir-
ical. Predictive controls define the steps to monitor a process in great detail. If a process gets
off track, more detailed steps—for example, a work breakdown structure—and descriptions
can be used to control it. Predictive control works well when more planning can provide
more detail. However, for processes that are unpredictable, adding more detail and more con-
trols only exacerbates the problem; trying to control the uncontrollable results in further loss
of money and time.

Empirical controls, in contrast, describe processes that are variable and unpredictable.
These processes are best controlled by handling each variation as it occurs and determining
the best way to correct the deviation. In other words, empirical controls monitor progress and
then make corrections on the fly, based on the specific situation. Because many software
development projects contain a high amount of uncertainty, an empirical process might be a
better choice for them.

All adaptive methodologies use empirical controls and have their own sets of rules and
guidelines. However, they do share a few characteristics:

• Less emphasis on up-front analysis, design, and documentation
• More focus on incremental development
• More user involvement in project teams
• Reduced detailed planning, which is used for near-term work phases only; downstream

phases might have high-level plans
• Tightly controlling schedules by fitting work into discrete time boxes
• More use of small work teams that are self-organizing

First, the adaptive team does not spend a lot of time analyzing, designing, and document-
ing because these activities are a means to an end; they are simply tools for writing executable
code. Second, the only way to develop code quickly is to do it in small chunks and to develop
the system incrementally. Third, developing code quickly requires the user to be completely

666 ♦ PART 4 IMPLEMENTATION AND SUPPORT

C6696_17_CTP.4c 2/6/08 8:29 AM Page 666

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 17 Current Trends in System Development ♦ 667

involved with the project team—to become part of the project team and work side by side
with the developers in creating the solution so that it fits the business needs.

Reducing detailed planning and scheduling the work to fit in time boxes help control the
team’s progress. Each iteration defines a specific function that will be added to the system,
and the function is small enough so that a meaningful detailed schedule can be developed.
Then the team completes the work in the time allotted. As developers become more experi-
enced, they become proficient at knowing what can be done in a small time box of three or
four weeks.

Consistent with time boxing, under adaptive methodologies, each team develops its own
schedule for each iteration and organizes itself and its work productively. The only external
schedules that are imposed on the work are those that require coordination with other proj-
ects or deliverables.

In the following sections, we look at each of the three adaptive methodologies: the
Unified Process, Extreme Programming, and Scrum. We begin with one that is considered by
many to be the foundation for adaptive software development—the Unified Process (UP).
Next we elaborate on the concept of Agile Development to set the stage for the more highly
adaptive and lightweight methodologies (for example, Extreme Programming and Scrum)
that are increasingly popular with developers.

THE UNIFIED PROCESS

The Unified Process (UP) is an object-oriented system development methodology originally
offered by Rational Software, which is now part of IBM. Developed by Grady Booch, James
Rumbaugh, and Ivar Jacobson—the three pioneers who are also behind the success of the
Unified Modeling Language (UML)—the UP is their attempt to define a complete methodol-
ogy that uses UML for system models and describes a new, adaptive system development life
cycle. In the UP, the term development process is synonymous with development methodology.

The UP is now widely recognized as a standard system development methodology for
object-oriented development, and many variations are in use. The original version of UP
defined an elaborate set of activities and deliverables for every step of the development
process. More recent versions are streamlined, with fewer activities and deliverables, simplify-
ing the methodology.

As discussed previously, adaptive methodologies—including the UP—are all based on an
iterative approach to development. You learned in Chapter 2 (see Figure 2-7) that each itera-
tion is like a miniproject, in which requirements are defined based on analysis tasks, system
components are designed, and those components are then implemented, at least partially,
through programming and testing. One of the big questions in adaptive development, how-
ever, is what the focus of each iteration should be. In other words, do iterations early in the
project have the same objectives and focus as those done later? The UP answers this question
by dividing a project into four major phases. The Unified Process life cycle, with phases and
disciplines, was first shown in Figure 2-20 in Chapter 2.

UP Phases

A phase in the UP can be thought of as a goal, or major emphasis for a particular portion of
the project. The four phases of the UP life cycle are named inception, elaboration, construction,
and transition, as shown in Figure 17-1.

Each phase of the UP life cycle describes the emphasis or objectives of the project team
members and their activities at that point in time. So, the four phases provide a general
framework for planning and tracking the project over time. Within each phase, several itera-
tions are planned to allow the team flexibility to adjust to problems or changing conditions.
The emphases or objectives of the project team in each of the four phases are described briefly
in Figure 17-2.

C6696_17_CTP.4c 2/6/08 8:29 AM Page 667

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Inception Phase As in any project planning phase, in the inception phase the project man-
ager develops and refines a vision for the new system to show how it will improve operations
and solve existing problems. The project manager makes the business case for the new sys-
tem, meaning that the benefits of the new system must outweigh the cost of development.
The scope of the system must also be defined so that it is clear what the project will accom-
plish. Defining the scope includes identifying many of the key requirements for the system.

The inception phase is usually completed in one iteration, and as with any iteration, parts
of the actual system might be designed, implemented, and tested. As software is developed,
team members must confirm that the system vision still matches user expectations or that the
technology will work as planned. Sometimes prototypes are discarded after proving that point.

Elaboration Phase The elaboration phase usually involves several iterations, and early iter-
ations typically complete the identification and definition of all of the system requirements.
Because the UP is an adaptive approach to development, the requirements are expected to
evolve and change after work starts on the project.

Elaboration phase iterations also complete the analysis, design, and implementation of
the core architecture of the system. Usually the aspects of the system that pose the greatest
risk are identified and implemented first. Until developers know exactly how the highest-risk
aspects of the project will work out, they cannot determine the amount of effort required to
complete the project. By the end of the elaboration phase, the project manager should have
more realistic estimates for a project’s cost and schedule, and the business case for the project
can be confirmed. Remember that the design, implementation, and testing of key parts of the
system are completed during the elaboration phase. The elaboration phase is not at all the
same as the traditional SDLC’s analysis phase.

668 ♦ PART 4 IMPLEMENTATION AND SUPPORT

Phases are not analysis, design, and implementation; instead,

each iteration involves a complete cycle of the requirements,

design, implementation, and testing disciplines.

UP system development life cycle

Iteration Phase

Inception TransitionElaboration Construction

Figure 17-1

The Unified Process

system development

life cycle

UP phase Objective

Inception Develop an approximate vision of the system, make the business case,
define the scope, and produce rough estimates for cost and schedule.

Elaboration Define the vision, identify and describe all requirements, finalize the
scope, design and implement the core architecture and functions, resolve
high risks, and produce realistic estimates for cost and schedule.

Construction Iteratively implement the remaining lower-risk, predictable, and easier
elements and prepare for deployment.

Transition Complete the beta test and deployment so users have a working system
and are ready to benefit as expected.

Figure 17-2

UP phases and objectives

Be sure not to confuse the UP phases with the waterfall approach to the
SDLC. Elaboration is not at all like the traditional analysis phase.

BEST PRACTICE

C6696_17_CTP.4c 2/6/08 8:29 AM Page 668

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 17 Current Trends in System Development ♦ 669

Construction Phase The construction phase involves several iterations that continue the
design and implementation of the system. The core architecture and highest-risk aspects of
the system are already complete. Now the focus of the work turns to the routine and pre-
dictable parts of the system; for example, detailing the system controls such as data valida-
tion, fine-tuning the user interface’s design, finishing routine data maintenance functions,
and completing the help and user preference functions. The team also begins to plan for
deployment of the system.

Transition Phase During the transition phase, one or more final iterations involve the final
user-acceptance and beta tests, and the system is made ready for operation. After the system is
in operation, it will need to be supported and maintained.

UP Disciplines

As we mentioned earlier, the four UP phases define the project sequentially by indicating the
emphasis of the project team at any point in time. To make iterative development manage-
able, the UP defines disciplines to use within each iteration. A discipline is a set of function-
ally related activities that together contribute to one aspect of the development project. UP
disciplines include business modeling, requirements, design, implementation, testing,
deployment, configuration and change management, project management, and environment.
Each iteration usually involves activities from all disciplines.

Figure 17-3 shows how the UP disciplines are involved in each iteration, which is typically
planned to span four weeks. The size of the shaded area under the curve for each discipline
indicates the relative amount of work included in each discipline during the iteration. The
amount and nature of the work differs from iteration to iteration. For example, in iteration 2
much of the effort focuses on business modeling and defining requirements, with much less
effort focused on implementation and deployment. In iteration 5, very little effort is focused

discipline
a set of functionally
related activities that
together contribute to
the development process
of a UP project

71 2 3 4 5 6

Iterations

UP disciplines

A four-week iteration includes work in most

disciplines, ending with a stable executable.

Iteration 2 involves much business

modeling and requirements but still

includes some design, implementation,

and testing activities.

Iteration 5 involves minimal modeling

and requirements, some design, but

much more implementation and many

more testing activities.

Business modeling

Requirements

Design

Implementation

Testing

Deployment

Configuration & change

management

Project management

Environment

Figure 17-3

UP disciplines used in

varying amounts in each

iteration

C6696_17_CTP.4c 2/6/08 8:29 AM Page 669

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

on modeling and requirements, with much more effort focused on implementation, testing,
and deployment. But most iterations involve some work in all disciplines.

Figure 17-4 shows the entire UP life cycle—phases, iterations, and disciplines. This figure
includes all of the key UP life cycle features and is useful for understanding how a typical
information system development project is managed.

The previous figures illustrate how the phases include activities from each discipline. But
what about the detailed activities that occur within each discipline? The disciplines can be
divided into two main categories: system development activities and project management
activities. The six main UP development disciplines are as follows:

• Business modeling
• Requirements
• Design
• Implementation
• Testing
• Deployment

Recall that each iteration is similar to a miniproject, which completes a portion of the sys-
tem. For each iteration, the project team must understand the business environment (business
modeling), define the requirements that the portion of the system must satisfy (requirements),
design a solution for that portion of the system that satisfies the requirements (design), write
and integrate the computer code that makes the portion of the system actually work (imple-
mentation), thoroughly test the portion of the system (testing), and then in some cases put the
portion of the system that is completed and tested into operation for users (deployment).

Three additional support disciplines are necessary for planning and controlling the project:

• Configuration and change management
• Project management
• Environment

670 ♦ PART 4 IMPLEMENTATION AND SUPPORT

UP disciplines

Business modeling

Requirements

Design

Implementation

Testing

Deployment

Configuration & change

management

Project management

Environment

UP phases

Unified Process life cycle model

Inception Elaboration Construction Transition

This is a seven-iteration project. Each iteration is a miniproject that

includes work in most disciplines and ends with a stable executable.

Figure 17-4

UP life cycle with phases,

iterations, and disciplines

All nine UP disciplines are employed throughout the lifetime of a project but to different
degrees. For example, in the inception phase there is one iteration. During the inception

C6696_17_CTP.4c 2/6/08 8:29 AM Page 670

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 17 Current Trends in System Development ♦ 671

phase iteration, the project manager might complete a model showing some aspect of the
system environment (the business modeling discipline). The scope of the system is delineated
by defining many of the key requirements of the system and listing use cases (the require-
ments discipline). To prove technological feasibility, some technical aspect of the system
might be designed (the design discipline), programmed (the implementation discipline), and
tested to make sure it will work as planned (the testing discipline). In addition, the project
manager is making plans for handling changes to the project (the configuration and change
management discipline), working on a schedule and cost/benefit analysis (the project man-
agement discipline), and tailoring the UP phases, iterations, deliverables, and tools to match
the needs of the project (the environment discipline).

The elaboration phase includes several iterations. In the first iteration, the team works on
the details of the domain classes and use cases addressed in the iteration (the business mod-
eling and requirements disciplines). At the same time, they might complete the description of
all use cases to finalize the scope (the requirements discipline). The use cases addressed in
the iteration are designed by creating design class diagrams and interaction diagrams (the
design discipline), programmed using Java or Visual Basic .NET (the implementation disci-
pline), and fully tested (the testing discipline). The project manager works on the plan for the
next iteration and continues to refine the schedule and feasibility assessments (the project
management discipline), and all team members continue to receive training on the UP activi-
ties they are completing and the system development tools they are using (the environment
discipline).

By the time the project progresses to the construction phase, most of the use cases have
been designed and implemented in their initial form. The focus of the project turns to satisfy-
ing other technical, performance, and reliability requirements for each use case, finalizing the
design, and implementation. These requirements are usually routine and lower risk, but they
are key to the success of the system. The effort focuses on designing system controls and secu-
rity and on implementing and testing these aspects.

The Unified Process as a system development methodology must be tailored to the
development team and specific project. Choices must be made about which deliverables to
produce and the level of formality to be used. Sometimes a project requires formal report-
ing and controls. Other times, it can be less formal. The UP should always be tailored to
the project.

Be sure to tailor the UP disciplines to fit the project.

BEST PRACTICE

THE AGILE DEVELOPMENT PHILOSOPHY AND AGILE MODELING

The highly volatile marketplace has forced businesses to respond rapidly to new opportuni-
ties. Sometimes new opportunities appear in the middle of implementing another business
initiative. To survive, businesses must be agile. Agility—being able to change directions
rapidly, even in the middle of a project—is the keystone of Agile Development. Agile
Development is a philosophy and set of guidelines for developing software in an unknown,
rapidly changing environment. It provides an overarching philosophy to be used with a spe-
cific development methodology such as the Unified Process. For example, we identified the
UP as being somewhat adaptive, but being adaptive is not the same as being agile. Some UP
projects may adopt many agile philosophies, and others may use fewer.

Related to Agile Development, Agile Modeling is a philosophy about how to build mod-
els, some of which are formal and detailed and others sketchy and minimal. Figure 17-5 illus-
trates the relationships among an Agile Development philosophy, specific adaptive
methodologies, and use of Agile Modeling.

C6696_17_CTP.4c 2/6/08 8:29 AM Page 671

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Agile Development Philosophy and Values

The “Manifesto for Agile Software Development” (see the “Further Resources” section) identi-
fies four basic values, which represent the core philosophy of the agile movement. The four
values emphasize:

• Responding to change over following a plan
• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation

Note that each of the phrases in the list prioritizes the value on the left over the value on the
right. The people involved in system development, whether as team members, users, or other
stakeholders, all need to accept these priorities for a project to be truly agile. Adopting an
agile approach is not always easy.

Some industry leaders in the agile movement coined the term chaordic to describe an
agile project. Chaordic comes from two words, chaos and order. The first two values in our
list—responding to change over following a plan and individuals and interactions over
processes and tools—do seem to be a recipe for chaos. But they recognize that software proj-
ects inherently have many unknowns and unpredictable elements, and hence a certain
amount of chaos. Developers need to accept the chaos but also need to use the specific
methodologies discussed later to impose order on this chaos to move the project ahead.

Managers and executive stakeholders frequently struggle to accept this less rigid point of
view, often wanting to impose more controls on development teams and to enforce detailed
plans and schedules. However, the agile philosophy takes the opposite approach, providing
more flexibility in project schedules and letting the project teams plan and execute their work
as the project progresses.

Another important value of Agile Development is that customers must continually be
involved with the project team. They do not sit down with the project team for a few sessions
to develop the specifications and then go their separate ways. Instead, customers collaborate
with and become part of the technical team. Because working software is being developed
throughout the project, customers are continually involved in defining requirements and test-
ing components.

Contracts also take on an entirely different flavor. Fixed prices and fixed deliverables do
not make sense. Contracts take more of a collaborative tack but include options for the cus-
tomer to cancel if the project is not progressing, as measured by the incremental deliverables.
Incremental deliverables in agile projects are working pieces of the new system, not docu-
ments or specifications.

Models and modeling are critical to Agile Development, so we look next at Agile Modeling.
Many of the core values are illustrated in the principles and practices of building models.

Agile Modeling Principles

Your first impression might be that an agile approach means less modeling, or maybe even
no modeling. Agile Modeling (AM) is not about doing less modeling but about doing the
right kind of modeling at the right level of detail for the right purposes. Early in this chapter,

672 ♦ PART 4 IMPLEMENTATION AND SUPPORT

Agile Development methodology

Agile Development and Agile Modeling

Extreme Programming

methodology
Scrum methodology UP methodology

Figure 17-5

Adaptive methodologies

using Agile Development

and Agile Modeling

chaordic
a term used to describe
adaptive projects, which
are both chaotic and
ordered

C6696_17_CTP.4c 2/6/08 8:29 AM Page 672

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 17 Current Trends in System Development ♦ 673

we identified two primary reasons to build models: (1) to understand what you are building
and (2) to communicate important aspects of the solution system. AM consists of a set of
principles and practices that reinforce these two reasons for modeling. AM does not dictate
which models to build or how formal to make those models but instead helps developers to
stay on track with their models—by using them as a means to an end instead of building
models as end deliverables. AM’s basic principles express the attitude that developers should
have as they develop software. Figure 17-6 summarizes Agile Modeling principles. We discuss
those principles next.

Agile Modeling principles

• Develop software as your primary goal.
• Enable the next effort as your secondary goal.
• Minimize your modeling activity—few and simple.
• Embrace change, and change incrementally.
• Model with a purpose.
• Build multiple models.
• Build high-quality models and get feedback rapidly.
• Focus on content rather than representation.
• Learn from each other with open communication.
• Know your models and how to use them.
• Adapt to specific project needs.

Figure 17-6

Agile Modeling principles

Develop Software as Your Primary Goal The primary goal of a software development
project is always to produce high-quality software. The primary measurement of progress is
working software, not intermediate models of system requirements or specifications.
Modeling is always a means to an end, not the end itself. Any activity that does not directly
contribute to the end goal of producing software should be questioned and avoided if it can-
not be justified.

Enable the Next Effort as Your Secondary Goal Focusing only on working software can
also be self-defeating, so developers must consider two important objectives. First, requirements
models might be necessary to develop design models. So, do not think that if the model cannot
be used to write code, it is unnecessary. Sometimes several intermediate steps are needed before
the final code can be written. Second, although high-quality software is the primary goal, long-
term use of that code is also important. So, some models might be necessary to support mainte-
nance and enhancement of the system. Yes, the code is the best documentation, but some
architectural design decisions might not be easily identified from the code. Look carefully at
what other artifacts might be necessary to produce high-quality systems in the long term.

Minimize Your Modeling Activity—Few and Simple Create only the models that are nec-
essary. Do just enough to get by. This principle is not a justification for sloppy work or inade-
quate analysis. The models you create should be clear, correct, and complete. But do not create
unnecessary models. Also, keep each model as simple as possible. Normally, the simplest solu-
tion is the best solution. Elaborate solutions tend to be difficult to understand and maintain.
However, we emphasize again that simplicity is not justification for being incomplete.

Be sure your models are a means to an end and not an end themselves. All
models should have a purpose.

BEST PRACTICE

C6696_17_CTP.4c 2/6/08 8:29 AM Page 673

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Embrace Change and Change Incrementally Because the underlying philosophy of Agile
Modeling is that developers must be flexible and respond quickly to change, a good agile
developer willingly accepts—and even embraces—change. Change is seen as the norm, not
the exception. Watch for change and have procedures ready to integrate changes into the
models. The best way to accept change is to develop incrementally. Take small steps and
address problems in small bites. Change your model incrementally, and then validate it to
make sure it is correct. Do not try to accomplish everything in one big release.

Model with a Purpose We indicated earlier that the two reasons to build models are to
understand what you are building and to communicate important aspects of the solution sys-
tem. Make sure that your modeling efforts support those reasons. Sometimes developers try
to justify building certain models by claiming that (1) the development methodology man-
dates the development of the model, (2) someone wants a model, even though the person
does not know why it is important, or (3) a model can replace a face-to-face discussion of
issues. Always identify a reason and an audience for each model you develop. Then develop
the model in sufficient detail to satisfy the reason and the audience. Incidentally, the audi-
ence might be you.

Build Multiple Models UML, along with other modeling methodologies, has several mod-
els to represent different aspects of the problem at hand. To be successful—in understanding
or communication—you will need to model various aspects of the required solution. Don’t
develop all of them; be sure to minimize your modeling, but develop enough models to
make sure you have addressed all the issues.

Build High-Quality Models and Get Feedback Rapidly Nobody likes sloppy work. It is
based on faulty thinking and introduces errors. One way to avoid error in models is to get
feedback rapidly, while the work is still fresh. Feedback comes from users, as well as technical
team members. Others will have helpful insights and different ways to view a problem and
identify a solution.

Focus on Content Rather than Representation Sometimes a project team has access to a
sophisticated visual modeling tool. Visual modeling tools can be helpful, but at times they
are distracting because developers spend time making the diagrams pretty. Be judicious in the
use of tools. Some models need to be well drawn for communication or contracts or even to
handle expected changes and updates. In other cases, a hand-drawn diagram might suffice.

Learn from Each Other with Open Communication All of the adaptive approaches
emphasize working in teams. Do not be defensive about your models. Other team members
have good suggestions. You can never truly master every aspect of a problem or its models.

Know Your Models and How to Use Them Being an agile modeler does not mean that you
are not skilled. If anything, you must be more skilled to know the strengths and weaknesses of
the models, including how and when to use them. An expert modeler applies the previous
principles of simplicity, quality, and development of multiple models.

Adapt to Specific Project Needs Every project is different because it exists in a unique
environment; involves different users, stakeholders, and team members; and requires a differ-
ent development environment and deployment platform. Adapt your models and modeling
techniques to fit the needs of the business and the project. Sometimes models can be infor-
mal and simple. For other projects, more formal, complicated models might be required. An
agile modeler is able to adapt to each project.

Agile Modeling Practices

The following practices support the AM principles just expressed. The heart of AM is in its
practices, which give the practitioner specific modeling techniques. Figure 17-7 summarizes
the Agile Modeling practices. We discuss each of the practices next.

674 ♦ PART 4 IMPLEMENTATION AND SUPPORT

C6696_17_CTP.4c 2/6/08 8:29 AM Page 674

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 17 Current Trends in System Development ♦ 675

Iterative and Incremental Modeling Remember that modeling is a support activity, not
the end result of software development. As a developer, you should create small models fre-
quently to help you understand or solve a problem. New developers sometimes have diffi-
culty deciding which models to select. You should continue to learn about models and
expand your repertoire. UML has a large set of models that cover a lot of analysis and design
territory. However, they are not the only models you might find useful. Many developers still
use data flow diagrams and decomposition diagrams from the traditional structured
approach. The point is that models are a tool, and as a professional, you should have a large
set of tools.

Teamwork As shown in Figure 17-5, AM supports various development methodologies.
One of the tenets in all of these methodologies is that developers work together in small
teams of two to four members. In addition, users should be integrally involved in modeling
exercises. For example, suppose the task at hand is to understand how a purchase order is cre-
ated and processed. Good AM practice says to get the right players together, including team
members and users, and develop a detailed model of the process, possibly on a whiteboard.
Other teams could then take a digital photograph of the whiteboard and post it in a reposi-
tory on the project’s network server. The model then becomes public; no one owns it, and all
can access it. If it later needs to be corrected, it can be annotated with software and reposted.
An alternative method, especially if the model will become a permanent document, is to
develop the model using a drawing tool such as Visio with a laptop and a projector. This
process is not quite as flexible as a whiteboard, but it yields a more permanent model. In any
case, the model is again posted for all to use, review, and update.

Simplicity The previous purchase order example illustrated an approach that is simple and
easy to support. Also, developers should create a set of models to help them understand or

Agile Modeling practices

• Iterative and incremental modeling
º Use the right models.
º Create several models in parallel.
º Iterate frequently.
º Model in small increments.

• Teamwork
º Model with others.
º Involve users and other stakeholders.
º Share ownership of the models.
º Display the models publicly.

• Simplicity
º Create simple content.
º Depict the models simply.
º Use simple tools.

• Validation
º Prove it with code.

• Documentation
º Discard temporary models.
º Formalize contract models.
º Update only when it hurts.

• Motivation
º Model to communicate.
º Model to understand.

Figure 17-7

Agile Modeling practices

C6696_17_CTP.4c 2/6/08 8:29 AM Page 675

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

solve a narrow problem. In the purchase order example, the model focused on one business
process or use case. In the first iteration, developers should only focus on the typical process,
one without all of the possible variations. Then later iterations can add exception conditions,
security and control requirements, and other details.

Validation Between modeling sessions, the team can begin to write code for the solutions
already conceived so that they can validate the models. Simplicity supports frequent validation.
Do not create too many or complex models until the simple ones have been validated with code.

Documentation Many models are temporary working documents that are developed to
solve a particular problem. These models quickly become obsolete as the code evolves and
improves. Do not try to keep them up to date. Discard them. If they were posted to a reposi-
tory, date them so that everyone knows they show a history of decisions and progress but are
not now in sync with the code. Updating only when it hurts is a guideline that tells us not to
waste time trying to keep temporary models synchronized. During the first iteration, when
many models are developed concurrently, they should be consistent. However, as develop-
ment progresses, some models will become working documents that no longer relate well to
other models. Remember that the objective of the project is to develop software, not to have a
set of pretty models. Only update when it hurts—that is, when the project team can’t work
effectively without the information.

Motivation Remember the basic objectives of modeling. Only build a model if it helps you
understand a process or solve a problem or if you need to record and communicate some-
thing. For example, the team members in a design session might make some design decisions.
To communicate these decisions, the team posts a simple model to make it public. The model
can be a very effective tool to document the decisions and ensure that all have a common
understanding and reference point. Again, a model is simply used as a tool for communica-
tion, not as an end in itself.

Now that we have explored the basic philosophy, principles, and practices underlying
Agile Development, we turn to two methodologies that employ agile concepts: Extreme
Programming and Scrum.

EXTREME PROGRAMMING

Extreme Programming (XP) is an adaptive, agile development methodology that was created in
the mid-1990s. The word extreme sometimes makes people think that it is completely new and
that developers who embrace XP are radicals. However, XP is really an attempt to take the best
practices of software development and extend them “to the extreme.” Extreme programming
has the following characteristics:

• Takes proven industry best practices and focuses on them intensely
• Combines those best practices (in their intense form) in a new way to produce a result

that is greater than the sum of the parts

Figure 17-8 lists the core values and practices of XP. In the following sections we first pre-
sent the four core values of XP. Then we explain its 12 primary practices. Finally, we describe
the basic structure of an XP project and the way XP is used to develop software.

XP Core Values

The four core values of XP—communication, simplicity, feedback, and courage—drive its
practices and project activities. You will recognize the first three as best practices for any devel-
opment project. With a little thought, you should also see that the fourth is a desired value
for any project, even though it might not be stated explicitly.

Communication One of the major causes of project failure has been a lack of open com-
munication with the right players at the right time and at the right level. Effective communi-
cation involves not only documentation but also open verbal discussion. The practices and
methods of XP are designed to ensure that open, frequent communication occurs.

676 ♦ PART 4 IMPLEMENTATION AND SUPPORT

C6696_17_CTP.4c 2/6/08 8:29 AM Page 676

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 17 Current Trends in System Development ♦ 677

Simplicity Even though developers have always advocated keeping solutions simple, they
do not always follow their own advice. XP includes techniques to reinforce this principle and
make it a standard way of developing systems.

Feedback As with simplicity, getting frequent, meaningful feedback is recognized as a best
practice of software development. Feedback on functionality and requirements should come
from the users, feedback on designs and code should come from other developers, and feed-
back on satisfying a business need should come from the client. XP integrates feedback into
every aspect of development.

Courage Developers always need courage to face the harsh choice of doing things right or
throwing away bad code and starting over. But all too frequently they have not had the
courage to stand up to a too-tight schedule, resulting in bad mistakes. XP practices are
designed to make it easier to give developers the courage to “do it right.”

XP Practices

XP’s 12 practices embody the basic values just presented. These practices are consistent with
the agile principles explained earlier in the chapter.

Planning Some people describe XP as glorified hacking or as the old “code and fix”
methodology that was used in the 1960s. That is not true; XP does include planning.
However, XP is an adaptive technique that recognizes that you cannot know everything at the
start. As indicated earlier, XP embraces change. XP planning focuses on making a rough plan
quickly and then refining it as things become clearer. This reflects the Agile Development phi-
losophy that change is more important than detailed plans. It is also consistent with the idea
that individuals—and their abilities—are more important than an elaborate process.

The basis of an XP plan is a set of stories that users develop. A story simply describes what
the system needs to do. XP does not use the term use case, but a user story and a use case
express a similar idea. Planning involves two aspects: business issues and technical issues. In
XP the business issues are decided by the users and clients, while technical issues are decided
by the development team. The plan, especially in the early stages of the project, consists of the
list of stories—from the users—and the estimates of effort, risk, and work dependencies for
each story—from the development team. As in Agile Development, the idea is to involve the
users heavily in the project, rather than requiring them simply to sign off on specifications.

Testing Every new piece of software requires testing, and every methodology includes test-
ing. XP intensifies testing by requiring that the tests for each story be written first—before the
solution is programmed. There are two major types of tests: unit tests, which test the correct-
ness of a small piece of code, and acceptance tests, which test the business function. The
developers write the unit tests, and the users write the acceptance tests. Before any code can

• Communication • Planning
• Simplicity • Testing
• Feedback • Pair programming
• Courage • Simple designs

• Refactoring the code
• Owning the code collectively
• Continuous integration
• On-site customer
• System metaphor
• Small releases
• Forty-hour week
• Coding standards

XP core values XP practices

Figure 17-8

XP core values and

practices

C6696_17_CTP.4c 2/6/08 8:29 AM Page 677

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

be integrated into the library of the growing system, it must pass the tests. By having the tests
written first, XP automates their use and executes them frequently. Over time, a library of
required tests is created, so when requirements change and the code needs to be updated, the
tests can be rerun quickly and automatically.

Pair Programming This practice, more than any other, is one for which XP is famous.
Instead of simply requiring one programmer to watch another’s work, pair programming
divides up the coding work. First, one programmer might focus more on design and double-
checking the algorithms while the other writes the code. Then they switch roles so that both
think about design, coding, and testing. XP relies on comprehensive and continual code
reviews. Interestingly, research has shown that pair programming is actually more efficient
than programming alone. It takes longer to write the initial code, but the long-term quality is
higher. Errors are caught quickly and early, two people become familiar with every part of the
system, all design decisions are developed by two brains, and fewer “quick-and-dirty” short-
cuts are taken. The quality of the code is always higher in a pair-programming environment.

678 ♦ PART 4 IMPLEMENTATION AND SUPPORT

XP’s use of pair programming develops high-quality code more efficiently
than programming alone.

BEST PRACTICE

Simple Designs Opponents say that XP neglects design, but that is not true. XP conforms
to the principles of Agile Modeling expressed earlier by avoiding the “Big Design Up Front”
approach. Instead, it views design as so important that it should be done continually, but in
small chunks. As with everything else, the design must be verified immediately by reviewing
it along with coding and testing.

So what is a simple design? It is one that accomplishes the desired result with as few
classes and methods as possible and that does not duplicate code. Accomplishing all that is
often a major challenge.

Refactoring the Code Refactoring is the technique of improving the code without chang-
ing what it does. XP programmers continually refactor their code. Before and after adding any
new functions, XP programmers review their code to see whether there is a simpler design or a
simpler method of achieving the same result. Refactoring produces high-quality, robust code.

Owning the Code Collectively This practice requires all team members to have a new
mindset. In XP, everyone is responsible for the code. No one person can say, “This is my
code.” Someone can say, “I wrote it,” but everyone owns it. Collective ownership allows any-
one to modify any piece of code. However, because unit tests are run before and after every
change, if programmers see something that needs fixing, they can run the unit tests to make
sure that the change did not break something. This practice embodies the team concept that
developers are building a system together.

Continuous Integration This practice embodies XP’s idea of “growing” the software. Small
pieces of code—which have passed the unit tests—are integrated into the system daily or even
more often. Continuous integration highlights errors rapidly and keeps the project moving
ahead. The traditional approach of integrating large chunks of code late in the project often
resulted in tremendous amounts of rework and time lost while developers tried to determine
just what went wrong. XP’s practice of continuous integration prevents that.

On-Site Customer As with all adaptive approaches, XP projects require continual involvement
of users who can make business decisions about functionality and scope. Based on the core value
of communication, this practice keeps the project moving ahead rapidly. If the customer is not
ready to commit resources to the project, the project will not be very successful.

System Metaphor This practice is XP’s unique and interesting approach to defining an archi-
tectural vision. It answers the questions, “How does the system work? What are its major

pair programming
XP practice in which two
programmers work
together on designing,
coding, and testing

refactoring
revising, reorganizing,
and rebuilding part of a
system so that it is of
higher quality

C6696_17_CTP.4c 2/6/08 8:29 AM Page 678

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 17 Current Trends in System Development ♦ 679

components?” To answer those questions, developers identify a metaphor for the system. For
example, Big Three automaker Chrysler’s payroll system was built as a production-line metaphor,
with its system components using production-line terms. Everyone at Chrysler understands a pro-
duction line, so a payroll transaction was treated the same way—developers started with a basic
transaction and then applied various processes to complete it. Of course, the metaphor should
be easily understood or well known to the members of the development team. A system
metaphor can guide members toward a vision and help them understand the system.

Small Releases A release is a point at which the new system can be turned over to users
for acceptance testing, and sometimes even for productive use. Consistent with the entire phi-
losophy of growing the software, small and frequent releases provide upgraded solutions to
the users and keep them involved in the project. They also facilitate other practices, such as
immediate feedback and continual integration.

Forty-Hour Week and Coding Standards These final two practices set the tone for how
the developers should work. The exact number of hours a developer works is not the issue.
The issue is that the project should not be a death march that burns out every member of the
team. Neither is the project a haphazard coding exercise. Developers should follow standards
for coding and documentation. XP uses just the engineering principles that are appropriate
for an adaptive process based on empirical controls.

XP Project Activities

Figure 17-9 shows an overview of the XP system development approach. The XP development
approach is divided into three levels—system (the outer ring), release (the middle ring), and
iteration (the inner ring). System-level activities occur once during each development project.
A system is delivered to users in multiple stages called releases. Each release is a fully func-
tional system that performs a subset of the full system requirements. A release is developed
and tested within a period of no more than a few weeks or months. The activities in the mid-
dle ring cycle multiple times—once for each release. Releases are divided into multiple itera-
tions. During each iteration, developers code and test a specific functional subset of a release.
Iterations are coded and tested in a few days or weeks. There are multiple iterations within
each release, so the iteration ring (inner) cycles multiple times.

The first XP development activity is creating user stories, which are similar to use cases in
OO analysis. A team of developers and users quickly documents all of the user stories that the
system will support. Developers then create a class diagram to represent objects of interest
within the user stories.

Developers and users then create a set of acceptance tests for each user story. Releases that
pass the acceptance tests are considered finished. The final system-level activity is to create a
development plan for a series of releases. The first release supports a subset of the user stories,
and subsequent releases add support for additional stories. Each release is delivered to users
and performs real work, thus providing an additional level of testing and feedback.

The first release-level activity is planning a series of iterations. Each iteration focuses on a
small (possibly just one) system function or user story. The iterations’ small size allows devel-
opers to code and test them within a few days. A typical release is developed using a few to a
few dozen iterations.

After the iteration plan is complete, work begins on the first iteration-level activity. Code
units are divided among multiple programming teams, and each team develops and tests its
own code. XP recommends a test-first approach to coding. Test code is written before system
code. As code modules pass unit testing, they are combined into larger units for integration
testing. When an iteration passes integration testing, work begins on the next iteration.

When all iterations of a release have been completed, the release undergoes acceptance
testing. If a release fails acceptance testing, the team returns it to the iteration level for repair.
Releases that pass acceptance testing are delivered to end users, and work begins on the next
release. When acceptance testing of the final release is completed, the development project is
finished.

C6696_17_CTP.4c 2/6/08 8:29 AM Page 679

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

SCRUM

Scrum is another adaptive development methodology. The term refers to rugby’s system for
getting an out-of-play ball back into play. Rugby players get together in a big mass, the referee
drops the ball, and then the scrum participants pass the ball backward through their legs to a
waiting runner. The name stuck due to many similarities between the sport and the system
development approach: Both are quick, adaptive, and self-organizing. The basic idea behind
Scrum is to respond to a current situation as rapidly and positively as possible. Scrum can be
described as a truly empirical process control approach to developing software. The Scrum
software development process is shown in Figure 17-10. There are three important concepts
that describe Scrum: (1) its philosophy, (2) its organization, and (3) its practices.

Scrum Philosophy

The Scrum philosophy is based on the Agile Development principles described earlier. Scrum
is responsive to a highly changing, dynamic environment in which users might not know
exactly what is needed and might also change priorities frequently. In this type of environ-
ment, changes are so numerous that projects can bog down and never reach completion.
Scrum excels in this type of situation.

680 ♦ PART 4 IMPLEMENTATION AND SUPPORT

Finish

Start

Plan
release

s

Create acceptance tests

C
re

at
e

sys
te

m
metaphor

C
re

a
te

u
s

e
r

s
to

ri
e

s

Plan
ite

ra
tio

n
s

A
cc

epta
nce tests

start next release

start next iteration

C
o

d
e

Unit test

In
te

g
ra

tion

test

Figure 17-9

The XP development

approach

Consider using Scrum for a system in a highly dynamic environment in
which users may change priorities frequently.

BEST PRACTICE

Scrum focuses primarily on the team level. It is a type of social engineering that empha-
sizes individuals more than processes and describes how teams of developers can work

C6696_17_CTP.4c 2/6/08 8:29 AM Page 680

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 17 Current Trends in System Development ♦ 681

together to build software in a series of short miniprojects. Key to this philosophy is the com-
plete control a team exerts over its own organization and its work processes. Software is devel-
oped incrementally, and controls are imposed empirically—by focusing on the things that
can be accomplished.

The basic control mechanism for a Scrum project is a list of all the things the system
should include and address. This list, called the product backlog, includes user functions
(such as use cases), features (such as security), and technology (such as platforms). The prod-
uct backlog list is continually being prioritized, and only a few of the high-priority items are
worked on at a time, according to the current needs of the project and its sponsor.

Scrum Organization

The three main organizational elements that affect a Scrum project are the product owner, the
Scrum master, and the Scrum team or teams.

The product owner is the client—that is, the person who is buying the result—but the
product owner has additional responsibilities. Remember that in Agile Development the user
and client are closely involved in the project. In Scrum, the product owner maintains the
product backlog list. For any function to be included in the final system, it must first be
placed on the product backlog. Because the product owner maintains that list, any request
must first be approved and agreed to by the product owner. In traditional development pro-
jects, the proj-ect team initiates the interviews and other activities to identify and define
requirements. In a Scrum project, the primary client controls the requirements. This forces
the client and user to be intimately involved in the project. Nothing can be accomplished
until the product owner creates the backlog.

The Scrum master enforces Scrum practices and helps the team complete its work. A
Scrum master is comparable to a project manager in other approaches. However, because the
team is self-organizing and there is no overall project schedule, the Scrum master’s duties are
slightly different. He or she is the focal point for communication and progress reporting, just
as in a traditional project. But the Scrum master does not set the schedule or assign tasks. The
team does. One of the primary duties of the Scrum master is to remove impediments so that
the team can do its work. In other words, the Scrum master is a facilitator.

The Scrum team is a small group of developers, typically five to nine people, who work
together to produce the software. For projects that are very large, the work should be parti-
tioned and delegated to smaller teams. If necessary, the Scrum masters from all the teams can
coordinate multiple team activities.

The Scrum team sets its own goal for what it can accomplish in a specific period of time.
It then organizes itself and parcels out the work to members. In a small team it is much easier
to sit around a table, decide what needs to be done, and have members of the team volunteer
or accept pieces of work.

Daily scrum

Scrum sprint

Product owner Scrum master
Scrum team

Sprint
planning
meeting

Product backlog Sprint backlog

Executable

incrementSprint

planning

meeting

Figure 17-10

Scrum software

development process

product backlog
a prioritized list of user
requirements used to
choose work to be done
during a Scrum project

product owner
the client stakeholder
for whom a system is
being built

Scrum master
the person in charge of a
Scrum project, similar to
a project manager

Scrum team
the team members
working on a Scrum
project

C6696_17_CTP.4c 2/6/08 8:29 AM Page 681

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Scrum Practices

The Scrum practices are the mechanics of how a project progresses. Of course, the practices
are based on the Scrum philosophy and organization. The basic work process is called a sprint,
and all other practices are focused on supporting a sprint.

A Scrum sprint is a firm 30-day time box, with a specific goal or deliverable. At the begin-
ning of a sprint, the team gathers for a one-day planning session. In this session, the team
decides on the major goal for the sprint. The goal draws from several items on the prioritized
product backlog list. The team decides how many of the highest-priority items it can accom-
plish within the 30-day sprint. Sometimes lower-priority items can be included for very little
additional effort and can be added to the deliverables for the sprint.

After the team has agreed on a goal and has selected items from the backlog list, it begins
work. The scope of that sprint is then frozen, and no one can change it—neither the product
owner nor any other users. If users do find new functions they want to add, they put them on
the product backlog list for the next sprint. If team members determine that they cannot
accomplish everything in their goal, they can reduce the scope for that sprint. However, the
30-day period is kept constant.

Every day during the sprint, the Scrum master holds a daily Scrum, which is a meeting of
all members of the team. The objective is to report progress. The meeting is limited to 15 min-
utes or some other short time period. Members of the team answer only three questions:

• What have you done since the last daily Scrum (last 24 hours)?
• What will you do by the next daily Scrum?
• What got in your way, or is in your way, preventing you from completing your work?

The purpose of this meeting is simply to report issues, not to solve them. Individual team
members collaborate and resolve problems after the meeting as part of the normal workday.
One of the major responsibilities of the Scrum master is to note the impediments and see that
they are removed. A good Scrum master clears impediments rapidly. The Scrum master also
protects the team from any intrusions. The team members are then free to accomplish their
work. Team members do talk with users to obtain requirements, and users are involved in the
sprint’s work. However, users cannot change the items being worked on from the backlog list
or change the intended scope of any item without putting it on the backlog list.

At the end of each sprint, the agreed-on deliverable is produced. A final half-day review
meeting is scheduled to recap progress and identify changes that need to be made for follow-
ing sprints. By time boxing these activities—the planning, the sprint, the daily Scrum, and the
Scrum review—the process becomes a well-defined template to which the team easily con-
forms, which contributes to the success of Scrum projects.

PROJECT MANAGEMENT AND ADAPTIVE METHODOLOGIES

As indicated in the Valley Regional Hospital case at the beginning of the chapter, the adaptive
methodologies to system development can sometimes frustrate executives who are accus-
tomed to having a complete schedule at the start of a project and tracking the progress against
this schedule. But with adaptive methodologies, developers create the schedule as the project
progresses. This approach can seem chaotic and uncontrolled to those who are not used to it.
In fact, some might think that advocates of adaptive development are throwing project man-
agement out the window. Project management is an integral part of adaptive approaches,
however. As shown in Chapter 3, project management activities are an integral part of all
adaptive approaches. Each iteration can be treated as a miniproject with its own set of proj-
ect management tasks.

682 ♦ PART 4 IMPLEMENTATION AND SUPPORT

sprint
a time-controlled
miniproject that
implements a specific
portion of a system

C6696_17_CTP.4c 2/6/08 8:29 AM Page 682

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 17 Current Trends in System Development ♦ 683

In Chapter 3 we also identified several criteria of successful projects. Included on the list
were the following:

• Clear system requirement definitions
• Substantial user involvement
• Support from upper management
• Thorough and detailed project plans
• Realistic work schedules and milestones

Let’s review the eight primary areas in the project management body of knowledge to see how
project management changes for adaptive projects.

Project time management is radically changed in adaptive methodologies. Because projects
operate under uncertain conditions, the project team does not attempt to make a complete,
detailed project schedule. However, as we saw, time and the schedule are managed differently.
First, in some approaches such as Scrum, each cycle must conform to a firm time box. In other
approaches such as XP or the UP, the length of iterations is more flexible, but each has its own
schedule. In fact, the schedule can be very detailed and is usually more accurate because of the
smaller scope and focused nature of each iteration. So, time management is still an important
skill for a project manager using adaptive approaches. One key success element, that of realistic
work schedules, is much more evident in adaptive projects than in purely predictive approaches.

Project scope management is also radically altered. With predictive development, one of the
project manager’s primary responsibilities is to control the project scope. The most difficult tasks
of the project manager are ensuring that the requirements are correct, seeing that the users are
involved, and preventing the scope from growing uncontrollably. In contrast to this control-from-
the-top viewpoint, adaptive development makes the users or clients part of the team and gives
them responsibility for the scope. The backlog list in Scrum is the responsibility of the client. The
scope of an iteration, or sprint, is not allowed to change. The scope of the project can only change
through a very controlled mechanism, which includes the approval of the client. One potential
problem with this approach, however, is that project iterations could just go on forever. So, scope
control for adaptive projects consists of controlling the iterations. For a UP project, the elabora-
tion iterations would be stopped, and the team would move on to implementation, testing, and
deployment. Scope control is still necessary; it just takes a different form.

Time and scope are always interdependent. Changes in scope influence the schedule and
time required to complete project deliverables. Monitoring and control are still critical to a
successful project. Within an XP iteration or a Scrum sprint, monitoring and control tech-
niques are still needed to keep the project on schedule. If the team is self-organizing, as in the
Scrum approach, the members need to establish project management tasks. Deliverables and
time frames are still required. So, the project can still include metrics to measure progress and
predict completion dates.

Project cost management is still important in adaptive approaches. Total project costs
might be harder to predict because the complete project schedule is unknown. Executives will
feel uneasy about the lack of both an overall project schedule and a total budget, so the team
will need to reassure them by emphasizing iteration control and scope control.

Good project management techniques are important no matter what
methodology you use. They are an integral part of adaptive software
methodologies.

BEST PRACTICE

C6696_17_CTP.4c 2/6/08 8:29 AM Page 683

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Project communication management is critical in adaptive approaches because users are
heavily involved in all aspects of the project. Because requirements are identified, defined,
implemented, and tested in short iterations, the success factors associated with defining
requirements and eliciting user support are emphasized. Open verbal communication and
collaborative work are the primary tools for defining the business need. Communication
throughout the entire team is a must for adaptive projects.

Project quality management is a continual focus of adaptive projects, and in fact, more
tools are provided to the project manager and the team to ensure a high-quality system. Two
major techniques are available. First, testing is conducted throughout the project—from writ-
ing test plans first to continual checks and integration. Second, time is allocated to refactor
the system as it is built, so the resulting code is simple and solid. The project manager needs
to ensure that adequate time is scheduled in each iteration for these important activities.

Project risk management is also enhanced in adaptive approaches. Early iterations should
address the high-risk aspects of the system. As a result, the project team and client find out
early in the project whether there are insurmountable obstacles that could seriously under-
mine the project’s success.

Project human resource management is as challenging in adaptive approaches as in any
project. Good project management in both predictive and adaptive approaches emphasizes
small teams that are self-managed. The major difference is that the adaptive techniques have
a built-in mechanism for teams to organize themselves for each iteration or sprint. So project
managers are less tempted to take control in adaptive approaches.

Project procurement management must address the same issues for all projects. Issues such
as integrating purchased elements into the overall project, verifying the quality of the purchased
components, and satisfying contractual commitments must be completed in both approaches.

We next turn to new ideas for integrating all system development work across a large orga-
nization or enterprise. The adaptive and agile concepts that were just discussed focus on indi-
vidual projects within an organization. Rather than focus on individual efforts, Model-Driven
Architecture focuses on enterprise-level activities. It describes a use of models and modeling
that is different from that of Agile Modeling.

MODEL-DRIVEN ARCHITECTURE—GENERALIZING SOLUTIONS

One of the primary problems medium-sized and large organizations face is how to build
enterprise-level systems that work together seamlessly or that are at least able to communi-
cate. Organizations frequently have legacy mainframe systems, coupled with UNIX-based sys-
tems, coupled with Windows platform systems. Each of these systems has its own operating
systems, interaction standards, middleware systems, and specific business application sys-
tems. The question facing many organizations today is how to make all of these systems work
together.

Middleware includes such services as messaging and e-mail, HTML servers, directory and
name servers, database and data servers, component registries, and transaction and event pro-
cessing handlers. Middleware is typically based on standards that define message format,
message content, security, and the way applications and servers discover one another. It is
very difficult for a large organization to establish a single middleware platform because dif-
ferent groups and divisions often have unique needs, which led them to adopt a variety of
middleware solutions based on different standards. Some of the most widely used middle-
ware environments today are based on standards such as CORBA, Java 2 Web Services, XML,
SOAP, and .NET. These environments are explained later in the chapter.

The question system developers must answer is how to capture and extract the informa-
tion from all of these different enterprise-level middleware environments and use it indepen-
dently of the middleware systems themselves. In other words, how can a company define its
architectural needs independently of any vendor or platform?

684 ♦ PART 4 IMPLEMENTATION AND SUPPORT

C6696_17_CTP.4c 2/6/08 8:29 AM Page 684

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 17 Current Trends in System Development ♦ 685

One solution proposed by the Object Management Group (OMG) is Model-Driven
Architecture. The OMG, which is a consortium of more than 800 companies and organiza-
tions, sets standards for interoperability that are independent of language, platform, and ven-
dor. Some of these standards are developed and established by the OMG itself. One such
example is Common Object Request Broker Architecture (CORBA), which describes a stan-
dard communication architecture for enterprise-level interfaces. Other standards are devel-
oped in conjunction with outside groups. UML, which we have been discussing throughout
this text, was first proposed as a standard by Grady Booch, Ivar Jacobson, and James
Rumbaugh. It has since been adopted as a standard and incorporated into the OMG proce-
dures for updating and approval.

Model-Driven Architecture (MDA) is an OMG initiative that is built on the principles of
abstraction, modeling, reuse, and patterns to provide companies with an additional tool to
help them understand and extend their enterprise-level systems. MDA provides a framework
to identify and classify all the system development work being done in an enterprise. The offi-
cial motto of the MDA is “the architecture of choice for a changing world.” As we look at the
details of the MDA, you will recognize many of its concepts. MDA helps describe the concepts
that you have been learning throughout this course.

Figure 17-11 is a diagram that depicts the typical process for software development. This
model applies to both predictive processes and adaptive, iterative processes. In predictive
processes, the development team gathers all the requirements, does a comprehensive design,
and then codes the entire system. In the adaptive approaches, the flow is repeated many times
in several iterations. But note the rectangles on the right side of the diagram. The top rectan-
gle, showing descriptive text, represents the documents that describe the users’ needs. These
documents are usually notes, rough sketches, outlines, and other unorganized descriptions of
the business processes and user activities.

The second rectangle in the diagram, called the platform-independent model (PIM),
models information about the business that is independent of how it will be built. One
example of PIM that you will recognize is a UML class diagram. A UML class diagram
describes the information requirements of a system, regardless of whether it is implemented
using a relational database system such as SQL Server or a hierarchical database system such
as IBM’s DB2.

The third rectangle, called the platform-specific model (PSM), provides detailed infor-
mation that includes computer platform and implementation specifics. So, for example, a
PSM would contain a relational data model showing the data tables, the keys, the foreign
keys, and the type information of individual fields for a SQL Server database. It provides the
details about how to implement the PIM.

The other rectangles are the specific implementations of the models in programming code
and routines. At this point, you might be asking, “What is so great about the MDA? So far, it
just seems to be putting fancy names on activities that we already know how to do.” What the
MDA does is provide a mechanism by which organizations can extract critical features and
information about each of their current systems and combine them into a PIM. As we indi-
cated earlier, most organizations have multiple systems running in many different platforms
and programming languages. To describe those systems, individual PSMs are used, all of
which are different. So, extracting that information into a PIM allows an organization to ana-
lyze the combined PIM to determine where duplication, inconsistencies, and conflicts in
technologies exist. In addition, new systems can be designed to conform to existing systems.

For an organization to use an MDA strategy, it must first have a common modeling sys-
tem and language to describe the PIMs. A key component of the PIM modeling language is
the UML, which you have learned in this textbook.

The other required component is a set of standard transformations to move from the code
to a PSM and from a PSM to a PIM. In fact, it would be ideal if the transformations could be
automated. Then a company could use the automated tools to read existing code, generate

platform-

independent

model (PIM)
a model describing
system characteristics
that are not specific to
any deployment platform

platform-specific

model (PSM)
a model describing
system characteristics
that include deployment
platform requirements

C6696_17_CTP.4c 2/6/08 8:29 AM Page 685

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

PSMs, analyze the PSMs, and generate PIMs. After those tools were in place, they could also
assist in the transformation in the other direction—from PIM to PSM to code.

The role of the OMG is to help define these standard transformations. The creation and
sale of specific tools to support this activity is usually done by commercial companies.

Figure 17-12 illustrates how this process occurs. This figure shows different types of meta-
models. Recall from earlier in the chapter that a metamodel is a model that describes the
characteristics of another model. To build tools that automatically convert one model into
another model, developers need to describe each of those models in precise mathematical
terms. That mathematical description is a metamodel.

686 ♦ PART 4 IMPLEMENTATION AND SUPPORT

PLATFORM-
INDEPENDENT
MODEL (PIM)

DESCRIPTIVE
TEXT

PLATFORM-
SPECIFIC

MODEL (PSM)

MDA process

VALIDATED
CODE

CODE

Business modeling

Requirements

Design

Implementation

Testing

Deployment

Descriptive

text

Validated

code

Code

Platform-specific

model (PSM)

Platform-independent

model (PIM)

Figure 17-11

Software development

and MDA

PIM PSM Code

PIM

metamodel

PSM

metamodel

Code

metamodel

Transformation Transformation

Figure 17-12

Metamodels and

transitions between PIM,

PSM, and code

C6696_17_CTP.4c 2/6/08 8:29 AM Page 686

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 17 Current Trends in System Development ♦ 687

For example, if we were to describe a UML design class diagram, we would say that it is
made up of boxes and lines. A box represents a class. The boxes have three compartments,
with the top being a class name, the middle a list of attributes, and the bottom a list of meth-
ods. The lines represent relationships. Each line is connected to a box. Each connection has a
numeric text field that describes the multiplicity of the connection. Figure 17-13 shows a par-
tial class diagram metamodel that describes a UML design class diagram.

Compartment ClassBox

AttributeList

ClassName

MethodList

RelationshipLine Connection

MultiplicityTextDescriptiveText

1..* 0..* 1 2

1..3

1..3

1..*

0..1

Figure 17-13

Partial metamodel of a

UML class diagram

With a metamodel for each model and a defined set of transformations, organizations can
automatically transform the models. The OMG is currently finalizing the first release of the
MDA standards to define these models and the transformations. This initiative is ongoing,
with many organizations contributing to the standard and with commercial companies
beginning to build automated tools.

The MDA was originally defined to fit into a more predictive development approach. The
adaptive approaches minimize documentation and model building. So, are the two ideas
incompatible or contradictory?

The primary benefit of MDA is to give a big-picture view of the architecture of the entire
enterprise. Any new system should fit into the existing data and platform configuration. It
makes sense during system development, even with adaptive approaches, to maintain consis-
tency with the existing infrastructure. So, adaptive development approaches can benefit from
utilizing principles of MDA. The important point is to use each technique in its appropriate
situation to maximize productivity and organizational benefits.

FRAMEWORKS, COMPONENTS, AND SERVICES

Similar functions are embedded in many different types of systems. For example, the graphical
user interface (GUI) is nearly ubiquitous in modern software. Many features of a GUI—such as
drop-down menus, help screens, and drag-and-drop manipulation of on-screen objects—are
used in many or most GUI applications. Other functions—such as searching, sorting, and sim-
ple text editing—are also common to many applications. Higher-level functions such as credit
verification and shipment creation are reused in many different applications.

Reusing software to implement such common functions is a decades-old development
practice. But such reuse was awkward and cumbersome with older programming languages

C6696_17_CTP.4c 2/6/08 8:29 AM Page 687

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

and before ubiquitous networks. Object orientation includes two powerful techniques, frame-
works and components, that support software reuse. Modern networks and standards pro-
vide another method of software reuse: network-based services.

OBJECT FRAMEWORKS

An object framework is a set of classes that are specifically designed to be reused in a wide
variety of programs. The object framework is supplied to a developer as a precompiled library
or as program source code that can be included or modified in new programs. The classes
within an object framework are sometimes called foundation classes. Foundation classes are
organized into one or more inheritance hierarchies. Programmers develop application-
specific classes by deriving them from existing foundation classes. Programmers then add or
modify class attributes and methods to adapt a “generic” foundation class to the require-
ments of a specific application.

Object Framework Types

Object frameworks have been developed for a variety of programming needs. Examples
include the following:

• User-interface classes. Classes for commonly used objects within a graphical user inter-
face, such as windows, menus, toolbars, and file open and save dialog boxes.

• Generic data structure classes. Classes for commonly used data structures such as linked
lists, indices, and binary trees and related processing operations such as searching, sort-
ing, and inserting and deleting elements.

• Relational database interface classes. Classes that allow OO programs to create database
tables, add data to a table, delete data from a table, or query the data content of one or
more tables.

• Classes specific to an application area. Classes specifically designed for use in applica-
tion areas such as banking, payroll, inventory control, and shipping.

General-purpose object frameworks typically contain classes from the first three cate-
gories. Classes in these categories can be reused in a wide variety of application areas.
Application-specific object frameworks provide a set of classes for use in a specific industry or
type of application. Third parties usually design application-specific frameworks as extensions
to a general-purpose object framework. An application- or company-specific framework
requires a significant development effort typically lasting several years. The effort is repaid
over time through continuing reuse of the framework in newly developed systems.

The Impact of Object Frameworks on Design and Implementation Tasks

Developers need to consider several issues when determining whether to use object frame-
works. Object frameworks affect the process of systems design and development in several
different ways:

• Frameworks must be chosen early in the project—within the first development iteration.
• Systems design must conform to specific assumptions about application program struc-

ture and operation that the framework imposes.
• Design and development personnel must be trained to use a framework effectively.
• Multiple frameworks might be required, necessitating early compatibility and integration

testing.

The process of developing a system using one or more object frameworks is essentially
one of adaptation. The frameworks supply a template for program construction and a set of
classes that provide generic capabilities. Systems designers adapt the generic classes to the spe-
cific requirements of the new system. Frameworks must be chosen early so that designers
know the application structure imposed by the frameworks, the extent to which needed
classes can be adapted from generic foundation classes, and the classes that cannot be
adapted from foundation classes and thus must be built from scratch.

688 ♦ PART 4 IMPLEMENTATION AND SUPPORT

object framework
a set of classes that are
designed to be reused in
a variety of programs

foundation

classes
the classes within an
object framework

C6696_17_CTP.4c 2/6/08 8:29 AM Page 688

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 17 Current Trends in System Development ♦ 689

Of the three object layers typically used in OO system development (view, business logic,
and data access), the view and data layers most commonly derive from foundation classes.
User interfaces and database access tend to be the areas of greatest strength in object frame-
works, and they are typically the most tedious classes to develop from scratch. It is not
unusual for 80 percent of a system’s code to be devoted to view and data classes. Thus, con-
structing view and data classes from foundation classes provides significant and easily obtain-
able code reuse benefits. Adapting view classes from foundation classes has the additional
benefit of ensuring a similar look and feel of the user interface across systems and across
application programs within systems.

Successful use of an object framework requires a great deal of up-front knowledge about
its class hierarchies and program structure. That is, designers and programmers must be famil-
iar with a framework before they can successfully use it. Thus, a framework should be selected
as early as possible in the project, and developers must be trained in use of the framework
before they begin to implement the new system.

COMPONENTS

A component is a software module that is fully assembled and tested, is ready to use, and has
well-defined interfaces to connect it to clients or other components. Components can be sin-
gle executable objects or groups of interacting objects. A component can also be a non-OO
program or system “wrapped” in an OO interface. Components implemented with non-OO
technologies must still implement objectlike behavior. In other words, they must implement
a public interface, respond to messages, and hide their implementation details.

Components are standardized and interchangeable software parts. They differ from
objects or classes because they are binary (executable) programs, not symbolic (source code)
programs. This distinction is important because it makes components much easier to reuse
and reimplement than source code programs.

For example, consider the grammar-checking function in most word processing programs.
A grammar-checking function can be developed as an object or as a subroutine. Other parts
of the word processing program can call the subroutine or object methods via appropriate
source code constructs (for example, a C++ method invocation or a BASIC subroutine call).
The grammar-checking function’s source code is integrated with the rest of the word proces-
sor’s source code during program compilation and linking. The executable program is then
delivered to users.

Now consider two possible changes to the original grammar-checking function:

• The developers of another word processing program want to incorporate the existing
grammar-checking function into their product.

• The developers of the grammar-checking function discover new ways to implement the
function that result in greater accuracy and faster execution.

To integrate the existing function into a new word processor, the word processor develop-
ers must be provided with the source code of the grammar-checking function. They then code
appropriate calls to the grammar checker into their word processor source code. The com-
bined program is then compiled, linked, and distributed to users. When the developers of the
grammar checker revise their source code to implement the faster and more accurate func-
tion, they deliver the source code to the developers of the word processors. Both development
teams integrate the new grammar-checking source code into their word processors, recompile
and relink the programs, and deliver a revised word processor to their users.

So what’s wrong with this scenario? Nothing in theory, but a great deal in practice. The
grammar-checker developers can provide their function to other developers only as source
code, which opens up a host of potential problems concerning intellectual property rights
and software piracy. Of greater importance, the word processor developers must recompile
and relink their entire word processing programs to update the embedded grammar checker.

component
a standardized and
interchangeable software
module that is fully
assembled and ready to
use and that has well-
defined interfaces to
connect it to clients or
other components

C6696_17_CTP.4c 2/6/08 8:29 AM Page 689

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The revised binary program must then be delivered to users and installed on their computers.
This is an expensive and time-consuming process. Delivering the grammar-checking program
in binary form would eliminate or minimize most of these problems.

A component-based approach to software design and construction solves both of these
problems. Component developers, such as the developers of the grammar checker, can deliver
their product as a ready-to-use binary component. Users, such as the developers of the word
processing programs, can then simply plug in the component. Updating a single component
doesn’t require recompiling, relinking, and redistributing the entire application. Perhaps
applications already installed on user machines could query an update site via the Internet
each time they started and automatically download and install updated components.

At this point, you might be thinking that component-based development is just another
form of code reuse. But systems design, object frameworks, and client/server architecture all
address code reuse in different ways. The following points are what make component-based
design and construction different:

• Components are reusable packages of executable code. Systems design and object frame-
works are methods of reusing source code.

• Components are executable objects that advertise a public interface (that is, a set of meth-
ods and messages) and hide (encapsulate) the implementation of their methods from
other components. Client/server architecture is not necessarily based on OO principles.
Component-based design and construction are an evolution of client/server architecture
into a purely OO form.

Components provide an inherently flexible approach to systems design and construction.
Developers can design and construct many parts of a new system simply by acquiring and
plugging in an appropriate set of components. They can also make newly developed func-
tions, programs, and systems more flexible by designing and implementing them as collec-
tions of components. Component-based design and construction have been the norm in the
manufacturing of physical goods (such as cars, televisions, and computer hardware) for
decades. However, it has only recently become a viable approach to designing and imple-
menting information systems.

COMPONENT STANDARDS AND INFRASTRUCTURE

Interoperability of components requires standards to be developed and readily available. For
example, consider the video display of a typical IBM-compatible personal computer. The plug
on the end of the video signal cable follows an interface standard. The plug has a specific
form, and each connector in the plug carries a well-defined electrical signal. Years ago, a
group of computer and video display manufacturers defined a standard that describes the
physical form of the plug and the type of signals carried through each connector. Adherence
to this standard guarantees that any video display unit will work with any compatible per-
sonal computer and vice versa.

Components might also require standard support infrastructure. For example, video dis-
play units are not internally powered. Thus, they require not only a standard power plug but
also an infrastructure to supply power to the plug. A component might also require specific
services from an infrastructure. For example, a cellular telephone requires the service provider
to assign a transmission frequency with the nearest cellular radio tower, to transfer the connec-
tion from one tower to another as the user moves among telephone cells, to establish a con-
nection to another person’s telephone, and to relay all voice data to and from the other
person’s telephone via the public telephone grid. All cellular telephones require these services.

Software components have a similar need for standards. Components could be hard-
wired together, but this reduces their flexibility. Flexibility is enhanced when components can
rely on standard infrastructure services to find other components and establish connections
with them.

690 ♦ PART 4 IMPLEMENTATION AND SUPPORT

C6696_17_CTP.4c 2/6/08 8:29 AM Page 690

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 17 Current Trends in System Development ♦ 691

In the simplest systems, all components execute on a single computer under the control of
a single operating system. Connection is more complex when components are located on dif-
ferent machines running different operating systems and when components can be moved
from one location to another. In this case, a network protocol independent of the hardware
platform and operating system is required. In fact, a network protocol is desirable even when
all components execute on the same machine because such a protocol guarantees that systems
can be used in different environments—from a single machine to a network of computers.

Modern networking standards have largely addressed the issue of common hardware and
communication software to connect distributed software components. Internet protocols are
a nearly universal standard and thus provide a ready means of transmitting messages among
components. Internet standards can also be used to exchange information between two
processes executing on the same machine. However, Internet standards alone do not fully
supply a component connection standard. The missing pieces are the following:

• A definition of the format and content of valid messages and responses
• A means of uniquely identifying each component on the Internet and routing messages

to and from that component

To address these issues, some organizations have developed and continue to modify stan-
dards for component development and reuse.

CORBA

The Common Object Request Broker Architecture (CORBA) was developed by the OMG, a
consortium of computer software and hardware vendors. CORBA was designed as a platform-
and language-independent standard. The core elements of the CORBA standard are the object
request broker (ORB) service and the Internet Inter-ORB Protocol (IIOP) for component
communication. A component user contacts an ORB server to locate a component and deter-
mine its capabilities and interface requirements. Messages that are sent between a component
and its user are routed through the ORB, which performs any necessary translation services.

COM+

The Component Object Model Plus (COM+) is a Microsoft-developed standard for compo-
nent interoperability. It is widely implemented in Windows-based application software, and
it is often used in older three-tier distributed applications based on Microsoft Internet
Information Server and Transaction Server. Most Windows office suites, such as Microsoft
Office, are constructed as a cooperating set of COM+ components.

COM+ components are registered by individual computer systems within the Windows
registry, which limits COM+ components to computer systems running Windows operating
systems. After components locate one another through the registry, they communicate
directly using a network protocol or Windows interprocess communication facilities.

Enterprise JavaBeans

Java is an OO programming language developed by Sun Microsystems. Most people have
heard of Java in connection with applets that execute on Web pages. Java differs from other
OO programming languages in several important ways, including the following:

• Java programs are compiled into object code files that can execute on many hardware plat-
forms under many operating systems.

• The Java language standard includes an extensive object framework, called the Java
Development Kit (JDK), which includes classes for GUIs, database manipulation, and inter-
networking.

The JDK defines a number of classes and naming conventions that support component
development. One class enables a Java object to convert its internal state into a sequence of
bytes that can be stored or transmitted across a network. Other classes allow components to
enumerate a Java object’s internal variables. Naming conventions allow components to

Common Object

Request Broker

Architecture

(CORBA)
a standard for software
component connection
and interaction developed
by the Object Management
Group (OMG)

object request

broker (ORB)
a CORBA service that
provides component
directory and
communication services

Internet

Inter-ORB

Protocol (IIOP)
a CORBA protocol for
communication among
objects and object
request brokers

Component Object

Model Plus (COM+)
a standard for software
component connection
and interaction
developed by Microsoft

C6696_17_CTP.4c 2/6/08 8:29 AM Page 691

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

deduce the names of methods that manipulate those variables. An object of a class that imple-
ments all of the required component methods and follows the required naming conventions
is called a JavaBean.

An Enterprise JavaBean (EJB) is a JavaBean that can execute on a server and communi-
cate with clients and other components using CORBA. EJBs provide additional capabilities
beyond JavaBeans, including the following:

• Multicomponent transaction management
• Packaging of multiple components into larger run-time units
• Sophisticated object storage and retrieval in relational or object DBMSs
• Component and object access controls

COMPONENTS AND THE DEVELOPMENT LIFE CYCLE

Component purchase and reuse is a viable approach to speeding completion of a system. Two
development scenarios involve components:

• Purchased components can form all or part of a newly developed or reimplemented system.
• Components can be designed in-house and deployed in a newly developed or reimple-

mented system.

Each scenario has different implications for system development, as explored in the follow-
ing sections.

Purchased Components

Components change the project inception activities because they affect the way the system
will be implemented. Purchasing and using components is generally cheaper and takes much
less time than building equivalent software. Purchased components can also solve technical
problems that developers could not easily or inexpensively solve themselves.

The search for suitable components must begin during the first iteration of the develop-
ment cycle, but it cannot begin until user requirements are understood well enough to evalu-
ate their match to component capabilities. When developers purchase entire software
packages, the match between component capabilities and user requirements is seldom exact.
Thus, developers might need to refine user requirements based on the capabilities of avail-
able components, particularly if the development project has a short schedule.

Components operate within an extensive infrastructure based on standards such as CORBA
or EJBs. Many system software packages implement key parts of each standard. Thus, choosing
a component isn’t simply a matter of choosing an application software module. Developers
must also choose compatible hardware and system software to support components.

The reliance of purchased components on a particular infrastructure has several implica-
tions for development activities, including the following:

• The standards and support software required by purchased components must become
part of technical requirements definition.

• A component’s technical support requirements restrict the options considered during soft-
ware architectural design.

• Hardware and system software that provide component services must be acquired,
installed, and configured before testing begins.

• The components and their support infrastructure must be maintained after system
deployment.

Many development projects, particularly large ones, might use components from many
different vendors, which raises compatibility issues. The component search and selection
process must carefully consider compatibility—often eliminating some choices and altering
the desirability of others. Preliminary testing might have to be conducted early to verify com-
ponent performance and compatibility before the architectural design is structured around

692 ♦ PART 4 IMPLEMENTATION AND SUPPORT

JavaBean
an object that
implements the required
component methods and
follows the required
naming conventions of
the JavaBean standard

Enterprise

JavaBean (EJB)
a JavaBean that can
execute on a server and
communicate with clients
and other components
using CORBA

C6696_17_CTP.4c 2/6/08 8:29 AM Page 692

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 17 Current Trends in System Development ♦ 693

those components and their support infrastructure. Maintenance is also more complicated
because significant portions of the system are not under the direct control of the system
owner or the in-house IS staff.

System Performance

Component-based software is usually deployed in a distributed environment. Components
typically are scattered among client and server machines and among local area network (LAN)
and wide area network (WAN) locations. Distributing components across machines and net-
works raises the issue of performance. System performance depends on the location of the
components (that is, component topology), the hardware capacity of the computers on
which they reside, and the communications capacity of the networks that connect the com-
puters. Performance also depends on the demands on network and server capacity made by
other applications and communication traffic, such as telephone, video, and interactions
among traditional clients and servers.

The details of analyzing and fine-tuning computer and network performance are well
beyond the scope of this text. But anyone planning to deploy a distributed component-based
system should be aware of the performance issues. These issues must be carefully considered
during systems design, implementation, and deployment.

Steps developers should take to ensure adequate performance include the following:

• Examine component-based designs to estimate network traffic patterns and demands on
computer hardware.

• Examine existing server capacity and network infrastructure to determine their ability to
accommodate communication among components.

• Upgrade network and server capacity prior to development and testing.
• Test system performance during development and make any necessary adjustments.
• Continuously monitor system performance after deployment to detect emerging problems.
• Redeploy components, upgrade server capacity, and upgrade network capacity to reflect

changing conditions.

Implementing these steps requires a thorough understanding of computer and network
technology, as well as detailed knowledge of existing applications, communications needs,
and infrastructure capability and configuration. Applying this knowledge to real-world prob-
lems is a complex task typically performed by highly trained specialists.

SERVICES

The era of the Internet and high-speed networks has enabled a new method of software reuse
described by various names, including Web services and service-oriented architecture (SOA).
Unlike object frameworks that are inserted into an application when it is compiled or com-
ponents that are dynamically or statically linked to an application before execution, an appli-
cation interacts with a service via the Internet or a private network during execution. Like
object frameworks and components, services rely on a suite of standards that has significant
implications for software design, development, and performance.

Service Standards

Service standards have evolved from distributed object standards such as CORBA and EJBs to
include standards such as SOAP, .NET, and J2WS. The primary difference between service
standards and earlier distributed object standards is a decrease in the amount of information
that must be compiled or linked into an executable application and an increased reliance on
Web-based data interchange standards such as XML.

Simple Object Access Protocol (SOAP) is a service standard based on existing Internet pro-
tocols, including Hypertext Transport Protocol (HTTP) and eXtensible Markup Language (XML).
Messages between objects are encoded in XML and transmitted using HTTP, which enables the
objects to be located anywhere on the Internet. Because SOAP components communicate using

Simple

Object Access

Protocol (SOAP)
a standard for component
communication over
the Internet using HTTP
and XML

C6696_17_CTP.4c 2/6/08 8:29 AM Page 693

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

XML, they can be easily incorporated into applications that use a Web-browser interface.
Complex applications can be constructed using multiple SOAP components that communicate
via the Internet.

Figure 17-14 shows an application and service communicating with SOAP messages. The
SOAP encoder/decoder and HTTP connection manager are standard components of a SOAP
programmer’s toolkit. Applications can also be embedded scripts that use a Web server to pro-
vide SOAP message-passing services.

694 ♦ PART 4 IMPLEMENTATION AND SUPPORT

Application

SOAP

encoder/decoder

HTTP connection

manager

Request

data

Response

data

SOAP messages

(XML documents)

The Internet

HTTP messages

Service

SOAP

encoder/decoder

HTTP connection

manager

Request

data

Response

data

SOAP messages

(XML documents)

Figure 17-14

Communication

using SOAP

Microsoft .NET is a service standard based on SOAP. The .NET applications and services
communicate using SOAP protocols and XML messages, and these applications and services
are installed on Microsoft’s Web/application server and rely on Microsoft’s Active Directory
for various naming, location, and security capabilities. The .NET applications and services
can be developed in several programming languages, including Visual BASIC and C#.

Java 2 Web Services (J2WS) is a service standard for implementing applications and ser-
vices in Java. J2WS extends SOAP and several other standards to define a Java-specific method
of implementing communication among applications and servers. Although Java is the only
programming language, supporting infrastructure components such as Web servers and secu-
rity software are nonproprietary.

Services and the Development Life Cycle

The impact of services on the development life cycle parallels the impact of object frameworks
and components:

• External services must be identified early in the project—their implementation details
constrain later design and development tasks.

• Service standards and infrastructure must be chosen early in the project.
• Application and service design must conform to specific assumptions about program

structure and operation that the service standards impose.
• Design and development personnel must be trained to use the service standards

effectively.
• Developers must carefully consider both network design and application/service compo-

nent deployment to ensure adequate performance and security.

Microsoft .NET

a Microsoft service
standard based on SOAP

Java 2 Web

Services (J2WS)
a service standard for
implementing
applications and services
in Java

C6696_17_CTP.4c 2/6/08 8:29 AM Page 694

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

SUMMARY
The focus of this chapter is on new techniques that are advancing the way systems are being developed. The
chapter begins by reviewing five important principles in software development: abstraction, models and mod-
eling, patterns, reuse, and methodologies. Together, these principles form the foundation on which object-
oriented development is based. System developers are using these principles to devise new, unique
approaches to developing systems.

One of the most active trends in software development is adaptive development methodologies. The
Unified Process (UP) is an example of an adaptive methodology that is also influencing many more radical
approaches. The idea behind adaptive methodologies is that software projects need to be agile, or flexible,
because the business world is so unpredictable and changes so rapidly. The “Manifesto for Agile Software
Development” describes four philosophical principles for software projects. These principles emphasize:

• Responding to change over following a plan
• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation

Agile Modeling, another core concept in Agile Development, proposes several guidelines on how models
and modeling should be carried out within a development project. The essence of this approach is to remem-
ber that models are a means to an end and not the end. Hence, the Agile Modeling philosophy views models
as a tool—for example, for understanding a user requirement or for designing a specific function—rather than
as elaborate, formal diagrams that are important by themselves.

Extreme Programming and Scrum are unique methodologies that embody agile principles. Core elements
of XP are that the system tests are written first and that programmers work in pairs to design, code, and test
the software. So, when a function is completed, it has not only been designed and coded, but it has also been
reviewed and tested.

The Scrum approach defines a specific goal that can be completed within four weeks. During the four-
week sprint, the project team is protected from all outside distractions so that they can complete the defined
goal. A product backlog of all outstanding requests is maintained by the client, and changes to the work the
team is doing are only allowed between sprints.

Model-Driven Architecture is an initiative of the OMG to provide techniques for large organizations to integrate all software and all
software development across the entire enterprise. At this point, the Model-Driven Architecture is primarily a set of principles and ideas.
For the MDA initiative to be used, specific tools need to be developed by tool vendors. The MDA defines models at various levels, including
a platform-independent model (PIM) and a platform-specific model (PSM), which can provide a comprehensive view of all enterprise-level
systems. The MDA is a framework in which all new development can be done so that the organization is able to maintain an integrated,
consistent operating environment.

Software reuse is a fundamental approach to rapid development. It has a long history, although it has been applied with greater suc-
cess since the advent of object-oriented programming, object frameworks, and component-based design and development. Object frame-
works provide a means of reusing existing software through inheritance. They provide a library of reusable source code, and inheritance
provides a means of quickly adapting that code to new application requirements and operating environments.

Components are units of reusable executable code that behave as distributed objects. They are plugged into existing applications or
combined to make new applications. Like the concept of software reuse, component-based design and implementation are not new, but
the standards and infrastructure required to support component-based applications have only recently emerged. Thus, components are
only now entering the mainstream of software development techniques.

KEY TERMS

chaordic, p. 672

Common Object Request Broker Architecture (CORBA), p. 691

component, p. 689

Component Object Model Plus (COM+), p. 691

discipline, p. 669

Enterprise JavaBean, p. 692

foundation classes, p. 688

Internet Inter-ORB Protocol (IIOP), p. 691

Java 2 Web Services (J2WS), p. 694

JavaBean, p. 692

metamodel, p. 664

Microsoft .NET, p. 694

CHAPTER 17 Current Trends in System Development ♦ 695

C6696_17_CTP.4c 2/6/08 8:29 AM Page 695

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

object framework, p. 688

object request broker (ORB), p. 691

pair programming, p. 678

platform-independent model (PIM), p. 685

platform-specific model (PSM), p. 685

product backlog, p. 681

product owner, p. 681

refactoring, p. 678

Scrum master, p. 681

Scrum team, p. 681

Simple Object Access Protocol (SOAP), p. 693

sprint, p. 682

ubiquitous computing, p. 662

REVIEW QUESTIONS

1. Identify the five important principles and practices that are

driving many of the current trends in software develop-

ment. Briefly explain each.

2. What are the driving forces that are moving many companies

to adopt more adaptive approaches to system development?

3. Explain the difference between a predictive control process

and an empirical control process.

4. List the six fundamental characteristics of adaptive projects.

5. What are the elements of the “Manifesto for Agile

Software Development”? Explain what each means.

6. What does chaordic mean? What implications does it have

for development projects?

7. What are the four UP phases and what is the objective

of each?

8. What are the six UP development disciplines?

9. What are the three UP support disciplines?

10. List the basic principles of Agile Modeling.

11. Why is the word extreme included as part of Extreme

Programming?

12. List the core values of XP.

13. List the XP practices.

14. What is the product backlog used for in a Scrum project?

15. Explain how a Scrum sprint works.

16. Explain the difference in project time management and proj-

ect scope management for projects using agile methods.

17. What is a PIM? What is a PSM? How are they related?

18. What are the potential benefits of Model-Driven

Architecture?

19. What is a metamodel? How is a metamodel used?

20. What is an object framework? How is it different from a

library of components?

21. For which layers of an OO program are off-the-shelf com-

ponents most likely to be available?

22. What is a software component?

23. Why have software components only recently come into

widespread use?

24. In what ways do components make software develop-

ment faster?

25. What is a service? How does a service differ from a com-

ponent? How are services similar to components?

26. On what standards is service-oriented architecture based?

THINKING CRITICALLY

1. Consider the capabilities of the programming language

and development tools used in your most recent program-

ming or software development class. Are they powerful

enough to implement developmental prototypes for single-

user software on a personal computer? Are they suffi-

ciently powerful to implement developmental prototypes

in a multiuser, distributed, database-oriented, and high-

security operating environment? If they were used with a

tool-based development approach, what types of user

requirements might be sacrificed because they didn’t fit

language or tool capabilities?

2. The Unified Process (UP) was first developed by a company

called Rational, which is now owned by IBM. On the IBM

Web site, find any information about UP tools available

through IBM/Rational. Briefly describe the suite of tools

available. Also look on the IBM Web site and other Web

sites (such as the Agile Modeling Web site) for opinions on

the relationships and commonality between the UP and

Agile Modeling. Report your findings.

3. Consider XP’s team-based programming approach in gen-

eral and its principle of allowing any programmer to modify

any code at any time in particular. No other development

696 ♦ PART 4 IMPLEMENTATION AND SUPPORT

C6696_17_CTP.4c 2/6/08 8:29 AM Page 696

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

approach or programming management technique follows

this particular principle. Why not? In other words, what are

the possible negative implications of this principle? How

does XP minimize these negative implications?

4. Visit the Web sites of the Agile Alliance (www.

agilealliance.com/home) and Agile Modeling (www.

agilemodeling.com/). Find some articles on project man-

agement in an agile environment. Summarize key points

that you think make project management more difficult in

this environment than in a traditional, predictive project.

Do the same for key points that make project management

easier for an agile project.

5. The chapter discussed the benefits of using Agile

Development techniques. List and explain the conditions

under which it would be unwise to use an Agile

Development methodology such as XP or Scrum.

6. Visit the Web site of the World Wide Web Consortium

(www.w3.org) and review recent developments related to

the SOAP standard. What new capabilities have been

added, and what is the effect of those capabilities on the

standard’s complexity and infrastructure requirements?

7. Compare and contrast object frameworks, components, and

service-oriented architecture in terms of ease of modification

before system deployment, ease of modification after sys-

tem deployment, and overall cost savings from code reuse.

Which approach is likely to yield greater benefits for a

unique application system, such as a distribution manage-

ment system that is highly specialized to a particular com-

pany? Which approach is likely to yield greater benefits for

general-purpose application software, such as a spreadsheet

or virus-protection program?

8. Consider the similarities and differences between component-

based design and construction of computer hardware (such

as personal computers) and design and construction of com-

puter software. Can the “plug-compatible” nature of com-

puter hardware ever be achieved with computer software?

Does your answer depend on the type of software (for

example, system or application software)? Do differences in

the expected lifetime of computer hardware and software

affect the applicability or desirability of component-based

techniques?

EXPERIENTIAL EXERCISES

1. Talk with someone at your school or place of employment

about a recent development project that was canceled

because of slow development. What development approach

was employed for the project? Would a different develop-

ment approach have resulted in faster development?

2. Find a company in your community that uses the UP or

some other adaptive method as its development method-

ology (variations of the UP are okay). Learn how it has

applied the UP and how it applies UP principles and prac-

tices. Also research what development tools it uses and

how well UP is supported.

3. Find someone in your community who is working on a

software development project that is using agile principles.

How was the team trained to use Agile Development?

How was this approach adopted in the organization? What

is the general feeling about its success? What aspects does

this developer like? What aspects does he/she find frustrat-

ing or difficult to use?

4. Consider a project to replace the student advisement system

at your school with one that employs modern features (for

example, Web-based interfaces, instant reports of degree

program progress, and automatic course registration based

on a long-term degree plan). Now consider how such a proj-

ect would be implemented using tool-based development.

Investigate alternative tools, such as Visual Studio,

PowerBuilder, and Oracle Forms, and determine (for each

tool) what requirements would need to be compromised for

the sake of development speed if the tool were chosen.

5. Examine the capabilities of a modern programming envi-

ronment such as Microsoft Visual Studio .NET, IBM

WebSphere Studio, or Borland Enterprise Studio. Is an

object framework or component library provided? Does

successful use of the programming environment require a

specific development approach? Does successful use

require a specific development methodology?

6. Examine the technical description of a complex end-user

software package such as Microsoft Office. In what ways

was component-based software development used to

build the software?

7. Examine the architecture of a typical consumer-oriented

e-commerce Web site such as Amazon.com. How is service-

oriented architecture employed within the site?

CHAPTER 17 Current Trends in System Development ♦ 697

C6696_17_CTP.4c 2/6/08 8:29 AM Page 697

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

http://www.agilealliance.com/home
http://www.agilealliance.com/home
http://www.agilemodeling.com/
http://www.agilemodeling.com/
http://www.w3.org

698 ♦ PART 4 IMPLEMENTATION AND SUPPORT

CASE STUDIES
MIDWESTERN POWER SERVICES

Midwestern Power Services (MPS) provides natural gas and electric-

ity to customers in four Midwestern states. Like most power utili-

ties, over the last several years, MPS has seen significant changes in

federal and state regulations. Several years ago, federal deregula-

tion opened the floodgates of change but provided little guidance

or restriction on the future shape of the industry. State legislatures

also changed their laws and regulations significantly. The industry

went through tremendous upheaval, with significant problems cre-

ated by power shortages at several California power companies and

the Enron debacle. Now regulations such as the Sarbanes-Oxley Act

are changing the scenario again. These new regulations seriously

affect all areas of business, including accounting, record keeping,

power purchases, distribution agreements, and customer consump-

tion and billing.

New and proposed regulations seek to increase controls and

expand competition for electricity and natural gas. The final form

these regulations will take is unknown, and the exact details will

probably vary from state to state.

MPS needed to prepare its systems rapidly for these new regu-

lations. Three systems are most directly affected—one for purchas-

ing wholesale natural gas, one for purchasing wholesale electricity,

and one for billing customers for combined gas and electric ser-

vices. The billing system is not currently structured to separate sup-

ply and distribution charges, and it has no direct ties to the natural

gas and electricity purchasing systems. MPS’s general ledger

accounting system is also affected because it is used to account for

MPS’s own electricity-generating operations.

MPS plans to restructure its accounting, purchasing, and billing

systems to match the proposed regulation framework:

• Customer billing statements will clearly distinguish between

charges for supply and distribution of both gas and electric-

ity. The wholesale suppliers of each power commodity will

determine prices for supply. Revenues will be allocated to

appropriate companies (for example, distribution charges to

MPS and supply charges to wholesale providers).

• MPS will create a new payment system for wholesale sup-

pliers to capture per-customer revenues and to generate

payments from MPS to wholesale suppliers. Daily pay-

ments will be made electronically based on actual pay-

ments by customers.

• MPS will restructure its own electricity-generating opera-

tions into a separate profit center, similar to other whole-

sale power providers. Revenues from customers who

choose MPS as their electricity supplier will be matched to

generation costs.

MPS’s current systems were all developed internally. The general

ledger accounting and natural gas purchasing systems are main-

frame based. They were developed in the mid-1990s, and incremen-

tal changes have been made ever since. All programs are written in

COBOL, and DB2 (a relational DBMS) is used for data storage and

management. There are approximately 50,000 lines of COBOL code.

The billing system was also rewritten from the ground up in the

mid-1990s and has been slightly modified since that time. The sys-

tem runs on a cluster of servers using the UNIX operating system.

The latest version of Oracle (a relational DBMS) is used for data stor-

age and management. Most of the programs are written in C++,

although some are written in C and others use Oracle Forms. There

are approximately 80,000 lines of C and C++ code.

MPS has a network that is used primarily to support terminal-to-

host communications, Internet access, and printer and file sharing

for personal computers. The billing system relies on the network for

communication among servers in the cluster. The mainframe that

supports the accounting and purchasing systems is connected to the

network, although that connection is primarily used to back up data

files and software to a remote location. The company has experi-

mented with Web-browser interfaces for telephone customer sup-

port and online statements. However, no functioning Web-based

systems have been completed or installed.

MPS is currently in the early stages of planning the system

upgrades. It has not yet committed to specific technologies or

development approaches. MPS has also not yet decided whether to

upgrade individual systems or replace them entirely. The target date

for completing all system modifications is three years from now, but

the company is actively seeking ways to shorten that schedule.

1. Describe the pros and cons of the UP approach versus XP

and Scrum development approaches to upgrading the exist-

ing systems or developing new ones. Do the pros and cons

change if the systems are replaced instead of upgraded? Do

the pros and cons vary by system? If so, should different

development approaches be used for each system?

2. Is component-based development a viable development

approach for any of the systems? If so, identify the system(s)

and suggest tools that might be appropriate. For each tool

suggested, identify the types of requirements likely to be

sacrificed because of a poor match to tool capabilities.

3. Assume that all systems will be replaced with custom-

developed software. Will an object framework be valuable

for implementing the replacements? Is an application-

specific framework likely to be available from a third party?

Why or why not?

4. Assume that all systems will be replaced with custom-

developed software. Should MPS actively pursue component-

based design and development? Why or why not? Does

MPS have sufficient skills and infrastructure to implement a

component-based system? If not, what skills and infrastruc-

ture are lacking?

C6696_17_CTP.4c 2/6/08 8:29 AM Page 698

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 17 Current Trends in System Development ♦ 699

RETHINKING ROCKY MOUNTAIN OUTFITTERS

Now that you have studied the material in this text-

book, you’ll be able to make more informed and

in-depth choices regarding development approach

and techniques for the RMO customer support system

(CSS). Review the CSS system capabilities in Chapter 3, and the

“Rethinking RMO” cases at the end of Chapters 2 and 3. You may

also need to look at other RMO material from Chapters 2 and 3 to

answer the following questions:

1. Consider the criteria discussed in this chapter for choosing

among the adaptive approaches to system development.

Which CSS project characteristics favor a predictive

approach? Which favor the UP? What characteristics might

indicate use of a more agile approach? Which approach is

best suited to the CSS development project?

2. Should RMO consider using purchased components

within the new CSS? If so, when should it begin looking

for components? How will a decision to use components

affect the requirements, design, and implementation

phases? If purchased components are used, should the

portions of the system developed in-house also be struc-

tured as components? Will a decision to pursue compo-

nent-based design and development make it necessary to

adopt OO analysis and design methods?

FOCUSING ON RELIABLE PHARMACEUTICAL SERVICE

Reread the Reliable Pharmaceutical Service

cases in Chapters 2 and 3. Armed with the new

knowledge that you’ve gained from reading this

chapter, answer the following questions:

1. Which of the development approaches described in this

chapter seem best suited to the project? Why? Plan the

first six weeks of the project under your chosen develop-

ment approach.

2. What role will components play in the system being devel-

oped for Reliable? Does it matter on which component-

related standards they’re based? Why or why not?

FURTHER RESOURCES

Agile Alliance Web site, www.agilealliance.com/home.

Scott W. Ambler, Agile Modeling: Effective Practices for Extreme

Programming and the Unified Process. John Wiley and Sons

Publishing, 2002.

Ken Auer and Roy Miller, Extreme Programming Applied:

Playing to Win. Addison-Wesley Publishing Company, 2002.

Kent Beck, Extreme Programming Explained: Embrace Change.

Addison-Wesley Publishing Company, 1999.

Ivar Jacobson, Grady Booch, and James Rumbaugh, The

Rational Unified Process. Addison-Wesley, 1999.

Anneke Kleppe, Jos Warmer, and Wim Bast, MDA Explained:

The Model Driven Architecture: Practice and Promise. Addison-

Wesley Publishing Company, 2003.

Craig Larman, Agile and Iterative Development: A Manager’s

Guide. Addison-Wesley Publishing Company, 2004.

Scott M. Lewandowski, “Frameworks for Component-Based

Client/Server Computing.” ACM Computing Surveys, volume 30:1

(March 1998), pp. 3–27.

“Manifesto for Agile Software Development,” the Agile

Alliance, http://agilemanifesto.org.

Pete McBreen, Questioning Extreme Programming. Addison-

Wesley Publishing Company, 2003.

Stephen Mellor, Kendall Scott, Axel Uhl, and Dirk Weise, MDA

Distilled: Principles of Model-Driven Architecture. Addison-Wesley

Publishing Company, 2004.

Ken Schwaber and Mike Beedle, Agile Software Development

with Scrum. Prentice-Hall, 2002.

Steve Sparks, Kevin Benner, and Chris Faris, “Managing Object-

Oriented Framework Reuse.” Computer, volume 29:9 (September

1996), pp. 53–61.

C6696_17_CTP.4c 2/6/08 8:29 AM Page 699

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

http://www.agilealliance.com/home
http://agilemanifesto.org

INDEX ♦ 701

1NF (first normal form), 498–499
2NF (second normal form), 498–501
3NF (third normal form), 498, 501–502

A
abstract classes, 413
abstract design patterns, 463
abstraction, 663–664
acceptance tests, 638, 639
access control list, 601
access controls, 595
accounting, career opportunities, 15
accounting and financial management

(AFM) systems, 10
accounting/finance systems (sample

scenario), 24
accuracy controls, 597
action-expression, 262
activation lifeline, 436
activities in schedules, 90
activity-data matrix, 231, 233
activity diagrams

definition, 141
describing use cases, 249–252
documenting workflow, 141–144
examples, 142, 143, 144
swimlanes, 141
symbols, 142
synchronization bars, 141

activity-location matrix, 230, 232
actors, 171, 242–243

See also users
adapter pattern, 465–466
adaptive methodologies

See also Agile Development; Agile
Modeling; predictive
methodologies; Scrum; UP; XP

at Bestway Fuel Systems (sample
scenario), 73

definition, 39
description, 42–45
empirical controls, 666
MPS (Midwestern Power Sources)

(sample scenario), 698
overview, 666–667
predictive controls, 666

process controls, 666
project management, 682–684
Reliable Pharmaceutical Service

(sample scenario), 699
Rocky Mountain Outfitters (sample

scenario), 699
ad hoc reports, 583
afferent data flow, 367
affordance, 540–541
AFM (accounting and financial

management) systems, 10
aggregation, 190
Agile Development

at Bestway Fuel Systems (sample
scenario), 73

chaordic, 672
characteristics of, 82
definition, 81
philosophy and values, 672
project management, 81–82

Agile Modeling, 672–676
See also models

AITP (Association for Information
Technology Professionals), 33

Ajax Corporation (sample
scenario), 37

All-Shop Superstores (sample
scenario), 611–612

alpha versions, 628–630
alternatives, generating and evaluating

conformance to strategic plan, 288
cultural feasibility, 288
description, 121
economic feasibility, 288
key criteria, 287–288
key question, 121
operational feasibility, 288
resource feasibility, 288
Rocky Mountain Outfitters (sample

scenario), 289–291
schedule feasibility, 288
technological feasibility, 288

analysis models, as
documentation, 647

analysis phase, 40
analysis phase activities

alternatives, generating and
evaluating, 121

feasibility assessment, 121
information gathering, 119–120
key questions, 122
overview, 45–46
prototyping, 121
recommendations, management

review, 121, 307–308
requirements definition, 120
requirements prioritization, 120

API (application program
interface), 394

application architecture
design activities, 331–332
key questions, 332
plan, 17
traditional techniques. See

traditional design
application deployment environment.

See deployment environment
applications, 47
application software, 331–332
application-specific classes, 688
architectural design

See also systems design
applications. See application

architecture
centralized architecture, 341
clustered architecture, 340
definition, 326
deployment environment. See

deployment environment
architecture

Internet applications, 345–347
object-oriented. See OOD
technology architecture plan, 17
traditional. See traditional design
Web-based applications, 345–347

artifacts, 401
Association for Information

Technology Professionals (AITP), 33
associative entities, 184
assumptions, use case realization,

440–441
asymmetric key encryption, 604
attribute navigation visibility, 414–415
attributes

class-level, 412
elaboration of, 413

I N D E X

C6696_Index_CTP.4c 2/13/08 2:59 PM Page 701

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

702 ♦ INDEX

hybrid object-relational DBMS,
511–512

things in the problem domain, 181
visibility, 411

authentication, 601
authorization, 601
automation boundary

definition, 8
system interface design, 576–580
traditional design, 355–357
use case diagrams, 244–245

Aviation Electronics (sample
scenario), 529

B
backup and recovery controls, 596
balancing DFDs, 219–220
Beck, Kent, 63
behavioral design patterns, 463
benchmarking, 306–307
Bestway Fuel Systems (sample

scenario), 73
beta versions, 628–630
binary relationships, 181
biometric devices, 602
black holes, 220–221
Booch, Grady, 61, 667
boss module, 390
bottom-up development, 622–624
boundary classes, 409–410
brainstorming, 416–419
breakeven point, 105
browser forms, 549–552
build and smoke tests, 637–638
business benefits, project planning, 87
business expertise, required of

analysts, 12–13
business intelligence systems, 10
business logic layer, 344–345
business processes. See information

gathering, business processes
business process reengineering, 16
business users, stakeholders, 130

C
callback technique, 468–472
calling structure, 363
cardinality, 180

careers in systems analysis, 14–16
centralized architecture, 341–342
central transform, 367
certificates, 605–606
certifying authority, 605–606
change requests, 652–653
chaordic, 672
charts. See diagrams and charts
check boxes, 551–552
chief developer team, 626
class diagrams, 60

See also DCDs
classes

abstract, 413
application-specific, 688
boundary, 409–410
concrete, 413
control, 409–410
data access, 409–410, 513–514
defining. See DCDs
definition, 60
entity, 409–410
external, adapting, 465–466
foundation, 688–689
generic data structure, 688
hybrid object-relational DBMS,

511–514
identifying, 416–419
limited to one instance, 468
modeling. See domain model class

diagrams
ODBMS, 503–504
persistent, 504
relational database interface, 688
scoping, 416–419
transient, 503
user interface, 688
utility, 466–468
view, 409–410

class-level attributes, 412
class-level design patterns, 463
class-level methods, 412
Class-Responsibility-Collaboration

(CRC) cards, 416–419, 426
class types, 409–410
clients (computer), 342–344
clients (human), 76, 130
client/server architecture

business logic layer, 344–345
clients, 342–344
client/server interactions, 343
data layer, 344–345
definition, 342

flexibility, 344
issues, 342
maintainability, 344
network-based systems, 392–394
pros and cons, 344
scalability, 344
servers, 342–344
three-layer, 344–345
view layer, 344–345

closed-ended questions, 145
closure, 542–543
clustered architecture, 340–341
cohesion, 421
collaboration, computer support

for, 320
collaboration software, JAD (joint

application design), 148
collaboration support system (CSS), 10
collaborative specialist teams, 626–627
COM+ (Component Object Model

Plus), 691
combo boxes, 551
Common Object Request Broker

Architecture (CORBA), 691
communication diagrams,

454–456, 484
communication management

Agile Development, 674
computer support for collaborative

work, 320
information repositories, 320–321
project manager skills, 82
steps in, 319–321
XP (Extreme Programming), 676

communication protocols, 338
completeness controls, 594, 597
complex data types, 515
component-based development. See

software, components
component diagrams

API (application program
interface), 394

definition, 394
symbols, 394–395
three-layer Internet system,

398–399, 426
two-layer Internet system, 396–398
UML notation, 394–395
Web services, 399–401

composite state, 262–263
composition, 190
compound attributes, 181

I N D E X

C6696_Index_CTP.4c 2/13/08 2:59 PM Page 702

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

INDEX ♦ 703

computer networks
application deployment

environment, 291–292
designing. See design activities,

computer networks
key question, 331

Computer Publishing (sample
scenario), 527

computer support for collaborative
work, 320

concrete classes, 413
concrete design patterns, 463
concurrency, 262–263
concurrent state, 262–263
consistency, user interface design,

541–542
Consolidated Concepts (sample

scenario), 37
Consolidated Refineries (sample

scenario), 3
construction phase, 61–62, 669
content over representation, 674
context diagram, 87–89, 208–209,

212–213
contracts with vendors, 307
control break reports, 588
control classes, 409–410
control flags, 362
control points

inputs, 594
output, 596–597
security control, 599

control, security. See system controls
user interface, 551–552

cooperating peer teams, 626
CORBA (Common Object Request

Broker Architecture), 691
correctness controls, 597
cost/benefit analysis, 102
cost management, 82
coupling, 420
courage, XP (Extreme

Programming), 677
CRC (Class-Responsibility-

Collaboration) cards, 416–419, 426
creational design patterns, 463
critical path, 95
CRM (customer relationship

management) system, 9
CRUD technique

definition, 161
Rocky Mountain Outfitters (sample

scenario), 231, 233
use case diagrams, 249

CSS (collaboration support system), 10
CSS (customer support system)

(sample scenario), 26–27
cultural feasibility, 288
custom-built software, 299–300
Custom Load Trucking, 113–114

D
data

redundancy, 498
security, 602–604
storage requirements, modeling,

182–187
validation controls, 594

data, conversion
creating databases, 640–641
reloading databases, 639–640
reusing databases, 639

data access classes, 409–410, 513–514
data access layer, 446–450
data access layer classes, 462
database management systems

(DBMS). See DBMS
databases (DBs). See DBs
data couples, 362
data dictionary, 227–228
data element definitions, 227–228, 229
data entities, 182
data entry, user interface design,

551–552
data flow, 206
data flow consistency, 219–220
data flow definitions, 226–227, 229
data flow diagrams (DFDs). See DFDs
data layer, 344–345
data model flexibility, 498
data store, 207, 227
data types, 514–516
data warehouses, 520–521
DBMS (database management systems)

components, 488–489
definition, 488
hierarchical model, 490
models, 490. See also hybrid object-

relational DMBS; ODBMS;
RDBMS

network model, 490
object databases. See ODBMS
physical data stores, 488
relational databases. See RDBMS
schema, 488–489

DBs (databases)
Computer Publishing (sample

scenario), 527
creating, 640–641
definition, 488
design activities, 333
integrity controls, 595–596
key questions, 333
managing. See DBMS
Nationwide Books (sample

scenario), 487–488
Real Estate Multiple Listing Service

(sample scenario), 526
Reliable Pharmaceutical Service

(sample scenario), 527
reloading, 639–640
reusing, 639
Rocky Mountain Outfitters (sample

scenario), 527
role in information systems, 10–11
State Patrol ticketing process

(sample scenario), 526
synchronizing, 518

DBs (databases), distributed
database synchronization, 518
data warehouses, 520–521
federated database servers, 520–521
partitioned database servers, 519–520
replicated database servers, 518–519
Rocky Mountain Outfitters (sample

scenario), 521–523
single database server, 516–517

DCDs (design class diagrams)
abstract classes, 413
attribute navigation visibility,

414–415
attribute visibility, 411
boundary classes, 409–410
class-level attributes, 412
class-level methods, 412
class types, 409–410
concrete classes, 413
control classes, 409–410
data access classes, 409–410
description, 409
Downtown Videos (sample

scenario), 426
elaboration of attributes, 413
entity classes, 409–410
first-cut, 413–416
inheritance, 412
method signatures, 411

I N D E X

C6696_Index_CTP.4c 2/13/08 2:59 PM Page 703

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

704 ♦ INDEX

navigation visibility, 414–416
notation, 409–413
overloaded methods, 411
overridden methods, 412
parameter navigation visibility,

414–415
persistent classes, 410
Real Estate Multiple Listing Service

(sample scenario), 425
Rocky Mountain Outfitters (sample

scenario), 415–416
shared methods, 412
State Patrol ticketing process

(sample scenario), 425
static methods, 412
stereotypes, 409
symbols, 409–410
updating and packaging, 457–463
view classes, 409–410

decision tables and trees, 223–226
decryption, 603
dependencies, in schedules, 92–93
dependency relationships, 460
deployment diagrams, 401–403
deployment environment

architectural plan conformance, 292
characteristics, 292–293
costs, 292
definition, 291
development tools, 292–293
external system interfaces, 292
hardware, 291–292
networks, 291–292
Rocky Mountain Outfitters (sample

scenario), 293–296, 311, 384
schedules, 292
strategic plan conformance, 292
system requirements

compatibility, 292
system software, 291–292

deployment environment architecture
centralized, 341–342
clustered, 340–341
distributed, 341–342
Internet applications, 345–347
middleware, 348
multicomputer, 340–341
multitier, 340–341
Rocky Mountain Outfitters (sample

scenario), 384
single-computer, 340–341
Web-based applications, 345–347
Web services, 347–348

deployment environment architecture,
client/server
business logic layer, 344–345
clients, 342–344
client/server interactions, 343
data layer, 344–345
definition, 342
flexibility, 344
issues, 342
maintainability, 344
pros and cons, 344
scalability, 344
servers, 342–344
three-layer, 344–345
view layer, 344–345

descriptive models, 126
design activities

See also architectural design; systems
design; systems development

application architecture, 331–332
application software, 331–332
databases, 333
definition, 40
key questions, 331
overview, 46–47
prototyping, 333–334
system controls, 334
system interfaces. See system

interface design
user interfaces. See user interface

design
design activities, computer networks

capacity, 338–339
communication protocols, 338
definition, 335
describing, 337
extranets, 336
integration, 337
Internet, 336
intranets, 336
key question, 331
LAN (local area network), 335
network diagrams, 337, 351
overview, 331, 335–336
Real Estate Multiple Listing Service

(sample scenario), 351
Rocky Mountain Outfitters (sample

scenario), 338–339, 351
routers, 335
virtual organizations, 336–337
VPN (virtual private network),

336–337
WAN (wide area network), 335
WWW (World Wide Web), 336

design class diagrams (DCDs).
See DCDs

design models, as documentation, 647
design patterns

abstract level, 463
adapter, 465–466
behavioral, 463
callback technique, 468–472
classifying, 463
class-level, 463
concrete-level, 463
creational, 463
definition, 431
factory, 466–468
levels of abstraction, 463
listener, 468–472
object-level, 463
observer, 468–472
principles, 664
publish/subscribe, 468–472
singleton, 468, 469
structural, 463
use case controller, 431–433

desktop metaphor, 536–537
destination, events, 169
destination controls, 596–597
destination state, 261
detail design, 326

See also OOD (object-oriented
design), detailed

detailed reports, 585
developing systems. See architectural

design; design activities; systems
development

development costs, 102–103
development environment, 292
development tools, 292–293
DFD fragments, 210, 214
DFDs (data flow diagrams)

balancing, 219–220
black holes, 220–221
complexity, minimizing, 218–219
context diagrams, 208–209, 212–213
data dictionary, 227–228
data element definitions,

227–228, 229
data flow, 206
data flow consistency, 219–220
data flow definitions, 226–227, 229
data store, 207
data store definitions, 227
decision tables and trees, 223–226
definition, 56, 206
diagram 0, 210–211, 215

I N D E X

C6696_Index_CTP.4c 2/13/08 2:59 PM Page 704

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

INDEX ♦ 705

event-partitioned system model,
210–211, 215

external agents, 206
information overload, 218–219
levels of abstraction, 208–211
logical, 216–218
Miller’s Number, 219
minimization of interfaces, 219
miracles, 220
object-oriented, 205
physical, 216–218
process descriptions, 222–226
processes, 206
quality, evaluating, 218–221
Real Estate Multiple Listing Service

(sample scenario), 235
Reliable Pharmaceutical Service

(sample scenario), 236
Rocky Mountain Outfitters (sample

scenario), 211–216, 235–236
rule of 7 ± 2, 219
San Diego Periodicals (sample

scenario), 203
State Patrol ticketing process

(sample scenario), 235
into structure charts, 367–369
structured English, 222–223
traditional design, 205, 229

diagram 0, 210–211, 215
diagrams and charts

business processes. See use case
diagrams

class definition. See DCDs; domain
model class diagrams

class state. See state machine
diagrams

component relationships. See
package diagrams

data flow. See system flowcharts
data storage requirements. See ERDs
dependency relationships. See

package diagrams
Gantt charts, 93
hierarchical program organization.

See structure charts
interaction, 433. See also

communication diagrams; SSDs
internal workflows. See activity

diagrams; communication
diagrams; SSDs

location of physical components.
See deployment diagrams

PERT/CPM charts, 93

physical system components. See
component diagrams;
deployment diagrams

program control flow. See system
flowcharts

subsystems. See system flowcharts
system, external interactions.

See SSDs
things (entities) in the problem

domain. See domain model class
diagrams; ERDs

top-down design. See structure
charts

use case realization. See
communication diagrams; SSDs

use cases, input/output
requirements, modeling.
See communication
diagrams; SSDs

diagrams and charts, I/O
object-oriented user interface

design. See DCDs; interaction
diagrams; SSDs; state machine
diagrams

system interface. See communication
diagrams; SSDs

traditional user interface design. See
context diagrams; DFD
fragments; DFDs

dialog metaphor, 537–540
See also user interface design, dialog

documentation
digital certificates, 605–606
digital signatures, 605–606
direct installation, 642
direct manipulation metaphor, 536
disciplines, UP (Unified Process),

669–671
distributed architecture, 341–342
distributed databases

database synchronization, 518
data warehouses, 520–521
federated database servers, 520–521
partitioned database servers, 519–520
replicated database servers, 518–519
Rocky Mountain Outfitters (sample

scenario), 521–523
single database server, 516–517

documentation
analysis models as, 647
design models as, 647
implementation, 647–650
menu hierarchy, 544–545
online, 651
source code as, 647

storyboarding, 546–547
subsystems, 544–545
system, 646–648
system scope, 87–88
UML diagrams, 547–548
use cases, 544–545
user, 646, 648–650
user interface dialogs, 544–548
workflow, 141–144

document metaphor, 537
document type definition (DTD), 573
domain layer classes, use case

realization, 462
domain model, 242
domain model class diagrams

aggregation, 190
composition, 190
definition, 187
generalization/specialization

hierarchies, 189–190
inheritance, 190
multiplicity, 187–189
notation, 187–189
object-oriented system

requirements, 269–270
Rocky Mountain Outfitters (sample

scenario), 192–193
subclasses, 189
superclasses, 189
whole-part hierarchies, 190–192

Downslope Ski Company (sample
scenario), 569–570

Downtown Video Rentals (sample
scenario)
communication diagrams, 484
CRC (Class-Responsibility-

Collaboration) cards, 426
DCDs (design class diagrams), 426
object-oriented system

requirements, 276–277
QA (quality assurance), 659
system interface design, 612

drill down, 589
drivers, 635–636
DTD (document type definition), 573

E
EBP (elementary business process), 161
economic feasibility. See feasibility

assessment, economic
efferent data flow, 367

I N D E X

C6696_Index_CTP.4c 2/13/08 2:59 PM Page 705

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

706 ♦ INDEX

eight golden rules, user interface
design, 541–544

EJB (Enterprise JavaBean), 691–692
elaboration of attributes, 413
elaboration phase, 61–62, 668
electronic reports, 588–590
Electronics Unlimited (sample

scenario), 239
Elements of Reusable Object-Oriented

Software, 431
empirical controls, 666
encapsulation, 420
encryption, 603
encryption algorithm, 603
encryption controls, 595
encryption key, 603
enterprise-level systems, OOD (object-

oriented design), 392–394
entities, RDBMS, 493–494
entities in the problem domain. See

problem domain, things in
entity classes, 409–410
entity relationship modeling, 502–503
ERDs (entity-relationship diagrams)

associative entities, 184
data entities, 182
definition, 57
modeling data storage

requirements, 182–187
notation, 182–185
Rocky Mountain Outfitters (sample

scenario), 185–187
ergonomics (human factors

engineering), 534–536
ERP (enterprise resource planning),

10–11, 298–299
error handling, user interface

design, 543
error reduction, 574–575
error reports, 652–653
ethics, 13–14
event decomposition, 162
event-driven program flow, 389–390
event-partitioned system model,

210–211, 215
events

definition, 162
destination, 169
external, 163–164
identifying, 165–167
perfect technology assumption, 167
versus prior conditions and

responses, 165–166
response, 169

resulting use cases, 168–171
Rocky Mountain Outfitters (sample

scenario), 167–168
sequence of, 166
source, 169
state, 165
system controls, 166–167
technology-dependent, 166–167
temporal, 164
transaction life cycle, 166
triggers, 163–165, 169
types of, 163–165

event tables, 168–171, 247–248
exception reports, 585
executive reports, 586
executive users, stakeholders, 130
eXtensible Markup Language (XML)

interfaces, 573
external agents, 206
external events, 163–164
external outputs, 586–588
external system interfaces, 292
external users, stakeholders, 130
extranets, design activities, 336
Extreme Programming (XP). See XP

F
facilities management, 298
factory design patterns, 466–468
failure factors, 75, 631
feasibility assessment

cultural, 288
operational, 288
organizational, 100–101
resources, 82, 288
schedules, 101–102, 288
system requirements, 121
technological, 101, 288

feasibility assessment, economic
automation scope, 288
breakeven point, 105
cost/benefit analysis, 102
development costs, 102–103
financial calculations, 105–106
intangible benefits, 106
NPV (net present value), 105
ongoing operational costs, 103
payback period, 105
ROI (return on investment), 105
sources of benefits, 104–105

sources of funds, 107
tangible benefits, 106

federated database servers, 520–521
feedback

Agile modeling, 674
user interface design, 542
XP (Extreme Programming), 677

field combination controls, 594
fields, RDBMS, 490–491
field values, RDBMS, 490–491
financial calculations, 105–106
finish-finish relationships, 93
finish-start relationships, 93
first-cut DCDs, 413–416
first-cut SSDs, 437–440, 441–446
first normal form (1NF), 498–499
flags, 371
float, 96
flowcharts. See structure charts; system

flowcharts
foreign keys, RDBMS, 491–492
formality

project management, 80–82
systems design, 327

formatting
forms, 550–551
reports, 591–592

forms, designing
browser forms, 549–552
formatting, 550–551
layout, 550–551
windows forms, 549–552

forty-hour week, 679
foundation classes, 625, 688–689
fragments of DFDs, 210, 214
framework development, 625
fraud prevention controls, 597–598
functional decomposition, 7
functional dependency, 498–499
functional requirements, 122–123,

301–302

G
Gamma, Eric, 431
Gang of Four, 431, 464
Gantt charts, 93
generalization relationships, 509–510
generalization/specialization

hierarchies, 189–190
general requirements, implementation

alternatives, 301

I N D E X

C6696_Index_CTP.4c 2/13/08 2:59 PM Page 706

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

INDEX ♦ 707

generic data structure classes, 688
graphical models, 126–127
grouping input controls, 551–552
GSS (group support system), 148
guard-condition, 261

H
hard skills, 13
hardware, application deployment

environment, 291–292
hardware maintenance, 655
HCI (human-computer interaction)

See also usability; user interface
design

definition, 532
desktop metaphor, 536–537
dialog metaphor, 537–540
direct manipulation metaphor, 536
document metaphor, 537
field of study, 534–536
hypermedia, 537
hypertext, 537
usability tests, 638
Xerox PARC, 535–536

Helm, Richard, 431
help desk, 49, 651
Help support, user interface design, 552
hierarchical DBMS, 490
highly cohesive modules, 55
HRM (human resource management)

system, 10
HTTPS or HTTP-S (Secure Hypertext

Transport Protocol), 606
HudsonBanc (sample scenario),

658–659
human factors engineering

(ergonomics), 534–536
human factors engineers, 332
human resource management, 82
human resources (sample scenario), 24
hybrid object-relational DBMS,

510–514
hypermedia, 537
hypertext, 537

I
IBM, Rational Software, 61, 65–66
IDE (integrated development

environment), 51

identifiers (keys), things in the
problem domain, 181

IE (information engineering), 58–59
IIOP (Internet Inter-ORB Protocol), 691
immediate cutover, 642
implementation

data conversion, 639–641
documentation, 647–650
installation, 642–645
Reliable Pharmaceutical Service

(sample scenario), 659
Rocky Mountain Outfitters (sample

scenario), 659
training, 650–652

implementation, alternatives
custom-built software, 299–300
ERP (enterprise resource planning),

298–299
facilities management, 298
functional requirements, 301–302
general requirements, 301
identifying criteria, 300–301
overview, 297–298
packaged software, 298–299
selecting, 300–304
service providers, 298
technical requirements, 302–304
turnkey systems, 298–299

implementation, program
development
alpha versions, 628–630
beta versions, 628–630
bottom-up, 622–624
chief developer teams, 626
collaborative specialist teams,

626–627
cooperating peer teams, 626
foundation classes, 625
framework, 625
IPO (input, process, output) order,

620–622
maintenance releases, 628–630
order of, 619–625
overview, 47–48
production releases, 628–630
production versions, 628–630
release versions, 628–630
SCCS (source code control

system), 627
source code control, 626–627
team-based, 625–627
test versions, 628–630
top-down, 622–624

Tri-State Heating Oil (sample
scenario), 617

versioning, 627–630
implementation, QA (quality

assurance)
acceptance tests, 638, 639
build and smoke tests, 637–638
cost of error correction, 631
definition, 631
Downtown Video Rentals (sample

scenario), 659
drivers, 635–636
failure factors, 631
inspections, 632
integration tests, 636–638
interface incompatibility, 636
module tests, 634–636
parameter values, 637
performance tests, 638
Reliable Pharmaceutical Service

(sample scenario), 659
response time, 638
run-time exceptions, 637
software testing, 632–633
stubs, 636
system tests, 637
technical reviews, 631–632
test cases, 633–634
test data, 633–634
testers, 638–639
testing, 632–639
testing buddy, 638
throughput, 638
unexpected state interactions, 637
unit tests, 634–636
usability tests, 638

implementation phase, 40, 47–48
inception phase, 61, 668
<<includes>> relationships, 245–247
incremental change, Agile

Development, 674
incremental development, 44–45
incremental modeling, 675
indirection, 422

See also adapter pattern
information engineering (IE), 58–59
information gathering

See also system requirements
business processes, 134–135,

140–144
from existing documents, 135–136
JAD (joint application design)

sessions, 147–148

I N D E X

C6696_Index_CTP.4c 2/13/08 2:59 PM Page 707

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

708 ♦ INDEX

overview, 119–120
prototypes, 144–145
questionnaires, 145–147
question themes, 134–135
relation to modeling, 134
sources of information, 135–136
user interviews, 137–140
vendor solutions, 149

information hiding, 420
information overload, 218–219
information repositories, 320–321
information systems

AFM (accounting and financial
management), 10

business intelligence, 10
CRM (customer relationship

management), 9
CSS (collaboration support

system), 10
databases, 10–11
definition, 6–7
ERP (enterprise resource planning),

10–11
HRM (human resource

management), 10
KMS (knowledge management

system), 10
manufacturing management, 10
at Reliable Pharmaceutical Service,

33–34
Rocky Mountain Outfitters (sample

scenario), 21, 23–26
SCM (supply chain management), 9
strategic planning, 17–18, 24–26, 33
types of, 9–10

information users, stakeholders, 130
infrastructure, software components,

690–692
inheritance, 190, 412
initiating projects, 83–86
input, process, output (IPO) order,

620–622
input controls, 551–552, 594
input/output classification, 530
inputs, designing. See system interface

design, inputs
inspections, 632
installation, 642–645
instances of use cases, 171–172
instantiation, 390
intangible benefits, 106
integrated development environment

(IDE), 51

integration, continuous, 678
integration management, 83
integration tests, 636–638
integrity, 13–14
integrity controls

See also validation
access, 595
accuracy, 597
backup and recovery, 596
completeness, 594, 597
correctness, 597
databases, 595–596
data validation, 594
definition, 593
destination, 596–597
encryption, 595
field combination, 594
fraud prevention, 597–598
input integrity, 594
need for, 592–593
objectives, 593–594
output integrity, 596–597
transaction logging, 595
update, 596
value limit, 594

interaction diagrams, 433
See also communication

diagrams; SSDs
interactions, 252
interface designers, 332
interface design standards, user

interface, 540
interface incompatibility, 636
internal events. See state events
internal locus of control, 543
internal outputs, 586–588
Internet, design activities, 336
Internet applications, 345–347
Internet-based systems, OOD (object-

oriented design), 392–394
Internet Inter-ORB Protocol (IIOP), 691
interpersonal skills, required of

analysts, 13
interviewing users. See users,

interviewing
intranets, design activities, 336
invented keys, 491, 494, 497–498
I/O. See input; output; SSDs
IPO (input, process, output) order,

620–622
iteration, 43–44
iterative modeling, 675

J
J2WS (Java 2 Web Services), 694
Jacobson, Ivar, 61, 667
JAD (joint application design)

sessions, 147–148
JavaBeans, 691–692
John and Jacob, Inc (sample

scenario), 156
Johnson, Ralph, 431

K
Kay, Alan, 535
keys

attributes, 510
foreign, 491–492
invented, 491, 494, 497–498
natural, 491
primary, 491–492, 494
RDBMS, 490–492, 494, 497–498
schema quality, 497–498
uniqueness, 497

KMS (knowledge management
system), 10

L
LAN (local area network), 335
launching a project, 107–108
level of abstraction, 208
life cycle

systems development. See SDLC
UP (Unified Process), 61–62

lifeline, 253
links, use case realization, 455
list boxes, 551
listener design patterns, 468–472
location diagrams, 230
location information, gathering,

230–233
logical DFDs, 216–218
logical models, 120, 127–128
loosely coupled modules, 55

I N D E X

C6696_Index_CTP.4c 2/13/08 2:59 PM Page 708

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

INDEX ♦ 709

M
mail order system (sample

scenario), 24
maintenance. See software,

maintenance
maintenance releases, 628–630
management activities versus

development activities, 79–80
management tasks versus development

tasks, 79
management users, stakeholders, 130
manufacturing management

systems, 10
many-to-many relationships,

495–496, 508–510
Martin, James, 58
mathematical models, 125–126
MDA (model-driven architecture),

684–687
menu hierarchy, 544–545
message event, 261
messages, 242, 252
metamodel, 664
methodologies, systems

development, 49
methods, 205, 411–412
method signatures, 411
Microsoft NET, 694
middleware, 348, 684
milestones, 96
Miller’s Number, 219
minimization of interfaces, 219
miracles, 220
mock-ups, 145
modeling

See also use cases
classes. See domain model class

diagrams
purposeful, 674
relation to information

gathering, 134
visual, tools for, 51, 64–66

modeling, system requirements
data storage requirements, 182–187
ERDs (entity-relationship

diagrams), 182–187
object-oriented, 194
Real Estate Multiple Listing Service

(sample scenario), 198–199
Reliable Pharmaceutical Service

(sample scenario), 200

Rocky Mountain Outfitters (sample
scenario), 199–200

Spring Breaks ‘R’ Us (sample
scenario), 198

State Patrol ticketing process
(sample scenario), 199

traditional design, 194
Waiters on Call (sample scenario),

159–160
models

See also Agile Modeling
in analysis and design, 127–128
DBMS (database management

systems), 490
definition, 50
descriptive, 126
domain, 242. See also domain

model class diagrams
graphical, 126–127. See also

diagrams and charts
integration, 269–270
logical, 120, 127–128
mathematical, 125–126
multiple, 674
physical, 120
PIM (platform-independent

model), 685–687
project planning, 50
PSM (platform-specific model),

685–687
purpose of, 124–125
quality, 674
schematic. See diagrams and charts
software, 664
spiral model, 42–43
system components, 50
system interface design, 576–580,

583–584
types of, 125–127
visual modeling tools, 51, 64–66
waterfall model, 40–41

models, object-oriented
design principles, 390–392
integrating, 269–270
system interface design, 580–582,

584–585
modular programming, 55
module algorithms, traditional design,

371–372
module cohesion, 369–370
module coupling, 369
modules, traditional design, 354

module tests, 634–636
motivation, Agile Development, 676
Mountain States Motor Sports

(sample scenario), 117
MPS (Midwestern Power Sources)

(sample scenario), 698
MS Project, 93–97
multicomputer architecture, 340–341
multilayer design, 446–454
multilayer systems, use case

realization, 430–433
multiplicity, 180, 187–189
multitier architecture, 340–341
multivalued attribute, 508

N
n-ary relationships, 181
Nationwide Books (sample scenario),

487–488
natural keys, RDBMS, 491
navigation, ODBMS (object database

management system), 504
navigation controls, 552
navigation visibility, 414–416
network DBMS, 490
network diagrams

definition, 337
Rocky Mountain Outfitters (sample

scenario), 338, 351
networks. See computer networks
New Capital Bank (sample

scenario), 429
Nielsen, Jacob, 553
nonfunctional requirements, 123
normalization, 498–503
Norman, Donald, 540
notation

component diagrams, 394–395
DCDs (design class diagrams),

409–413
domain model class diagrams,

187–189
ERDs (entity-relationship

diagrams), 182–185
SSDs (system sequence diagrams),

252–255
structure charts, 361
system flowcharts, 358

NPV (net present value), 105

I N D E X

C6696_Index_CTP.4c 2/13/08 2:59 PM Page 709

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

710 ♦ INDEX

O
object database management system

(ODBMS). See ODBMS
Object Definition Language

(ODL), 503
object frameworks, 688–689
object identifiers, 504
object-level design patterns, 463
object lifeline, SSDs, 253
Object Management Group

(OMG), 240
object-oriented analysis (OOA), 60
object-oriented databases. See hybrid

object-relational DBMS; ODBMS
object-oriented design (OOD).

See OOD
object-oriented models

design principles, 390–392
integrating, 269–270
system interface design, 580–582,

584–585
object-oriented programming (OOP),

60, 535
object-oriented system requirements

domain model. See domain model
class diagrams

Downtown Videos (sample
scenario), 276–277

Electronics Unlimited (sample
scenario), 239

inputs and outputs. See SSDs
messages, 242
object behavior. See state machine

diagrams
object-oriented model integration,

269–270
overview, 240–242
Real Estate Multiple Listing Service

(sample scenario), 276
Reliable Pharmaceutical Service

(sample scenario), 277–278
Rocky Mountain Outfitters (sample

scenario), 277
State Patrol ticketing process

(sample scenario), 276
system activities. See use case

diagrams
TheEyesHaveItcom (sample

scenario), 277
versus traditional, 241

object-oriented systems development
See also OOD
benefits of, 60

class diagrams, 60
classes, 60
definition, 59
history of, 59–60
objects, definition, 59
OOA (object-oriented analysis), 60
OOP (object-oriented

programming), 60, 535
object-oriented user interface

design, 530
object request broker (ORB), 691
object responsibility, 422, 462
object reuse, 420
objects, 59
observer design patterns, 468–472
ODBMS (object database

management system)
classes representation, 503–504
data types, 515–516
definition, 503
generalization relationships, 509–510
key attributes, 510
many-to-many relationships,

508–510
multivalued attribute, 508
navigation, 504
object databases, designing,

503–510
object identifiers, 504
ODL (Object Definition

Language), 503
one-to-many relationships,

506–508
persistent classes, 504
relational hybrid. See hybrid

object-relational
relationships, 504–510
transient classes, 503

ODL (Object Definition
Language), 503

office systems (sample scenario), 24
OMG (Object Management

Group), 240
one-to-many relationships, 495–496,

506–508
one-to-one relationships, RDBMS, 494
ongoing operational costs, 103
online documentation, 651
on-site customers, 678
OOA (object-oriented analysis), 60
OOD (object-oriented design)

class diagrams, 60
combining with traditional,

328–329

definition, 60
DFDs, 205
history of, 59–60
model integration, 269–270
models, 390–392
processes, 390–392
programs, 389–390

OOD (object-oriented design),
architectural
artifacts, 401
client/server network-based systems,

392–394
definition, 60
deployment diagrams, 401–403
description, 388–389
enterprise-level systems, 392–394
Internet-based systems, 392–394
single-user systems, 392

OOD (object-oriented design),
architectural component diagrams
API (application program

interface), 394
definition, 394
symbols, 394–395
three-layer Internet system,

398–399, 426
two-layer Internet system, 396–398
UML notation, 394–395
Web services, 399–401

OOD (object-oriented design),
detailed
See also use case realization
brainstorming, 416–419
class definitions. See DCDs
classes, identifying, 416–419
classes, scoping, 416–419
cohesion, 421
components of, 405
coupling, 420
CRC (Class-Responsibility-

Collaboration) cards, 416–419
encapsulation, 420
indirection, 422
information hiding, 420
multilayer systems, 430–433
objective, 404
object responsibility, 422
object reuse, 420
principles, 404–407, 419–422
process steps, 408–409
protection from variations, 421–422
SSDs (system sequence

diagrams), 404

I N D E X

C6696_Index_CTP.4c 2/13/08 2:59 PM Page 710

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

INDEX ♦ 711

OOP (object-oriented programming),
60, 535

open-ended questions, 146
operational feasibility, 288
option (radio) buttons, 551–552
ORB (object request broker), 691
organizational feasibility, 100–101
origin state, 261
output classification, 530
output controls, 596–597
outputs, designing. See system

interface design, outputs
overlapping phases, 41–42
overloaded methods, 411
overridden methods, 412
oversight committee, 77
owning the code, 678

P
package diagrams, 459–461
packaged software, 298–299
packages, 245
pair programming, 678
parallel installation, 642–644
parameter navigation visibility,

414–415
parameter values, QA (quality

assurance), 637
partitioned database servers, 519–520
passwords, 601
paths, state machine diagrams, 262
patterns. See design patterns
payback period, 105
perceptual aspects of user interface

design, 533
perfect memory assumption, 440–441
perfect solution assumption, 441
perfect technology assumption,

167, 440
performance

requirements, 123
software components, 693
testing, 638

persistent classes, 410, 504
PERT/CPM charts, 93
phased installation, 644–645
phases

project planning, 40
UP (Unified Process), 61–62,

667–669

phases, SDLC (systems development
life cycle)
analysis, 40, 45–46
definition, 40
design, 40, 46–47
implementation, 40, 47–48
overlapping, 41–42
project planning, 40, 45
support, 40, 48–49

phone order system (sample
scenario), 24

physical aspects of user interface
design, 532

physical data stores, 488
physical DFDs, 216–218
physical models, 120
PIM (platform-independent model),

685–687
Pinnacle Manufacturing (sample

scenario), 37
planning

SDLC (systems development life
cycle). See project management;
project planning

XP (Extreme Programming), 677
PMBOK (Project Management Body of

Knowledge), 82–83
PMI (Project Management

Institute), 82
postconditions, 174–175
preconditions, 174
predecessor tasks, 92
predictive controls, 666
predictive methodologies

See also adaptive methodologies
analysis activities, 40
definition, 39
design activities, 40
MDA (model-driven architecture),

684–687
phases, 39–42
project planning activities, 39–42
Reliable Pharmaceutical Service

(sample scenario), 699
support phase, 40
waterfall model, 40–42

presentations, 590–591
primary keys, RDBMS, 491–492, 494
primitive data types, 515
prioritizing projects, 83
prioritizing requirements

automation level, determining,
284–287

description, 120

project scope, 284
Rocky Mountain Outfitters (sample

scenario), 285–287
privileged users, 601
problem definition, project planning,

87–90
problem domain, 46
problem domain, things in

attributes, 181
binary relationships, 181
cardinality, 180
compound attributes, 181
developing a list of, 179
identifiers (keys), 181
multiplicity, 180
n-ary relationships, 181
overview, 176
relationships among, 178, 180–181
ternary relationships, 181
types of, 177
unary (recursive) relationships, 181

problem solving, 4–6
process controls, 666
process descriptions, 222–226
processes, 206
procurement management, 83
product backlog, 681
production releases, 628–630
production systems, 654
production versions, 628–630
product owner, Scrum, 681
program calls, 361–362
program development. See

architectural design; design
activities; systems development

Project, 93–97
project management

See also project planning
adaptive methodologies, 682–684
Agile Development, 81–82
body of knowledge, 82–83
communications, 82, 319–321
cost management, 82
definition, 75
human resource management, 82
integration management, 83
issue management, 323
launching the project, 107–108
level of formality, 80–82
management activities versus

development activities, 79–80
management tasks versus

development tasks, 79

I N D E X

C6696_Index_CTP.4c 2/13/08 2:59 PM Page 711

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

712 ♦ INDEX

organizational feasibility, 100–101
procurement management, 83
progress, measuring (sample

scenario), 661
quality management, 82
Reliable Pharmaceutical Service, 114
resource feasibility, 82
risk management, 83, 99–100, 323
schedule feasibility, 101–102
scope management, 82
in the SDLC, 78–80
staffing, 107–108
teams, 317–318, 324
technological feasibility, 101
time management, 82

project management, economic
feasibility
breakeven point, 105
cost/benefit analysis, 102
development costs, 102–103
financial calculations, 105–106
intangible benefits, 106
NPV (net present value), 105
ongoing operational costs, 103
payback period, 105
ROI (return on investment), 105
sources of benefits, 104–105
sources of funds, 107
tangible benefits, 106

Project Management Body of
Knowledge (PMBOK), 82–83

Project Management Institute
(PMI), 82

project managers
Custom Load Trucking, 113–114
external responsibilities, 76
internal responsibilities, 76
oversight committee, 77
role of, 75–78

project planning
See also project management
business benefits, 87
context diagram, 87–89
definition, 39–40, 45
models, 50
monitoring the plan, 321–323
problem definition, 87–90
proof of concept prototype, 87
in the SDLC, 45
system scope document, 87–88

project planning, schedules
activities, 90
critical path, 95
dependencies, 92–93
for an entire SDLC, 97–99
feasibility assessment, 101–102
finish-finish relationships, 93
finish-start relationships, 93
float, 96
Gantt charts, 93
launching the project, 107–108
milestones, 96
in MS Project, 93–97
PERT/CPM charts, 93
predecessor tasks, 92
resource requirements, 96–97
slack time, 96
staffing plan, 96–97
start-start relationships, 93
successor tasks, 92
tasks, 90
WBS (work breakdown structure),

90–92, 93–96
project planning phase, 40
projects

definition, 38
failure factors, 75
initiation, 83–86
prioritizing, 83
success factors, 75
weighted scoring, 83

proof of concept prototype, 87
protection from variations, 421–422

See also adapter pattern
prototypes, 42, 144–145
prototyping

design activities, 333–334
for feasibility, 121
key question, 334
proof of concept, 87

pseudocode, traditional design,
354–355, 371–372

pseudostate, 260
PSM (platform-specific model),

685–687
public key encryption, 604
publish/subscribe design patterns,

468–472
purchased components, 692–693
purposeful modeling, 674

Q
QA (quality assurance)

acceptance tests, 638, 639
build and smoke tests, 637–638
cost of error correction, 631
definition, 631
Downtown Video Rentals (sample

scenario), 659
drivers, 635–636
failure factors, 631
inspections, 632
integration tests, 636–638
interface incompatibility, 636
module tests, 634–636
parameter values, 637
performance tests, 638
Reliable Pharmaceutical Service

(sample scenario), 659
response time, 638
run-time exceptions, 637
software testing, 632–633
stubs, 636
system tests, 637
technical reviews, 631–632
test cases, 633–634
test data, 633–634
testers, 638–639
testing, 632–639
testing buddy, 638
throughput, 638
unexpected state interactions, 637
unit tests, 634–636
usability tests, 638

quality management, 82
questionnaires, 145–147
question themes, information

gathering, 134–135

R
radio (option) buttons, 551–552
Rational Software, 61, 65–66
RDBMS (relational database

management system)
data types, 515
definition, 490
designing, 492–493
entity representation, 493–494
fields, 490–491

I N D E X

C6696_Index_CTP.4c 2/13/08 2:59 PM Page 712

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

INDEX ♦ 713

field values, 490–491
foreign keys, 491–492
history of, 490
interface classes, 688
invented keys, 491, 494
keys, 490–492, 494
managing. See RDBMS
many-to-many relationships,

495–496
natural keys, 491
object-oriented hybrid, 512–513
one-to-many relationships,

495–496
organization, 490–491
primary keys, 491–492, 494
referential integrity, 496
relationships, 495–496
rows, 490–491
schema quality, 497–503
tables, 490–491

Real Estate Multiple Listing Service
(sample scenario)
databases, 526
DCDs (design class diagrams), 425
design activities, 351
DFDs (data flow diagrams), 235
object-oriented system

requirements, 276
requirements modeling, 198–199
structure charts, 384
system interface design, 612
use case realization, 484

realization of use cases. See use case
realization

recommendations, management
review, 121, 307–308

recursive (unary) relationships, 181
refactoring code, 678
referential integrity, RDBMS, 496
registered users, 601
relational DBMSs. See hybrid object-

relational DBMS; RDBMS
relationships

binary, 181
entity, modeling, 502–503
generalization, 509–510
hybrid object-relational DBMS,

512–513
many-to-many, 495–496, 508–510
n-ary, 181
ODBMS, 504–510
one-to-many, 495–496, 506–508
one-to-one, 494

in the problem domain, 178,
180–181

RDBMS, 495–496, 502–503
ternary, 181
unary (recursive), 181

release versions, 628–630
reliability requirements, 123
Reliable Pharmaceutical Service

(sample scenario)
adaptive methodologies, 699
CRC (Class-Responsibility-

Collaboration) cards, 426
databases, 527
DFDs (data flow diagrams), 236
implementation, 659
information systems, 33–34
modeling, 200
object-oriented system

requirements, 277–278
project management, 114
QA (quality assurance), 659
structure charts, 384
system flowcharts, 384
system interface design, 612
system requirements, 157
systems design, 351
systems development approach, 70
three-layer architecture, 426
user interface design, 566

replicated database servers, 518–519
reports, designing, 585–592
repository, 64
requirements, functional, 122–123,

301–302
See also system requirements

resident experts, 651
resource feasibility, 82, 288
resource requirements, scheduling,

96–97
response, events, 169
response time, 638
retail store systems (sample

scenario), 24
return on investment (ROI), 105
reuse, 664
reversal of actions, 543
RFP (request for proposal)

definition, 305
Real Estate Multiple Listing Service

(sample scenario), 311
Reliable Pharmaceutical Service

(sample scenario), 312

Tropic Fish Tales (sample scenario),
281, 311

with vendors, 305
risk management, 83, 99–100, 323
Rocky Mountain Outfitters (sample

scenario)
accounting/finance systems, 24
activity-data matrix, 233
activity-location matrix, 232
adaptive methodologies, 699
application architecture plan, 25
application deployment

environment, 293–296, 311
automation level, determining,

284–287
component-based

development, 699
CSS (customer support system),

26–27
databases, 527
DCDs (design class diagrams),

415–416
deployment environment, 384
description, 17–18
design activities, 338–339, 351
DFDs (data flow diagrams),

211–216, 235–236
distributed databases, 521–523
domain model class diagram,

192–193
ERDs (entity-relationship

diagrams), 185–187
events, 167–168
existing systems, 24
human resources, 24
implementation, 659
information systems department,

21, 23
information systems strategic plan,

24–26, 33
locations, 21, 23
mail order system, 24
modeling, 199–200
network capacity, 339
network diagrams, 338
object-oriented system

requirements, 277
office systems, 24
organizational structure, 21, 22
phone order system, 24
problem definition, 89–90
project feasibility assessment, 114
project initiation, 84–86

I N D E X

C6696_Index_CTP.4c 2/13/08 2:59 PM Page 713

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

714 ♦ INDEX

project planning, 109–110
project teams, 324
reports, 586–587, 612
retail store systems, 24
SCM (supply chain management),

24, 84–86
stakeholders, 131–133
state machine diagrams, 265–269
strategic issues, 19–21
strategic planning, 24–26, 33
support, 659
system flowcharts, 359–360,

375–377
system interface design, 612
system requirements, 156–157
systems development approach, 69
technology architecture plan, 25
three-layer architecture,

375–377, 426
use case realization, 462–463
user interface design, 554–559,

559–561, 566
Web-based catalog and order, 24

ROI (return on investment), 105
roles. See actors
routers, 335
rows, RDBMS, 490–491
row uniqueness, 497
rule of 7 ± 2, 219
Rumbaugh, James, 61, 667
run-time exceptions, 637

S
SADT (structural analysis and design

technique), 53
San Diego Periodicals (sample

scenario), 203
SCCS (source code control

system), 627
scenarios, 171–172
schedule feasibility, 101–102, 288
schedules

application deployment
environment, 292

project planning. See project
planning, schedules

schemas
DBMS, 488–489
quality, 497–503
RDBMS, 497–503

schematic models. See diagrams
and charts

SCM (supply chain management),
9, 24, 84–86

scope management, 82
Scrum, 63, 680–682
Scrum master, 681
Scrum team, 681
SDLC (systems development life cycle)

See also systems development
adaptive approach, 39, 42–45
component-based development. See

software, components
definition, 38
incremental development, 44–45
iteration, 43–44
predictive approach, 39–42
project management, 78–80
projects, 38
prototypes, 42
spiral model, 42–43
versus UP (Unified Process), 62
waterfall model, 40–41

SDLC (systems development life
cycle), phases
See also specific phases
analysis, 40, 45–46
definition, 40
design, 40, 46–47
implementation, 40, 47–48
overlapping, 41–42
project planning, 39–40, 45
support, 40, 48–49

second normal form (2NF), 498–501
Secure Hypertext Transport Protocol

(HTTPS or HTTP-S), 606
Secure Sockets Layer (SSL), 606
secure transactions, 606
security

Internet applications, 346
requirements, 123
Web-based applications, 346

security controls
See also system controls
access control list, 601
asymmetric key encryption, 604
authentication, 601
authorization, 601
biometric devices, 602
certifying authority, 605–606
control points, 599
data, 602–604

decryption, 603
definition, 599
digital certificates, 605–606
digital signatures, 605–606
encryption, 603
encryption algorithm, 603
encryption key, 603
HTTPS or HTTP-S (Secure Hypertext

Transport Protocol), 606
objectives, 599
passwords, 601
privileged users, 601
public key encryption, 604
registered users, 601
secure transactions, 606
smart cards, 601–602
SSL (Secure Sockets Layer), 606
symmetric key encryption, 603
system access, 599–602
TLS (Transport Layer Security), 606
unauthorized users, 601
user types, 600–601

separation of responsibilities, 446
servers, 342–344
service provider solutions, 298
services, 693–694
service standards, 693–694
shared methods, 412
Shneiderman, Ben, 541
shortcuts, user interface design, 542
short-term memory load, 544
single-computer architecture, 340–341
single database server, 516–517
singleton design patterns, 468, 469
single-user systems, OOD (object-

oriented design), 392
Sklar, Joel, 553
slack time, 96
Smalltalk language, 59, 535
smart cards, 601–602
SOAP (Simple Object Access

Protocol), 693–694
soft skills, 13
software

abstraction, 663–664
application-specific classes, 688
development. See architectural

design; design activities; systems
development

foundation classes, 688–689
generic data structure classes, 688
metamodel, 664

I N D E X

C6696_Index_CTP.4c 2/13/08 2:59 PM Page 714

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

INDEX ♦ 715

methodologies. See adaptive
methodologies; predictive
methodologies

models and modeling, 664
object frameworks, 688–689
patterns, 664
relational database interface

classes, 688
reuse, 664
testing, 632–633
ubiquitous computing, 662
user-interface classes, 688

software, components
COM+ (Component Object Model

Plus), 691
CORBA (Common Object Request

Broker Architecture), 691
definition, 689
description, 689–690
EJB (Enterprise JavaBean), 691–692
IIOP (Internet Inter-ORB

Protocol), 691
infrastructure, 690–692
J2WS (Java 2 Web Services), 694
JavaBeans, 691–692
Microsoft NET, 694
ORB (object request broker), 691
purchased, 692–693
Rocky Mountain Outfitters (sample

scenario), 699
SDLC (systems development life

cycle), 692–693
services, 693–694
service standards, 693–694
SOAP (Simple Object Access

Protocol), 693–694
standards, 690–692
system performance, 693

software, maintenance
change requests, 652–654
definition, 652
error reports, 652–653
hardware, 655
HudsonBanc (sample scenario),

658–659
implementing changes, 653–654
maintenance releases, 628–630
production systems, 654
test systems, 654

source, events, 169
source code, as documentation, 647
source code control, 626–627

source code control system
(SCCS), 627

sources of benefits, 104–105
sources of funds, 107
spin boxes, 551
spiral model, 42–43
spiral SDLC model, 42–43
Spring Breaks ‘R’ Us (sample

scenario), 198
sprints, 682
SSDs (system sequence diagrams)

See also communication diagrams;
use case realization, SSDs

definition, 242
developing, 255–259
interaction diagrams, 252
interactions, 252
lifeline, 253
messages, 252
notation, 252–255
object lifeline, 253
OOD (object-oriented design), 404
true/false condition, 255

SSL (Secure Sockets Layer), 606
staffing, 107–108
staffing plan, scheduling, 96–97
stakeholders

business users, 130
clients, 130
definition, 128
executive users, 130
external users, 130
information users, 130
management users, 130
Rocky Mountain Outfitters (sample

scenario), 131–133
technical, 131
users, 129–130

start-start relationships, 93
state

definition, 260
unexpected interactions, 637

state events, 165
state machine diagrams

action-expression, 262
composite state, 262–263
concurrency, 262–263
concurrent state, 262–263
destination state, 261
developing, rules for, 263–265
guard-condition, 261
message event, 261
naming conventions, 260

origin state, 261
paths, 262
pseudostate, 260
Rocky Mountain Outfitters (sample

scenario), 265–269
state, 260
transition, 260

statements, designing, 585–592
State Patrol ticketing process (sample

scenario)
databases, 526
DCDs (design class diagrams), 425
DFDs (data flow diagrams), 235
object-oriented system

requirements, 276
requirements modeling, 199
use case realization, 484

static methods, 412
stereotypes, DCDs (design class

diagrams), 409
Stimula language, 59
storyboarding, 546–547
strategic planning

application architecture plan, 17
definition, 17
information systems, 17–18
Rocky Mountain Outfitters (sample

scenario), 19–21, 24–26, 33
systems analyst’s role in, 16–18
technology architecture plan, 17

structural analysis and design
technique (SADT), 53

structural design patterns, 463
structure charts

See also system flowcharts
afferent data flow, 367
calling structure, 363
central transform, 367
control flags, 362
data couples, 362
definition, 55, 360
developing, 364–369
from DFDs (data flow diagrams),

367–369
efferent data flow, 367
examples, 363, 364, 365, 366,

367–368
flags, 371
integrating user interface, database,

and networks, 373–374
module cohesion, 369–370
module coupling, 369
notation, 361

I N D E X

C6696_Index_CTP.4c 2/13/08 2:59 PM Page 715

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

716 ♦ INDEX

program calls, 361–362
quality, evaluating, 369–371
Real Estate Multiple Listing Service

(sample scenario), 384
Reliable Pharmaceutical Service

(sample scenario), 384
symbols, 361
three-layer architecture, 374–378
transaction analysis, 364–365
transform analysis, 365, 367–369

structured
analysis, 56–57
application architecture. See

traditional design
approach, 53. See also traditional

design
design, 55. See also traditional

design
English, DFDs (data flow

diagrams), 222–223
programming, 53–55, 390
walkthroughs, 150–152

stubs, 636
subclasses, 189
subsystems, 7, 544–545
success factors, 75
successor tasks, 92
summary reports, 585
superclasses, 189
supply chain management (SCM), 9,

24, 84–86
support

hardware maintenance, 655
help desks, 651
online documentation, 651
resident experts, 651
Rocky Mountain Outfitters (sample

scenario), 659
software maintenance, 652–654
technical support, 651–652
training users, 650–652
troubleshooting, 651

support controls, 552
support phase, 40, 48–49
swimlanes, 141
symbols

activity diagrams, 142
component diagrams, 394–395
DCDs (design class diagrams),

409–410
structure charts, 361
system flowcharts, 358

symmetric key encryption, 603

synchronization bars, 141
system access control, 599–602
system boundary, definition, 8
system controls, 166–167, 334

See also integrity controls; security
controls

system documentation, 646–648
system enhancement. See software,

maintenance
system flowcharts

See also structure charts
definition, 354
description, 357
examples, 358–359
notation, 358
Reliable Pharmaceutical Service

(sample scenario), 384
Rocky Mountain Outfitters (sample

scenario), 359–360, 375–377
symbols, 358
three-layer architecture, 374–378

system interface design
See also user interface design
All-Shop Superstores (sample

scenario), 611–612
design activities, 333
Downslope Ski Company (sample

scenario), 569–570
DTD (document type

definition), 573
identifying the interfaces, 570–574
key questions, 333
Reliable Pharmaceutical Service

(sample scenario), 612
XML (eXtensible Markup Language)

interfaces, 573
system interface design, inputs

automation boundary, 576–580
control point, 594
devices and mechanisms, 574–575
Downtown Video Rentals (sample

scenario), 612
error reduction, 574–575
objectives, 574
object-oriented models, 580–582
Real Estate Multiple Listing Service

(sample scenario), 612
required, 576–582
TheEyesHaveItcom (sample

scenario), 612
traditional structured models,

576–580

system interface design, outputs
ad hoc reports, 583
control break reports, 588
control point, 596–597
detailed reports, 585
Downtown Video Rentals (sample

scenario), 612
drill down, 589
electronic reports, 588–590
exception reports, 585
executive reports, 586
external, 586–588
formatting reports, 591–592
internal, 586–588
objectives, 583
object-oriented models, 584–585
presentations, 590–591
reports, 585–592
required, 583–585
Rocky Mountain Outfitters (sample

scenario), 612
statements, 585–592
summary reports, 585
TheEyesHaveItcom (sample

scenario), 612
traditional structured models,

583–584
turnaround documents, 586
types of, 585–586

system interfaces
categories of, 571
definition, 570
versus user interfaces, 531–532

system metaphor, 678–679
system requirements

See also analysis phase activities;
models

alternatives. See alternatives
definition, 122
feasibility assessment, 121
functional, 122–123
information sources. See

information gathering;
stakeholders

I/O. See system interface design,
inputs; system interface design,
outputs

John and Jacob, Inc (sample
scenario), 156

modeling. See modeling, system
requirements; use cases

Mountain States Motor Sports
(sample scenario), 117

I N D E X

C6696_Index_CTP.4c 2/13/08 2:59 PM Page 716

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

INDEX ♦ 717

nonfunctional, 123
object-oriented. See object-oriented

system requirements
performance, 123
prioritizing. See prioritizing

requirements
prototyping, 121
recommendations, management

review, 121, 307–308
reliability, 123
Reliable Pharmaceutical Service

(sample scenario), 157
Rocky Mountain Outfitters (sample

scenario), 156–157
security, 123
structured walkthroughs, 150–152
technical, 123
traditional. See DFDs
transactions, 130
unit of work, 130
usability, 123
validating, 150–152

system requirements, modeling
data storage requirements, 182–187
ERDs (entity-relationship

diagrams), 182–187
object-oriented, 194
Real Estate Multiple Listing Service

(sample scenario), 198–199
Reliable Pharmaceutical Service

(sample scenario), 200
Rocky Mountain Outfitters (sample

scenario), 199–200
Spring Breaks ‘R’ Us (sample

scenario), 198
State Patrol ticketing process

(sample scenario), 199
traditional design, 194
Waiters on Call (sample scenario),

159–160
systems, 6–7
systems analysis, 4, 14–16
systems analysts

career opportunities, 14–16
at Consolidated Refineries (sample

scenario), 3
definition, 4
problem solving, 4–6
role in strategic planning, 16–18
skills requirements, 11–14

system scope document, 87–88
systems design

See also architectural design; design
activities; systems development

components, 325–326

definition, 4
detail, 326
formality, 327
inputs, 326–329
levels of, 325–326
project structure, 327
Reliable Pharmaceutical Service

(sample scenario), 351
systems development

See also architectural design; design
activities; systems design

alpha versions, 628–630
beta versions, 628–630
bottom-up, 622–624
chief developer teams, 626
collaborative specialist teams,

626–627
component-based. See software,

components
cooperating peer teams, 626
current trends, 61–63
foundation classes, 625
framework development, 625
IDE (integrated development

environment), 51
IPO (input, process, output) order,

620–622
maintenance releases, 628–630
methodologies, 49, 665. See also

adaptive methodologies;
predictive methodologies

models, 50
object-oriented. See object-oriented

systems development
phases of. See SDLC
production releases, 628–630
production versions, 628–630
release versions, 628–630
SCCS (source code control

system), 627
source code control, 626–627
team-based, 625–627
techniques, 51–52
test versions, 628–630
tools, 51, 63–66
top-down, 622–624
traditional. See traditional design
Tri-State Heating Oil (sample

scenario), 617
versioning, 627–630
visual modeling tools, 51, 64–66

systems development life cycle
(SDLC). See SDLC

system sequence diagrams (SSDs). See
communication diagrams; SSDs;
use case realization, SSDs

system software, application
deployment environment, 291–292

system tests, 637

T
tables, RDBMS, 490–491
tangible benefits, 106
tasks, 90, 92
teams

program development, 625–627
project, 317–318, 324

teamwork, Agile Development, 675
technical expertise, required of

analysts, 11–12
technical requirements, 123, 302–304

See also system requirements
technical reviews, 631–632
technical stakeholders, 131
technical support, 651–652
techniques, 12, 51–52
technological feasibility, 101, 288
technology architecture plan, 17, 25
technology-dependent events, 166–167
templates. See design patterns
temporal events, 164
ternary relationships, 181
test cases, 633–634
test data, 633–634
testers, 638–639
testing, 632–639, 677–678
testing buddy, 638
test systems, 654
test versions, 628–630
text boxes, 551
TheEyesHaveItcom (sample scenario)

communication diagrams, 484
CRC (Class-Responsibility-

Collaboration) cards, 426
DCDs (design class diagrams), 426
object-oriented system

requirements, 277
system interface design, 612

things in the problem domain. See
problem domain, things in

third normal form (3NF), 498, 501–502
three-layer architecture

client/server, 344–345
Rocky Mountain Outfitters (sample

scenario), 375–377

I N D E X

C6696_Index_CTP.4c 2/13/08 2:59 PM Page 717

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

718 ♦ INDEX

structure charts, 374–378
system flowcharts, 374–378

three-layer implementation issues,
461–462

three-layer Internet system,
component diagrams,
398–399, 426

three-layer SSDs (system sequence
diagrams), 434–436

throughput, 638
time management, 82
TLS (Transport Layer Security), 606
tools

Rational Software Development,
65–66

required expertise, 12
system development, 51, 63–66
Visible Analyst, 64–65
Visio, 64–65
visual modeling, 51, 64–66

top-down development, 622–624
top-down programming, 54–55
traditional design

See also structure charts; system
flowcharts

automation system boundary,
355–357

combining with object-oriented,
328–329

computer programs, 354
definition, 53
DFDs (data flow diagrams), 56,

205, 229
ERDs (entity-relationship

diagrams), 57
highly cohesive modules, 55
IE (information engineering),

58–59
loosely coupled modules, 55
modular programming, 55
module algorithms, 371–372
modules, 354
pseudocode, 354–355, 371–372
SADT (structural analysis and

design technique), 53
structure charts, 55
structured analysis, 56–57
structured approach, 354–355
structured design, 55
structured programming, 53–55
system interface design, 576–580,

583–584
top-down programming, 54–55

user interface, 530
weaknesses, 58

training users, 650–652
transaction analysis, 364–365
transaction life cycle, 166
transaction logging, 595
transactions, 130
transform analysis, 365, 367–369
transient classes, 503
transition, 260
transition phase, 61–62
transitive phase, 669
Transport Layer Security (TLS), 606
triggers, events, 163–165, 169
Tri-State Heating Oil (sample

scenario), 617
troubleshooting, 651
true/false condition, SSDs (system

sequence diagrams), 255
turnaround documents, 586
turnkey systems, 298–299
two-layer Internet system, component

diagrams, 396–398

U
ubiquitous computing, 662
UML diagrams, user interface design,

547–548
UML notation, component diagrams,

394–395
unary (recursive) relationships, 181
unauthorized users, 601
undoing actions, 543
units of work, 130
unit tests, 634–636
UP (Unified Process)

best practices, 61
construction phase, 61–62, 669
disciplines, 669–671
elaboration phase, 61–62, 668
history of, 61
inception phase, 61, 668
life cycle phases, 61–62
overview, 667
phases, 61–62, 667–669
versus traditional SDLC, 62
transition phase, 61–62
transitive phase, 669
use cases, 61–62

update controls, 596

usability
See also HCI
consultants, 332
definition, 534
requirements, 123
tests, 638

use case controller design patterns,
431–433

use case description, 171
use case diagrams

activity diagrams, 249–252
automation boundary, 244–245
CRUD technique, 249
definition, 242
developing, 248–249
versus event tables, 247–248
example, 243
<<includes>> relationships,

245–247
organization, 244–245
packages, 245

use case instances, 171
use case models, 242–243
use case realization

communication diagrams,
454–456, 484

data access layer classes, 462
definition, 430
domain layer classes, 462
interaction diagrams, 433. See also

communication diagrams; SSDs
links, 455
multilayer systems, 430–433
New Capital Bank (sample

scenario), 429
object responsibility, 462
Rocky Mountain Outfitters (sample

scenario), 462–463
templates. See design patterns
three-layer implementation issues,

461–462
view layer classes, 462

use case realization, SSDs (system
sequence diagrams)
See also SSDs
activation lifeline, 436
assumptions, 440–441
data access layer, 446–450
DCDs (design class diagrams),

updating and packaging,
457–463

dependency relationships, 460
design process, 436–437

I N D E X

C6696_Index_CTP.4c 2/13/08 2:59 PM Page 718

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

INDEX ♦ 719

first-cut, 437–440, 441–446
guidelines, 440
multilayer design, 446–454
overview, 433
package diagrams, 459–461
perfect memory assumption,

440–441
perfect solution assumption, 441
perfect technology assumption, 440
Real Estate Multiple Listing Service

(sample scenario), 484
separation of responsibilities, 446
State Patrol ticketing process

(sample scenario), 484
three-layer, 434–436
view layer, 450–454

use cases
See also modeling
actors, 171
CRUD technique, 161
definition, 61–62, 160, 242–243
EBP (elementary business

process), 161
event decomposition, 162
event tables, 168–171
examples, 172–173, 174–175
instances, 171–172
level of detail, 172–176
postconditions, 174–175
preconditions, 174
scenarios, 171–172
user goal technique, 160–161
user interface design, 544–545

use cases, events
definition, 162
destination, 169
external, 163–164
identifying, 165–167
perfect technology assumption, 167
versus prior conditions and

responses, 165–166
response, 169
resulting use cases, 168–171
Rocky Mountain Outfitters (sample

scenario), 167–168
sequence of, 166
source, 169
state, 165
system controls, 166–167
technology-dependent, 166–167
temporal, 164
transaction life cycle, 166

triggers, 163–165, 169
types of, 163–165

use cases, things in the problem
domain
attributes, 181
binary relationships, 181
cardinality, 180
compound attributes, 181
developing a list of, 179
identifiers (keys), 181
multiplicity, 180
n-ary relationships, 181
overview, 176
relationships among, 178, 180–181
ternary relationships, 181
types of, 177
unary (recursive) relationships, 181

user-centered design, 533–534
user documentation, 646, 648–650
user goal technique, 160–161
user-interface classes, 688
user interface design

See also HCI; system interface
design; system interfaces

Aviation Electronics (sample
scenario), 529

conceptual aspects, 533
consultants, 332
definition, 531
human factors engineering

(ergonomics), 534–536
human factors engineers, 332
input/output classification, 530
interface designers, 332
key questions, 332
object-oriented approach, 530
perceptual aspects, 533
physical aspects, 532
Reliable Pharmaceutical Service

(sample scenario), 566
Rocky Mountain Outfitters (sample

scenario), 554–559,
559–561, 566

versus system interfaces, 531–532
traditional approach, 530
usability, 534
usability consultants, 332
user-centered design, 533–534
user’s model, 533

user interface design, dialog
documentation
menu hierarchy, 544–545
storyboarding, 546–547

subsystems, 544–545
UML diagrams, 547–548
use cases, 544–545

user interface design, guidelines
affordance, 540–541
browser forms, 549–552
check boxes, 551–552
closure, 542–543
combo boxes, 551
consistency, 541–542
data entry, 551–552
eight golden rules, 541–544
error handling, 543
feedback, 542
formatting forms, 550–551
form layout, 550–551
grouping input controls, 551–552
Help support, 552
input controls, 551–552
interface design standards, 540
internal locus of control, 543
list boxes, 551
navigation controls, 552
radio (option) buttons, 551–552
reversal of actions, 543
shortcuts, 542
short-term memory load, 544
spin boxes, 551
support controls, 552
text boxes, 551
visibility, 540–541
Web sites, 552–554
Web sites (sample scenario),

559–561
windows forms, 549–552

users
See also actors
definition, 77
interviewing, 138–140
stakeholders, 129–130

user’s model, 533
<<uses>> relationships. See

<<includes>> relationships

V
validation

See also integrity controls
Agile Development, 676
system requirements, 150–152

I N D E X

C6696_Index_CTP.4c 2/13/08 2:59 PM Page 719

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

720 ♦ INDEX

Valley Regional Hospital (sample
scenario), 661

value limit controls, 594
vendors, 305–307
vendor solutions, 149

See also software, components
versioning, 627–630
view classes, 409–410
view layer, 344–345, 450–454
view layer classes, 462
virtual organizations, 336–337
visibility

attribute, 411
attribute navigation, 414–415
definition, 411
navigation, 414–416
parameter navigation, 414–415
user interface design, 540–541

visual modeling tools, 51, 64–66
Vlissides, John, 431
VPN (virtual private network),

336–337

W
Waiters on Call (sample scenario),

159–160
WAN (wide area network), 335
waterfall model, 40–41
WBS (work breakdown structure),

90–92, 93–96
Web-based applications, 24, 345–347
Web services, 347–348, 399–401
Web sites, user interface design,

552–554, 559–561
Web technology, systems analysis, 15
weighted scoring, 83
whole-part hierarchies, 190–192
window forms, designing, 549–552
workflow, documenting, 141–144
WWW (World Wide Web), 336

X
Xerox PARC, 535–536
XML (eXtensible Markup Language)

interfaces, 573

XP (Extreme Programming)
coding standards, 679
communication, 676
continuous integration, 678
core values, 676–677
courage, 677
feedback, 677
forty-hour week, 679
on-site customers, 678
overview, 63
owning the code, 678
pair programming, 678
planning, 677
practices, 677–679
project activities, 679–680
refactoring code, 678
simplicity, 677, 678
small releases, 679
system metaphor, 678–679
testing, 677–678

I N D E X

C6696_Index_CTP.4c 2/13/08 2:59 PM Page 720

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

	Cover Page
	Title Page
	Copyright Page
	Dedication
	BRIEF CONTENTS
	TABLE OF CONTENTS
	PART 1 The Systems Analyst
	Chapter 1 The World of the Information Systems Analyst
	A Systems Analyst at Consolidated Refineries
	Overview
	The Analyst as a Business Problem Solver
	Systems That Solve Business Problems
	Required Skills of the Systems Analyst
	Analysis-Related Careers
	The Analyst’s Role in Strategic Planning
	Rocky Mountain Outfitters and Its Strategic Information Systems Plan
	The Analyst as a System Developer (the Heart of the Course)
	Summary
	Key Terms
	Review Questions
	Thinking Critically
	Experiential Exercises
	Case Studies
	Further Resources

	Chapter 2 Approaches to System Development
	Development Approaches at Ajax Corporation, Consolidated Concepts, 37and Pinnacle Manufacturing
	Overview
	The Systems Development Life Cycle
	Activities of Each SDLC “Phase”
	Methodologies, Models, Tools, and Techniques
	Two Approaches to System Development
	Current Trends in Development
	Tools to Support System Development
	Summary
	Key Terms
	Review Questions
	Thinking Critically
	Experiential Exercises
	Case Studies
	Further Resources

	Chapter 3 The Analyst as a Project Manager
	Bestway Fuel Systems: Moving to an Adaptive SDLC
	Overview
	Project Management
	Project Initiation and Project Planning
	Defining the Problem
	Producing the Project Schedule
	Identifying Project Risks and Confirming Project Feasibility
	Staffing and Launching the Project
	Recap of Project Planning for RMO
	Summary
	Key Terms
	Review Questions
	Thinking Critically
	Experiential Exercises
	Case Studies
	Further Resources

	PART 2 Systems Analysis Activities
	Chapter 4 Investigating System Requirements
	Mountain States Motor Sports
	Overview
	Analysis Activities in More Detail
	System Requirements
	Models and Modeling
	Stakeholders—The Source of System Requirements
	Techniques for Information Gathering
	Validating the Requirements
	Summary
	Key Terms
	Review Questions
	Thinking Critically
	Experiential Exercises
	Case Studies
	Further Resources

	Chapter 5 Modeling System Requirements
	Waiters on Call Meal-Delivery System
	Overview
	User Goals, Events, and Use Cases
	Use Case Descriptions
	Things” in the Problem Domain
	The Entity-Relationship Diagram
	The Domain Model Class Diagram
	Where You Are Headed
	Summary
	Key Terms
	Review Questions
	Thinking Critically
	Experiential Exercises
	Case Studies
	Further Resources

	Chapter 6 The Traditional Approach to Requirements
	San Diego Periodicals: Following the Data Flow
	Overview
	Traditional and Object-Oriented Views of Activities/Use Cases
	Data Flow Diagrams
	Documentation of DFD Components
	Locations and Communication through Networks
	Summary
	Key Terms
	Review Questions
	Thinking Critically
	Experiential Exercises
	Case Studies
	Further Resources

	Chapter 7 The Object-Oriented Approach to Requirements
	Electronics Unlimited, Inc.: Integrating the Supply Chain
	Overview
	Object-Oriented Requirements
	The System Activities—A Use Case/Scenario View
	Identifying Inputs and Outputs—The System Sequence Diagram
	Identifying Inputs and Outputs—The System Sequence Diagram
	Integrating Object-Oriented Models
	Summary
	Key Terms
	Review Questions
	Thinking Critically
	Experiential Exercises
	Case Studies
	Further Resources

	Chapter 8 Evaluating Alternatives for Requirements, Environment, and Implementation
	Tropic Fish Tales: Netting the Right System
	Overview
	Project Management Perspective
	Deciding on Scope and Level of Automation
	Defining the Application Deployment Environment
	Choosing Implementation Alternatives
	Contracting with Vendors
	Presenting the Results and Making the Decisions
	Summary
	Key Terms
	Review Questions
	Thinking Critically
	Experiential Exercises
	Case Studies
	Further Resources

	PART 3 Systems Design Tasks
	Chapter 9 Elements of Systems Design
	Fairchild Pharmaceuticals: Finalizing Architectural Design for a Production System
	Overview
	Project Management Revisited: Execution and Control of Projects
	Understanding the Elements of Design
	Design Activities
	Network Design
	The Deployment Environment and Application Architecture
	Summary
	Key Terms
	Review Questions
	Thinking Critically
	Experiential Exercises
	Case Studies
	Further Resources

	Chapter 10 The Traditional Approach to Design
	Theatre Systems, Inc.: Something Old, Something New
	Overview
	The Structured Approach to Designing the Application Architecture
	The Automation System Boundary
	The System Flowchart
	The Structure Chart
	Module Algorithm Design: Pseudocode
	Integrating Structured Application Design with Other Design Tasks
	Three-Layer Design
	Summary
	Key Terms
	Review Questions
	Thinking Critically
	Experiential Exercises
	Case Studies
	Further Resources

	Chapter 11 Object-Oriented Design: Principles
	New Capital Bank: Part 1
	Overview
	Object-Oriented Design: Bridging from Analysis to Implementation
	Object-Oriented Architectural Design
	Fundamental Principles of Object-Oriented Detailed Design
	Design Classes and the Design Class Diagram
	Detailed Design with CRC Cards
	Fundamental Detailed Design Principles
	Summary
	Key Terms
	Review Questions
	Thinking Critically
	Experiential Exercises
	Case Studies
	Further Resources

	Chapter 12 Object-Oriented Design: Use Case Realizations
	New Capital Bank: Part 2
	Overview
	Detailed Design of Multilayer Systems
	Use Case Realization with Sequence Diagrams
	Designing with Communication Diagrams
	Updating and Packaging the Design Classes
	Design Patterns
	Summary
	Key Terms
	Review Questions
	Thinking Critically
	Experiential Exercises
	Case Studies
	Further Resources

	Chapter 13 Designing Databases
	Nationwide Books: Designing a New Database
	Overview
	Databases and Database Management Systems
	Relational Databases
	Object-Oriented Databases
	Hybrid Object-Relational Database Design
	Data Types
	Distributed Databases
	Summary
	Key Terms
	Review Questions
	Thinking Critically
	Experiential Exercises
	Case Studies
	Further Resources

	Chapter 14 Designing the User Interface
	Interface Design at Aviation Electronics
	Overview
	Identifying and Classifying Inputs and Outputs
	Understanding the User Interface
	Guidelines for Designing User Interfaces
	Documenting Dialog Designs
	Guidelines for Designing Windows and Browser Forms
	Guidelines for Designing Web Sites
	Designing Dialogs for Rocky Mountain Outfitters
	Summary
	Key Terms
	Review Questions
	Thinking Critically
	Experiential Exercises
	Case Studies
	Further Resources

	Chapter 15 Designing System Interfaces, Controls, and Security
	Downslope Ski Company: Designing a Secure Supplier System Interface
	Overview
	Identifying System Interfaces
	Designing System Inputs
	Designing System Outputs
	Designing Integrity Controls
	Designing Security Controls
	Summary
	Key Terms
	Review Questions
	Thinking Critically
	Experiential Exercises
	Case Studies
	Further Resources

	PART 4 Implementation and Support
	Chapter 16 Making the System Operational
	Tri-State Heating Oil: Juggling Priorities to Begin Operation
	Overview
	Program Development
	Quality Assurance
	Data Conversion
	Installation
	Documentation
	Training and User Support
	Maintenance and System Enhancement
	Summary
	Key Terms
	Review Questions
	Thinking Critically
	Experiential Exercises
	Case Studies
	Further Resources

	Chapter 17 Current Trends in System Development
	Valley Regional Hospital: Measuring a Project’s Progress
	Overview
	Software Principles and Practices
	Adaptive Methodologies to Development
	Model-Driven Architecture—Generalizing Solutions
	Frameworks, Components, and Services
	Summary
	Key Terms
	Review Questions
	Thinking Critically
	Experiential Exercises
	Case Studies
	Further Resources

	Index

